Thermo-visco-elasticity
at small strains
with L^1-data

Tomáš Roubíček

Preprint no. 2007-038
This is an author’s preprint version of the paper to be published in “Quarterly of Applied Mathematics”. The preprint and its maintaining in this preprint series is in accord with the copyright agreement.
Thermo-visco-elasticity at small strains with \(L^1\)-data

Tomáš Roubíček

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, and
Institute of Information Theory and Automation, Academy of Sciences,
Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic.

Abstract

Existence of a very weak solution to the \(d\)-dimensional thermo-visco-elasticity system for Kelvin-Voigt-type material at small strains involving (possibly nonlinear) monotone viscosity of a \(p\)-Laplacian type and temperature-dependent heat capacity of an \((\omega-1)\)-polynomial growth is proved by a successive passage to a limit in a suitably regularized Galerkin approximation and sophisticated a-priori estimates for the temperature gradient performed for the coupled system. A global solution for arbitrary large data having an \(L^1\)-structure is obtained under the conditions \(p \geq 2\), \(\omega \geq 1\), and \(p > 1 + d/(2\omega)\).

Keywords: Thermoviscoelasticity, Kelvin-Voigt materials, very weak solutions.

AMS Subj. Classification: Primary 74F05; Secondary 35K55, 74H20, 80A17

1 Introduction

Existence of a solution of a coupled thermo-visco-elasticity system for Kelvin-Voigt-type material with a linear dissipation and the heat equation with constant heat capacity and conductivity is, inspite of great effort thorough many decades, still open in dimensions \(d \geq 2\), while in dimension \(d = 1\) is was proved already in [8, 9] in 1982. Investigation of one-dimensional problems continued, e.g., in [5, 6, 7, 13, 14, 16, 20, 24, 26, 29, 30, 31, 32, 33].

Literature about multidimensional problems is more modest, however. Linear dissipation mechanism in case \(d \geq 2\) would need suitable modifications of in the heat equation. One option involving a non-constant heat capacity depending on temperature \(\theta\) with a growth at least \(\theta^{1/2+\varepsilon}\), \(\varepsilon > 0\), was considered in [2] where existence of a solution has been proved by a Schauder fixed point. Similar Schauder fixed method was used also in [34, 35].

Alternatively, keeping the heat capacity constant, one can modify heat conductivity to make it dependent either on \(\theta\) (as in [10] with a growth bigger than \(1 - 2/d\), see also [11, Sect.5.4.2.1]) or on \(\nabla \theta\) (as in [11, Sect.5.4.2.2] or [15] with a growth \(\geq d/2 - 1\) if \(d \leq 3\)). For the last case, see also [18, 19] where a growth condition \(2\kappa'(s) + \kappa(s) \geq \varepsilon(1 + s)\) imposed on the heat conductivity \(\kappa = \kappa(|\nabla \theta|^2)\) was assumed. In the latter works, regular data had been required. Another modification of the heat flux, namely by a term \(\partial_t \nabla \theta\), was used in [20] again for the one-dimensional case only.

Another possibility to handle linear dissipation is to involve higher-order terms of the type \(|\nabla^2 u|^2\) into the stored energy which then can be even non-convex in terms of strain, cf. [13, 21, 23, 26, 30, 31] or also [5, Chap.5].

Alternatively, linear dissipation mechanism can be strengthen by some higher-order “capillarity-like” terms as \(\Delta^2 \frac{\partial}{\partial t} u\) or some spatially nonlocal term, cf. Remark 6 below.

The goal is to prove existence of a solution to the thermoviscoelastic system by a constructive method without using Schauder-fixed-point-type arguments and under extreme loading having only basic integrability of heating and mechanical forcing. Also, combination of nonlinearities in the heat equation (as in [2]) and in the dissipation reveals a proper condition (3.2) on their growth.

The work was created as a research activity of “Nečas center for mathematical modeling” LC 06052 (MSMT ČR) partly supported also by the grants IAA 107 5402 (GA AV ČR) and MSM 21620839 and 1M06031 (MSMT ČR). The author very acknowledges comments of dr. Giuseppe Tomassetti that improved the previous version at a lot of places.
2 Thermo-visco-elastic system

We assume a body occupying the bounded domain Ω with a Lipschitz boundary Γ, made from Kelvin-Voigt-type viscoelastic and heat-conductive material described in terms of the small strains. Considering a fixed time horizon $T > 0$, we abbreviate $Q := (0, T) \times \Omega$ and $\Sigma := (0, T) \times \Gamma$. The governing equations for the displacement u and temperature θ consist of the equilibrium equation that balances the total stress σ with the inertial forces and outer loading by a body force f:

$$\rho \frac{\partial^2 u}{\partial t^2} - \text{div} \sigma = f \quad \text{with} \quad (2.1a)$$

$$\sigma = C(e(u) - \theta B) + D\left(\frac{\partial e(u)}{\partial t}\right), \quad e(u) = \frac{1}{2} \nabla u^T + \frac{1}{2} \nabla u, \quad (2.1b)$$

and the heat equation that balances the total energy, cf. (4.57) below,

$$\epsilon(\theta) \frac{\partial \theta}{\partial t} - \text{div}(K \nabla \theta) = D\left(\frac{\partial e(u)}{\partial t}\right) : \frac{\partial e(u)}{\partial t} - \theta \mathbb{C}B : \frac{\partial e(u)}{\partial t} + g \quad (2.2)$$

where the data in this model are:

- $u: Q \to \mathbb{R}^d$ displacement,
- $\theta: Q \to \mathbb{R}$ temperature,
- $e(u): Q \to \mathbb{R}^{d \times d}$ the small-strain tensor,
- C the 4th-order tensor of elastic constants,
- $D: \mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ a (possibly nonlinear) viscosity,
- $B \in \mathbb{R}^{d \times d}$ the thermal-dilatation tensor,
- $c > 0$ heat capacity (depending on θ),
- $\rho > 0$ mass density,
- $K \in \mathbb{R}^{d \times d}$ the heat-conductivity tensor,
- $f: Q \to \mathbb{R}^d$ the body force,
- $g: Q \to \mathbb{R}$ the prescribed body heat source, and
- $h: \Sigma \to \mathbb{R}$ (in (2.3a) below) the prescribed boundary flux,

where $\mathbb{R}^{d \times d}$ is the set of symmetric $d \times d$-matrices. By (3.3b) below, C induces a linear mapping $\mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ defined by $e \mapsto \sum_{k,l=1}^d C_{ijkl} e_{kl}$.

We will consider an initial-boundary-value problem for the system (2.1)-(2.2) and therefore we choose some boundary conditions, e.g. an unsupported body heated by an external flux h, and initial conditions:

$$\nu \cdot \sigma = 0, \quad \text{on } \Sigma, \quad (2.3a)$$

$$u(0, \cdot) = u_0, \quad \frac{\partial u}{\partial t}(0, \cdot) = v_0, \quad \theta(0, \cdot) = \theta_0 \quad \text{on } \Omega. \quad (2.3b)$$

Remark 1 (Thermodynamics of the model.) The model (2.1)–(2.2) can be derived from the specific Helmholtz free energy considered as

$$\psi(\theta, e) := \frac{1}{2} C(e - B\theta) : (e - B\theta) - \frac{\theta^2}{2} CB : B - \psi_0(\theta). \quad (2.4)$$

The particular terms in (2.4) are related respectively to the elastic stored energy, temperature dilatation, and a contribution of chaotic vibrations of the atomic grid. Moreover, we pose the dissipation rate:

$$\xi(\dot{e}) := D(\dot{e}) : \dot{e}, \quad \dot{e} = \frac{\partial e(u)}{\partial t}. \quad (2.5)$$
The form of \(\xi \) is related to (possibly nonlinear) viscosity. Defining still the specific entropy by so-called Gibbs’ relation \(s = s(\theta, e) = -\psi'_\theta(\theta, e) = C_0 : e + \psi'_0(\theta) \) and the heat flux \(j := -K \nabla \theta \) by Fourier’s law (in an anisotropic medium), the so-called entropy equation

\[
\theta \frac{\partial s}{\partial t} = \xi \left(\frac{\partial e(u)}{\partial t} \right) - \text{div}(j) + g \tag{2.6}
\]
yields, after some calculus, the heat equation (2.2) with the heat capacity

\[
c(\theta) = \theta \psi'_0(\theta). \tag{2.7}
\]

Furthermore, the total stress is postulated in the Kelvin-Voigt rheology, as

\[
\sigma = \psi'_e(\theta, e(u)) + D \left(\frac{\partial e(u)}{\partial t} \right), \tag{2.8}
\]

which just gives (2.1b). From Hamilton’s principle using the specific kinetic energy \(\frac{1}{2} \rho |\dot{u}|^2 \) generalized for dissipative systems, one then obtains the equilibrium equation (2.1a). The entropy equation (2.6) is designed to balance the total energy, i.e. the sum of the internal energy

\[
\psi + \theta s = \theta \psi'_0(\theta) - \psi_0(\theta) + \frac{1}{2} C e(u) : e(u) - \theta C_0 : e(u) \tag{2.9}
\]

and the kinetic energy integrated over \(\Omega \) with the overall dissipated energy, cf. (4.57) below. Assuming \(g \geq 0, h \geq 0, \) and \(u_0 > 0 \), we can at least formally rely on \(\theta > 0 \) and, using (2.6) and (3.3k) below, derive the Clausius-Duhem inequality

\[
\frac{d}{dt} \int_{\Omega} s \, dx = \int_{\Omega} \text{div} \left(K \nabla \theta \cdot \nabla \theta \right) + \frac{K \nabla \theta \cdot \nabla \theta}{\theta^2} + \frac{g}{\theta} \, dx = \int_{\Omega} K \nabla \theta \cdot \nabla \theta + \frac{h}{\theta} \, dx + \int_{\Gamma} \frac{h}{\theta} \, dS \geq 0. \tag{2.10}
\]

A special case \(\psi_0(\theta) = c_0 \theta \ln(\theta/\theta_0) \) with \(c_0 > 0 \) and \(\theta_0 \) constant gives \(c(\theta) = c_0 \) in (2.7) and the thermal part of the internal energy (2.9) as \(\theta \psi'_0(\theta) - \psi_0(\theta) = c_0 \theta \).

Example 1 (Isotropic material) The above general setting allows for general anisotropic materials as single-crystals or composites. In special cases as cubic or tetragonal single-crystals or stratified composites, more symmetries can be required in \(B, C, D, \) and \(K \) than those assumed in (3.3) below. The extreme case is isotropic where \(B = \text{diag}(\alpha, ..., \alpha) \) and \(K = \text{diag}(\kappa, ..., \kappa) \) with \(\alpha \) thermal dilatability and \(\kappa > 0 \) heat conductivity, and only two coefficients, denoted as \(\lambda \geq 0 \) and \(\mu > 0 \) (called Lamé constants) occur in \(C \), and similarly for \(D \) where some nonlinear dependence is to be considered if \(p \neq 2 \); the specific form (2.11c) is just a particular example for it, of course. Thus, in this isotropic case, we have

\[
B_{ij} = \alpha \delta_{ij}, \tag{2.11a}
\]

\[
C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}), \tag{2.11b}
\]

\[
D(\dot{e}) = D(\dot{e}) \dot{e} \quad \text{with} \quad D^0_{ijkl}(\dot{e}) = (\lambda^0 + \lambda^1 |\text{tr}(\dot{e})|^p - 2) \delta_{ij} \delta_{kl} + (\mu^0 + \mu^1 |\dot{e}|^p - 2) (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}), \tag{2.11c}
\]

\[
K_{ij} = \kappa \delta_{ij}, \tag{2.11d}
\]

where \(\delta \) denotes here the Kronecker symbol, “\(\text{tr} \)” denotes the trace of a matrix and \(\lambda^0, \lambda^1, \mu^0, \mu^1 \geq 0 \). Note that the stored energy and the dissipation rate take respectively the form

\[
\frac{1}{2} C e : e = \frac{\lambda}{2} |\text{tr}(e)|^2 + \mu |e|^2 \quad \text{and} \quad \frac{1}{2} D(\dot{e}) : \dot{e} = \lambda^0 |\text{tr}(e)|^2 + \lambda^1 |\text{tr}(e)|^p + 2 \mu^0 |\dot{e}|^2 + 2 \mu^1 |\dot{e}|^p, \tag{2.12a}
\]

where \(|e| \) means the Frobenius norm of the matrix \(e \).
3 Data qualification, very weak solution

We assume
\[\Omega \text{ a bounded Lipschitz domain in } \mathbb{R}^d, \, d \geq 1, \]
and, for some exponents \(p \) and \(\omega \) satisfying
\[p \geq 2, \quad \omega \geq 1, \quad \text{and} \quad p > \frac{d + 2\omega}{2\omega}, \]
or, in other words, \(\omega > d/(2p-2) \), the following basic qualification for \(\mathcal{C}, \mathcal{D}, \mathcal{E} \) and for \(\mathcal{K} \):
\[\exists \eta_0 > 0 \quad \forall \mathcal{E} \in \mathbb{R}^{d \times d}_{\text{sym}} : \quad \frac{1}{2} \mathcal{C} \mathcal{E} : \mathcal{E} \geq \eta_0 |\mathcal{E}|^2, \]
(3.3a)
\[\mathcal{C}_{ijkl} = \mathcal{C}_{jikl} = \mathcal{C}_{klij}, \]
(3.3b)
\[\mathcal{D} : \mathbb{R}^{d \times d}_{\text{sym}} \to \mathbb{R}^{d \times d}_{\text{sym}} \text{ continuous}, \]
(3.3c)
\[\exists \eta_1 > 0 \quad \forall \mathcal{E} \in \mathbb{R}^{d \times d}_{\text{sym}} : \quad \mathcal{D}(\mathcal{E}) : \mathcal{E} \geq \eta_1 |\mathcal{E}|^p, \]
(3.3d)
\[\exists \mathcal{C}_0 \quad \forall \mathcal{E} \in \mathbb{R}^{d \times d}_{\text{sym}} : \quad |\mathcal{D}(\mathcal{E})| \leq \mathcal{C}_0 (1 + |\mathcal{E}|^{p-1}), \]
(3.3e)
\[\exists \eta_2 > 0 \quad \forall \mathcal{E}_1, \mathcal{E}_2 \in \mathbb{R}^{d \times d}_{\text{sym}} : \quad (\mathcal{D}(\mathcal{E}_1) - \mathcal{D}(\mathcal{E}_2)) : (\mathcal{E}_1 - \mathcal{E}_2) \geq \eta_2 |\mathcal{E}_1 - \mathcal{E}_2|^p, \]
(3.3f)
\[\mathcal{C} : \mathbb{R}^+ \to \mathbb{R} \text{ continuously differentiable}, \]
(3.3g)
\[\exists c_{\max} \geq c_{\min} > 0, \quad \forall \mathcal{D} \in \mathbb{R}^+ : \quad c_{\min}(1 + \mathcal{D})^{\omega - 1} \leq \mathcal{C}(\mathcal{D}) \leq c_{\max}(1 + \mathcal{D}^{\omega - 1}), \]
(3.3h)
\[\exists \zeta > 0 \quad \exists c_{\max} \in \mathbb{R} : \quad \mathcal{C}'(\mathcal{D}) \leq C_{\max} \frac{c(\mathcal{D})^2}{(1 + \mathcal{D})^{1+\zeta}}, \]
(3.3i)
\[k \in \mathbb{R}^{d \times d}, \]
(3.3j)
\[\exists \lambda > 0 \quad \forall \mathcal{E} \in \mathbb{R}^d : \quad k \mathcal{E} \cdot \mathcal{E} \geq \lambda |\mathcal{E}|^2. \]
(3.3k)

An example for \(\mathcal{C} \) satisfying (3.3g,h,i) is \(\mathcal{C}(\mathcal{D}) := c_{\min}(1 + \mathcal{D})^{\omega - 1} \) with any \(\omega \geq 1 \); for such \(\mathcal{C} \), (3.3i) holds with \(\zeta \leq \omega - 1 \) if \(\omega > 1 \) while for \(\omega = 1 \) such \(\mathcal{C} \) is constant and \(\mathcal{C}' = 0 \) hence (3.3i) holds too. The rather nonconventional condition (3.3i) will be used later for (4.48).

We will allow for rather extreme loadings, satisfying only
\[f \in L^1(I; L^2(\Omega; \mathbb{R}^d)), \quad g \in L^1(Q), \quad h \in L^1(\Sigma), \]
(3.4a)
\[u_0 \in W^{1,2}(\Omega; \mathbb{R}^d), \quad v_0 \in L^2(\Omega; \mathbb{R}^d), \quad \theta_0 \in L^\infty(\Omega). \]
(3.4b)

We will assume non-negativity of the external heat sources:
\[g \geq 0, \quad h \geq 0, \quad \theta_0 \geq 0. \]
(3.5)

In the isotropic case in the Example 1, from (2.12) we can see that (3.3a) is satisfied with \(\eta_0 = \mu \) and (3.3c,e) holds with \(\eta_1 = \mu_1 = \eta_2 \), and (3.3e) needs \(\mathcal{C}_0 = \max(\lambda^0 + 2\mu^0, \lambda^1 + 2\mu^1) \).

Let us still abbreviate \(I := (0, T) \). We use the standard notation \(C^\infty(\cdot) \) for the space of smooth (possibly vector- or matrix-valued) functions, \(L^p(\cdot) \) for \(p \)-power Lebesgue integrable functions as well as \(W^{k,p}(\cdot) \) for the Sobolev spaces of functions whose \(k \)th derivatives are in \(L^p(\cdot) \) on the domain indicated. If values range over a Banach space \(X \), then \(L^p(I; X) \) refers to an \(L^p \)-Bochner spaces of Banach-space-valued functions while \(W^{k,p}(I; X) \) is a respective Sobolev-Bochner space. Moreover, \(\mathcal{M}(I; X) \) denotes the space of \(X \)-valued measures on \(I = [0, T] \). Further, \((\cdot)^* \) will denote standardly the (topological) dual space. We also use \(\cdot : \cdot \) for the product of matrices and \(\cdot \cdot \) for the product of vectors. After transforming \(\mathcal{C}(\mathcal{D}) \mathcal{F} \theta = \mathcal{C}^0 \mathcal{C}(\mathcal{D}) \theta \) in (2.2) with a primitive function \(\mathcal{C} \) of \(\mathcal{C} \), and by testing (2.1) by \(z \) and thus transformed (2.2) by \(w \) and using Green formula and by-part integration in time and the boundary and initial conditions (2.3), we arrive at the following:

5
Definition 1 *(A very weak formulation.)* We will call \((u, \theta)\) with

\[
\begin{align*}
 u &\in L^\infty(I; W^{1,2}(\Omega; \mathbb{R}^d)) \cap W^{1,p}(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap W^{1,\infty}(I; L^2(\Omega; \mathbb{R}^d)), \\
 \theta &\in L^r(I; W^{1,r}(\Omega)) \cap L^\infty(I; L^\infty(\Omega)) \quad \text{with any} \quad 1 \leq r < \frac{d + 2\omega}{d + \omega},
\end{align*}
\]

(3.6a) (3.6b)

a very weak solution to the thermoviscoelastic system (2.1)-(2.2) with the boundary and initial conditions (2.3) if \(u(0, \cdot) = u_0\) and if

\[
\int_Q \left(C(\epsilon(u) - \theta B) + D\left(\frac{\partial \epsilon(u)}{\partial t} \right) : e(z) - \theta \frac{\partial u}{\partial t} \cdot \frac{\partial z}{\partial t} \right) \, dx \, dt = \int_Q f \cdot z \, dx \, dt + \int_\Omega qv_0(x) \cdot z(0, x) \, dx \quad (3.7)
\]

for any \(z \in C^\infty(Q, \mathbb{R}^d)\) with \(z(T, \cdot) = 0\), and if

\[
\int_Q \left(R \nabla \theta \cdot \nabla w + \left(\theta \mathbb{C} : \frac{\partial \epsilon(u)}{\partial t} - \mathbb{D}\left(\frac{\partial \epsilon(u)}{\partial t} \right) \right) w - \hat{c}(\theta) \frac{\partial w}{\partial t} \right) \, dx \, dt = \int_Q gw \, dx \, dt + \int_\Sigma hw \, dS dt + \int_\Omega \hat{c}(\theta_0(x)) w(0, x) \, dx \quad (3.8)
\]

for any \(w \in C^\infty(Q)\) with \(w(T, \cdot) = 0\), where \(\hat{c}\) denotes a primitive function of \(c\).

Our main result is:

Theorem 1 *(Existence of very weak solutions.)* Under the assumptions (3.1)-(3.5), a very weak solution to the thermoviscoelastic system (2.1)-(2.2) with the boundary and initial conditions (2.3) does exist. In addition to (3.6), it also holds

\[
\begin{align*}
 \frac{\partial^2 u}{\partial t^2} &\in L^{p/(p-1)}(I; W^{1,p}(\Omega; \mathbb{R}^d)^*) + L^1(I; L^2(\Omega; \mathbb{R}^d)), \\
 \frac{\partial \theta}{\partial t} &\in M(I; W^{-1-d/2,2}(\Omega)), \\
 \frac{\partial \hat{c}(\theta)}{\partial t} &\in L^1(I; W^{-1-d/2,2}(\Omega)).
\end{align*}
\]

(3.9a) (3.9b) (3.9c)

Proof advertised: It follows from the arguments presented in Section 4, namely from Proposition 2. It is important that (3.4) allows both for (4.2) and for (4.3) used in Section 4, while (3.5) allows for (4.20) below. As to (3.9c), it is important that \(\frac{\partial \hat{c}(\theta)}{\partial t}\) is not a measure in time but indeed belongs to \(L^1(I; W^{-1-d/2,2}(\Omega))\) because, in the sense of distributions, \(c(\theta) \frac{\partial \theta}{\partial t} = \text{div}(R \nabla \theta) + \text{div}(\epsilon(\frac{\partial u}{\partial t})) : e(\frac{\partial u}{\partial t}) - \theta \mathbb{C} : e(\frac{\partial u}{\partial t}) + g \in L^1(I; W^{-1-d/2,2}(\Omega))\).

\[\square\]

4 Analysis of the thermo-visco-elastic system

We will prove Theorem 1 by a careful successive passage to a limit in a suitably regularized Galerkin approximation and sophisticated \(L^1\)-type a-priori estimates for the temperature gradient performed for the coupled system.

Considering a parameter \(k \in \mathbb{N}\), one can always take a sequence of finite-dimensional subspaces \(V_k \subset W^{1,\infty}(\Omega)\) that is increasing and approximates the whole \(W^{1,p}(\Omega)\) strongly, i.e.

\[
V_k \subset V_{k+1} \quad \text{and} \quad \text{cl}\left(\bigcup_{k \in \mathbb{N}} V_k \right) = W^{1,p}(\Omega),
\]

(4.1)
where “cl” refers to the closure in $W^{1,p}(\Omega)$. Moreover, we consider approximations f_k of $f \in L^1(I; L^2(\Omega; \mathbb{R}^d))$, and g_k of $g \in L^1(Q)$, and also h_k of $h \in L^1(\Sigma)$ such that
\begin{align}
 f_k \in L^\infty(Q; \mathbb{R}^d) \quad \text{and} \quad & \lim_{k \to \infty} f_k = f \quad \text{strongly in} \ L^1(I; L^2(\Omega; \mathbb{R}^d)), \\
g_k \in L^2(Q) \quad \text{and} \quad & \lim_{k \to \infty} g_k = g \quad \text{strongly in} \ L^1(Q), \\
h_k \in W^{1,2}(I; L^2(\Gamma)) \quad \text{and} \quad & \lim_{k \to \infty} h_k = h \quad \text{strongly in} \ L^1(\Sigma).
\end{align}

We also approximate the initial conditions by some $u_{0,k}$, $v_{0,k}$ and $\theta_{0,k}$, and assume
\begin{align}
 u_{0,k} \in V_k^d \quad \text{and} \quad & \lim_{k \to \infty} u_{0,k} = u_0 \quad \text{in} \ W^{1,2}(\Omega; \mathbb{R}^d), \\
v_{0,k} \in V_k^d \quad \text{and} \quad & \lim_{k \to \infty} v_{0,k} = v_0 \quad \text{in} \ L^2(\Omega; \mathbb{R}^d), \\
\theta_{0,k} \in V_k \quad \text{and} \quad & \lim_{k \to \infty} \theta_{0,k} = \theta_0 \quad \text{in} \ L^\infty(\Omega).
\end{align}

Moreover, we make a regularization of both the mechanical and the thermal parts by monotone terms with a sufficiently fast growth to compensate the growth of the right-hand side terms in the heat equation (2.2) just to guarantee mere existence of the Galerkin approximants. Later these terms will be suppressed.

Thus, for a regularization parameter $\varepsilon > 0$, we define the Galerkin approximation $(u_{\text{kle}}, \theta_{\text{kle}})$ of the regularized system as functions of the regularized system as functions of
\begin{align}
 u_{\text{kle}} \in W^{1,\infty}(I; V_k^d) \cap W^{2,1}(I; (V_k^d)^*), \\
\theta_{\text{kle}} \in L^\infty(I; V_k) \cap W^{1,1}(I; V_k^*)
\end{align}

satisfying the initial conditions
\begin{align}
 u_{\text{kle}}(0, \cdot) = u_{0,k}, \quad & \frac{\partial u_{\text{kle}}}{\partial t}(0, \cdot) = v_{0,k}, \quad \theta_{\text{kle}}(0, \cdot) = \theta_{0,k}
\end{align}

and
\begin{align}
 & \left\langle \varepsilon \frac{\partial^2 u_{\text{kle}}}{\partial t^2}, z \right\rangle + \int_{\Omega} \left(C(e(u_{\text{kle}}) - \theta_{\text{kle}} B) + D \left(\frac{\partial e(u_{\text{kle}})}{\partial t} \right) \right) : e(z) \\
& \quad + \varepsilon \left| \frac{\partial u_{\text{kle}}}{\partial t} \right|^2 \frac{2p-2}{2} \frac{\partial u_{\text{kle}}}{\partial t} \frac{1}{2} z \, dx = \int_{\Omega} f_k \cdot z \, dx
\end{align}

for any $z \in V_k^d$ and for a.a. $t \in [0, T]$, and if
\begin{align}
 & \left\langle \varepsilon(\theta_{\text{kle}}) \frac{\partial \theta_{\text{kle}}}{\partial t}, w \right\rangle + \int_{\Omega} \left(\varepsilon \| \nabla \theta_{\text{kle}} \|_{-1} \nabla w + \left(\varepsilon | \theta_{\text{kle}} | \theta_{\text{kle}} + \theta_{\text{kle}} C B : \frac{\partial e(u_{\text{kle}})}{\partial t} \right) \\
& \quad - D \left(\frac{\partial e(u_{\text{kle}})}{\partial t} \right) : \frac{\partial e(u_{\text{kle}})}{\partial t} w \right) \, dx = \int_{\Omega} g_k w \, dx + \int_{\Gamma} h_k w \, dS
\end{align}

for any $w \in V_k$ and for a.a. $t \in [0, T]$. In other words, $(u_{\text{kle}}, \theta_{\text{kle}})$ solves, in the weak sense, the system
\begin{align}
 & \varepsilon \left| \frac{\partial u_{\text{kle}}}{\partial t} \right|^2 \frac{2p-2}{2} \frac{\partial u_{\text{kle}}}{\partial t} = f_k + \varepsilon^{(1)}_k, \\
& \left(\varepsilon(\theta_{\text{kle}}) \frac{\partial \theta_{\text{kle}}}{\partial t} - \text{div}(\varepsilon \nabla \theta_{\text{kle}}) + \varepsilon | \theta_{\text{kle}} | \theta_{\text{kle}} + \theta_{\text{kle}} C B : \frac{\partial e(u_{\text{kle}})}{\partial t} \\
& \quad - \text{div} \left(\frac{\partial e(u_{\text{kle}})}{\partial t} \right) \right) \frac{\partial e(u_{\text{kle}})}{\partial t} - g_k, \varepsilon \frac{\partial \theta_{\text{kle}}}{\partial t} - h_k \right) = \varepsilon^{(2)}_k
\end{align}
where the residua \(r^{(1)}_{kle} \) belong to \(W^{1,p}(\Omega; \mathbb{R}^d)^* \) and \(r^{(2)}_{kle} \) belong to \(W^{1,2}(\Omega)^* \) are orthogonal to \(V^d_k \) and \(V^e_i \), respectively. In the following proofs, we can confine ourselves to \(k \geq l \) so that, in particular, \(\theta_0,k \in V_k \subset V_i \). The meaning of the left-hand side of (4.8b), let us denote it by \((\xi_{kle}, \zeta_{kle}) \), is naturally the (continuous extension of the) linear functional \(z \mapsto \int_{\Omega} \xi_{kle} z \, dx + \int_G \zeta_{kle} z \, dS \).

Let us further define the seminorms on a dual space \(V^* \) to a function space \(V \subset L^1(Q; \mathbb{R}^n) \) for \(n := d \) or \(n := 1 \) by

\[
|f|_{k,v^*} := \sup_{v(t) \in V^e_k \text{ for a.a. } t \in [0,T]} \int_Q f \cdot v \, dx dt. \tag{4.9}
\]

Considering a (countable) collection of these seminorms for \(k \in \mathbb{N} \), we generate a locally convex topology on \(V^* \). Equipped by such topology, this locally convex space will then be denoted by \(V^*_{locCS} \); for this construction see also [28, Sect.8.4]. Thanks to the assumption (4.1), these spaces are Hausdorff topological spaces.

Lemma 1 (Existence of Galerkin solution, a-priori estimates.) Let (3.1), (3.2), (3.3), (4.2) and (4.3) hold. Then the Galerkin approximate solution \((u_{kle}, \theta_{kle}) \) to the regularized system (4.4)–(4.7) does exist and satisfies, for some \(C_{1, \ldots, 4,k_e} < +\infty \) dependent on \(k \) and \(\varepsilon \) but not on \(l \), the following a-priori estimates:

\[
\begin{align*}
\|u_{kle}\|_{W^{1,\infty}(I; W^{1,\infty}(\Omega; \mathbb{R}^d))} &\leq C_{1,k_e}, \tag{4.10a} \\
\left| \frac{\partial^2 u_{kle}}{\partial t^2} \right|_{L^2(I; W^{1,2}(\Omega; \mathbb{R}^d)^*)} &\leq C_{2,k_e} \tag{4.10b} \\
\|\theta_{kle}\|_{L^\infty(I; L^{1+\epsilon}(\Omega)) \cap L^2(I; W^{1,2}(\Omega)) \cap L^3(Q)} &\leq C_{3,k_e}, \tag{4.10c} \\
\left| \frac{\partial \theta_{kle}}{\partial t} \right|_{L^2(I; L^{1,2}(\Omega)) \cap L^3(Q)} &\leq C_{4,k_e} \quad \text{provided } l \geq \widehat{l}. \tag{4.10d}
\end{align*}
\]

Proof. First, the existence of the Galerkin solution follows by the standard arguments based on theory of ordinary differential equations together with a successive prolongation which is made possible due to the \(L^\infty(I; \cdot) \)-estimates of \(u_{kle} \) and of \(\theta_{kle} \) derived below.

We perform the test of (4.6) and of (4.7) by \(z := \frac{\partial}{\partial t} u_{kle}(t, \cdot) \) and \(w := \theta_{kle}(t, \cdot) \), which are legal test functions being from \(V^d_k \) and \(V_i \), respectively. We will also use Korn’s inequality in the form

\[
\exists \eta_3 > 0 \quad \forall v \in W^{1,p}(\Omega; \mathbb{R}^d) : \\
\eta_3 \|v\|_{W^{1,p}(\Omega; \mathbb{R}^d)} \leq \|v\|_{L^p(\Omega; \mathbb{R}^d)} + \|v\|_{L^2(\Omega; \mathbb{R}^d)} \tag{4.11}
\]

with \(\eta_3 > 0 \) depending on \(\Omega \), relying on (3.1). From (3.3d) combined with (4.11) and the algebraic inequality \((a-b)^p \geq 2^{1-p}a^p - b^p \), we obtain

\[
\begin{align*}
\int_{\Omega} D \left(\frac{\partial e(u_{kle})}{\partial t} \right) : \frac{\partial e(u_{kle})}{\partial t} \, dx &\geq \eta_1 \left\| \frac{\partial e(u_{kle})}{\partial t} \right\|_{L^p(\Omega; \mathbb{R}^d)}^p \\
&\geq \eta_1 \left(\eta_3 \left| \frac{\partial u_{kle}}{\partial t} \right|_{W^{1,p}(\Omega; \mathbb{R}^d)} - \left| \frac{\partial u_{kle}}{\partial t} \right|_{L^2(\Omega; \mathbb{R}^d)} \right)^p \\
&\geq 2^{1-p} \eta_1 \eta_3^p \left| \frac{\partial u_{kle}}{\partial t} \right|_{W^{1,p}(\Omega; \mathbb{R}^d)}^p - \eta_1 \left| \frac{\partial u_{kle}}{\partial t} \right|_{L^2(\Omega; \mathbb{R}^d)}^p. \tag{4.12}
\end{align*}
\]

We also introduce \(\mathcal{E} : \mathbb{R} \to \mathbb{R} \) defined by \(\mathcal{E}(\theta) := \int_0^\theta \theta c(\vartheta) \, d\vartheta \). As we do not have non-negativity of \(\theta_{kle} \) guaranteed, we can formally define \(c(\theta) = c(-\theta) \) for \(\theta < 0 \). Then (3.3h)
ensures \(\frac{1}{4} + \omega c_{\min} |\theta|^{1+\omega} \leq \mathcal{C}(\theta) \leq c_{\max} \left(\frac{1}{4} \theta^2 + \frac{1}{4+\omega} |\theta|^{1+\omega} \right) \). Hence, these tests yield in the sum:

\[
\frac{1}{t} \|rac{\partial u_{kle}}{\partial t}\|_{L^2(\Omega;\mathbb{R}^d)}^2 + \int_{\Omega} \mathcal{C}(u_{kle}) : e(u_{kle}) + \mathcal{C}(\theta_{kle}) \ dx
\]

\[
+ 2^{1-p} \eta_1 \eta_3 \|rac{\partial u_{kle}}{\partial t}\|_{W^{1,p}(\Omega;\mathbb{R}^d)}^p - \eta_1 \|rac{\partial u_{kle}}{\partial t}\|_{L^2(\Omega;\mathbb{R}^d)}^p + \kappa \|
abla \theta_{kle}\|_{L^2(\Omega;\mathbb{R}^d)}^2
\]

\[
+ \varepsilon \left(\|rac{\partial u_{kle}}{\partial t}\|_{L^{2p}(\Omega;\mathbb{R}^d)} + \|	heta_{kle}\|_{L^3(\Omega)}^3 \right)
\]

\[
\leq \int_{\Omega} (\frac{\partial u_{kle}}{\partial t})^2 + \varepsilon \left(\|rac{\partial u_{kle}}{\partial t}\|_{L^2(\Omega;\mathbb{R}^d)}^{2p-2} \frac{\partial u_{kle}}{\partial t} \right) - \frac{\partial u_{kle}}{\partial t} + \left(\mathcal{C}(u_{kle}) + \mathbb{D} \left(\frac{\partial e(u_{kle})}{\partial t} \right) \right)
\]

\[
: \left(\frac{\partial e(u_{kle})}{\partial t} \right) : \frac{\partial e(u_{kle})}{\partial t} - \mathbb{C} B : \frac{\partial e(u_{kle})}{\partial t} \theta_{kle}^2
\]

\[
+ f_k(t, \cdot) : \frac{\partial u_{kle}}{\partial t} + g_k(t, \cdot) \theta_{kle} \ dx + \int_{\Gamma} h_k(t, \cdot) \theta_{kle} dS. \quad (4.13)
\]

By (3.3c) and by using Hölder’s and Young’s inequalities, we have

\[
\int_{\Omega} \mathbb{C} B : \frac{\partial e(u_{kle})}{\partial t} \theta_{kle}^2 \leq \|\mathbb{C} B\| \int_{\Omega} \left| \frac{\partial e(u_{kle})}{\partial t} \right|^2 \ dx
\]

\[
\leq C_{e,k,p} + \frac{\varepsilon}{4} \left(\frac{\partial u_{kle}}{\partial t} \right)^{2p} + \frac{\varepsilon}{2} \|\theta_{kle}\|_{L^3(\Omega)}^3. \quad (4.14)
\]

where the constant \(C_{e,k,p} \) depends on its indices and on \(\mathbb{B} \) and \(\mathbb{C} \); we used also that always \(2p \geq 3 \) (here (3.2) is used) and that the \(W^{1,2p}(\Omega) \)- and \(L^{2p}(\Omega) \)-norms are equivalent to each other if restricted on \(V_k \) with \(k \) fixed. Similarly,

\[
\int_{\Omega} \mathbb{D} : \frac{\partial e(u_{kle})}{\partial t} \theta_{kle} \ dx
\]

\[
\leq \int_{\Omega} C_0 \left(1 + \left(\frac{\partial e(u_{kle})}{\partial t} \right)^p \left(\frac{\partial e(u_{kle})}{\partial t} \right) \right) \ dx
\]

\[
\leq \int_{\Omega} \delta \left(1 + \left(\frac{\partial e(u_{kle})}{\partial t} \right)^p \right) + 2C_0^2 \delta \left(\frac{\partial e(u_{kle})}{\partial t} \right)^2 \ dx
\]

\[
\leq C_{e,k,p} \left(1 + \|\theta_{kle}\|_{L^2(\Omega)}^2 \right) + \frac{\varepsilon}{4} \left(\frac{\partial u_{kle}}{\partial t} \right)^{2p} \|\theta_{kle}\|_{L^2(\Omega;\mathbb{R}^d)}^2. \quad (4.15)
\]

where \(\delta > 0 \) was suitably chosen to give the constant \(C_{e,k,p} \) now depending also on \(C_0 \).

The resting terms on the right-hand side of (4.13) can be estimated even more easily. Eventually, we estimate the term nonpositive term on the left-hand side of (4.13) as

\[
\eta_1 \left(\frac{\partial u_{kle}}{\partial t} \right)^p_{L^2(\Omega;\mathbb{R}^d)} \leq \eta_1 \Omega \left(\frac{\partial u_{kle}}{\partial t} \right)^p_{L^2(\Omega;\mathbb{R}^d)} \leq C_{e,p,\eta_1} + \frac{\varepsilon}{4} \left(\frac{\partial u_{kle}}{\partial t} \right)^{2p} \|\theta_{kle}\|_{L^{2p}(\Omega;\mathbb{R}^d)}^2
\]

where the constant \(C_{e,p,\eta_1} \) depends again on its indices. Then we absorb the \(\varepsilon \)-terms in these estimates in the left-hand side of (4.13). Further we use also Gronwall’s inequality, which eventually yields (4.10c) and the estimates of \(u_{kle} \) in \(W^{1,\infty}(I; L^2(\Omega;\mathbb{R}^d)) \) and \(L^\infty(I; W^{1,2}(\Omega;\mathbb{R}^d)) \). From this, the estimate (4.10a) then directly follows because \(V_k \subset W^{1,\infty}(\Omega;\mathbb{R}^d) \) is assumed and the \(L^2 \)-norm on the finite-dimensional subspace \(V_k \) is equivalent to the norm induced from \(W^{1,\infty}(\Omega;\mathbb{R}^d) \); of course, again this estimate cannot be uniform with respect to \(k \).
The estimate (4.10b) can be obtained by a test of (4.6) by \(z(t,\cdot) \in V_k^d \) with \(z \in L^1(I;W^{1,2}(\Omega;\mathbb{R}^d)) \), making integration over \(I \) and estimating the supremum as suggested in (4.9) routinely by using Hölder’s inequality and the already proved estimates (4.10a,c). E.g. we estimate
\[
\int_Q \theta_k \varepsilon \mathbb{C} : \varepsilon(z) \, dx \, dt \leq \| \theta_k \varepsilon \|_{L^\infty(I;L^2(\Omega))} \| \varepsilon(z) \|_{L^1(I;L^2(\Omega;\mathbb{R}^{d\times d}))} \leq \| \mathbb{C} \|_{C_3,k} \| z \|_{L^1(I;W^{1,2}(\Omega;\mathbb{R}^d))},
\]
the other details are omitted. Similarly, (4.10d) can be obtained by a test of (4.7) by \(z(t,\cdot) \in V_l \) with \(z \in L^2(I;W^{1,2}(\Omega)) \cap L^3(Q) \).

Now, realizing that the a-priori estimates (4.10) are independent of \(l \), we pass to the limit with \(l \to \infty \), obtaining thus a solution \((\theta_k, u_k)\) to a “semi-Galerkin” approximation involving the discretized and regularized mechanical part and the continuous (but still regularized) heat equation that can thus be tested by various nonlinear functions of \(\theta \).

Lemma 2 (Limit passage for \(l \to \infty \)) Let the assumptions of Lemma 1 together with (4.1) hold. Then the sequence \(\{(u_k, \theta_k)\} \) contains a subsequence converging weakly* in the (locally convex) topologies indicated by the estimates (4.10) to some limit, let us denote it by \((u_\infty, \theta_\infty)\). Each \(u_\infty \in W^{1,2}(I;V_k^d) \) and \(\theta_\infty \in L^2(I;W^{1,2}(\Omega)) \) thus obtained solves, in the weak sense, the system
\[
\frac{\partial^2 u_k}{\partial t^2} - \text{div}(\mathbb{C}(\varepsilon(u_k) - \theta_k \mathbb{B})) + \varepsilon \frac{\partial u_k}{\partial t} \partial_2 \partial u_k \theta_k = f_k + r_k, \quad \theta_k \partial_2 \mathbb{B} : \frac{\partial e(u_k)}{\partial t} - \theta_k \varepsilon \mathbb{C} : \frac{\partial e(u_k)}{\partial t} + g_k, \tag{4.17a}
\]
with the initial conditions \(u_k(0,\cdot) = u_0, \frac{\partial u_k}{\partial t}(0,\cdot) = v_0, \) and \(\theta_k(0,\cdot) = \theta_0 \) and the boundary conditions \(\sigma_k = 0 \) and \(\mathbb{K} \frac{\partial}{\partial \nu} \theta_k = h_k \) on \(\Sigma \) with \(\sigma_k \) denoting the stress tensor as in (2.1b) but with \(u_k \) in the place of \(u \), and where the residuum \(r_k \in W^{1,p}(\Omega;\mathbb{R}^d)^* \) is orthogonal to \(V_k^d \). Moreover, (4.10) is inherited by this limit in the sense
\[
\| u_k \|_{W^{1,\infty}(I;W^{1,\infty}(\Omega;\mathbb{R}^d))} \leq C_{1,k}, \tag{4.18a}
\]
\[
\| \frac{\partial^2 u_k}{\partial t^2} \|_{L^1(I;L^2(\Omega;\mathbb{R}^d))} \leq C_{2,k}, \tag{4.18b}
\]
\[
\| \theta_k \|_{L^\infty(I;L^2(\Omega)) \cap L^2(I;W^{1,2}(\Omega)) \cap L^3(Q)} \leq C_{3,k}, \tag{4.18c}
\]
\[
\| \frac{\partial \theta_k}{\partial t} \|_{(L^2(I;W^{1,2}(\Omega)) \cap L^3(Q))^*} \leq C_{4,k}. \tag{4.18d}
\]

Proof. Take a subsequence \(u_{k_l} \rightharpoonup u_k \) and \(\theta_{k_l} \rightharpoonup \theta_k \) as announced in this proposition. The a-priori estimates (4.18) are inherited from (4.10). The fact that \(\frac{\partial \theta_k}{\partial t} \in (L^2(I;W^{1,2}(\Omega)) \cap L^3(Q))^* \) can be obtained by a successive extension of a limit of a subsequence of functionals \(\frac{\partial \theta_k}{\partial t} \) from \(L^2(I;V_l) \) onto \(L^2(I;V_{l+1}) \) and then, by continuity, on the whole \(L^2(I;W^{1,2}(\Omega)) \cap L^3(Q) \), cf. [28, the proof of Theorem 8.27]. For this, it is important that (4.10d) be uniform with respect to \(l \). The estimate (4.18d) is then inherited from (4.10d).

By Aubin-Lions’ compact-embedding theorem [1, 17] generalized for the locally-convex spaces together with the fact that \(V_k^d \) is finite-dimensional (hence compactly embedded into
We can consider the limit in the term $D(u_{k\varepsilon}) : \frac{\partial}{\partial t} e(u_{k\varepsilon})$, see (4.19a), and hence surely in $L^p(Q; \mathbb{R}^{d\times d}_{\text{sym}})$, we can pass to the limit in the term $D(u_{k\varepsilon}) : \frac{\partial}{\partial t} e(u_{k\varepsilon})$ in $L^1(Q)$ in the Galerkin identity (4.7). The other nonlinear terms in the heat equation (4.8b) are even simpler. We can consider w in (4.7) as $w_l \in C^1(I; V_l)$ converging strongly to w in $C^1(I; W^{1,2}(\Omega))$ and, after making the limit passage with $l \to \infty$, we obtain directly the weak formulation of (4.17b) with the mentioned initial/boundary conditions. The strong convergences (4.19) also allow for a direct limit passage in the Galerkin identity (4.6) to get the Galerkin identity corresponding to (4.17).

Having $\theta_{k\varepsilon}$ “continuous” (i.e. not of the Galerkin type), we can use various “nonlinear” tests for an advanced estimation technique for $\nabla \theta_{k\varepsilon}$, developed for the separate heat equation, by Boccardo and Gallouët [4] and later augmented in [3]. Here, we nontrivially combine this technique with estimation of the mechanical part. This allows for optimal estimation especially of the adiabatic “CB-term”. Simultaneously we can still benefit from having (4.18a) at our disposal. In view of (3.5) with (4.2b,c) and (4.3b), it is consistent to assume

$$g_k \geq 0, \quad h_k \geq 0, \quad u_{0,k} \geq 0.$$

(4.20)

Proposition 1 (Further estimates for $u_{k\varepsilon}$ and $\theta_{k\varepsilon}$) Let the assumptions of Lemma I, (4.1) and now also (4.20) hold. Then, for any $\delta > 0$, $u_{k\varepsilon}$ and $\theta_{k\varepsilon}$ satisfy also

$$\|u_{k\varepsilon}\|_{W^{1,\infty}(I; L^2(\Omega; \mathbb{R}^d))} \leq C_5,$$

(4.21a)

$$\|\partial_t e(u_{k\varepsilon})\|_{L^p(Q; \mathbb{R}^{d\times d})} \leq C_6,$$

(4.21b)

$$\frac{\partial^2 u_{k\varepsilon}}{\partial t^2} \in L^1(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; W^{1,2}(\Omega; \mathbb{R}^d)) \cap L^2(Q; \mathbb{R}^{d\times d})^* \leq C_7 \quad \text{for } k \geq \hat{k},$$

(4.21c)

$$\|\theta_{k\varepsilon}\|_{L^\infty(I; L^w(\Omega))} \leq C_8,$$

(4.21d)

$$\|\nabla \theta_{k\varepsilon}\|_{L^p(Q; \mathbb{R}^d)} \leq C_{g,r}, \quad 1 \leq r < \frac{d + 2\omega}{d + \omega},$$

(4.21e)

$$\|\frac{\partial \theta_{k\varepsilon}}{\partial t}\|_{L^1(I; W^{-1-d/2,2}(\Omega))} \leq C_{10}$$

(4.21f)

with C’s independent of k and ε. Moreover, $\theta_{k\varepsilon} \geq 0$, and also

$$\|\frac{\partial u_{k\varepsilon}}{\partial t}\|_{L^{2p}(Q; \mathbb{R}^d)} \leq C_{11}\varepsilon^{-1/(2p)},$$

(4.22a)

$$\|\theta_{k\varepsilon}\|_{L^3(Q)} \leq C_{12,\varepsilon}\varepsilon^{-1/3}$$

(4.22b)

where again C_{11} does not depend on k and ε but $C_{12,\varepsilon}$ does depend on k as indicated.

Proof. First, we prove $\theta_{k\varepsilon} \geq 0$ standardly by testing the heat equation by $\theta_{k\varepsilon}^-$. Here we use (4.20) as well as the fact that $\frac{\partial}{\partial t} \theta_{k\varepsilon}^-$ is in duality with $\theta_{k\varepsilon}$ and then also with $\theta_{k\varepsilon}^- \in L^2(I; W^{1,2}(\Omega))$, cf. (4.18c,d).
Having the information \(\theta_{k_e} \geq 0 \), the energy balance can be obtained by multiplication of (4.17a) by \(\frac{\partial}{\partial t} u_{k_e} \) and (4.17b) by 1, and by using Green’s formula both for (2.1) and for (2.2):

\[
\frac{d}{dt} \left(\frac{\rho}{2} \left\| \frac{\partial u_{k_e}}{\partial t} \right\|^2 + \int_{\Omega} \frac{1}{2} C e(u_{k_e}) : e(u_{k_e}) \right) + \int_{\Omega} \left(\mathbb{D} \left(\frac{\partial e(u_{k_e})}{\partial t} \right) : \frac{\partial e(u_{k_e})}{\partial t} + \theta_{k_e} \mathbb{C} B : \frac{\partial e(u_{k_e})}{\partial t} + \varepsilon \left| \frac{\partial u_{k_e}}{\partial t} \right|^{2p} \right) dx = \int_{\Omega} f_k \cdot \frac{\partial u_{k_e}}{\partial t} \, dx,
\]

(4.23)

\[
\frac{d}{dt} \int_{\Omega} \tilde{c}(\theta_{k_e}) \, dx - \int_{\Omega} \left(\mathbb{D} \left(\frac{\partial e(u_{k_e})}{\partial t} \right) : \frac{\partial e(u_{k_e})}{\partial t} \right) \, dx + \theta_{k_e} \mathbb{C} B : \frac{\partial e(u_{k_e})}{\partial t} + \varepsilon |\theta_{k_e}| \theta_{k_e} \right) \, dx = \int_{\Omega} g_k \, dx + \int_{\Gamma} h_k \, dS,
\]

(4.24)

where \(\tilde{c} \) is a primitive function of \(c \); choosing \(\tilde{c}(\theta) = \int_0^\theta c(\cdot) \), by (3.3h) it holds

\[
\hat{c}_\min \theta^\beta \leq \tilde{c}(\theta) \leq \hat{c}_\max (1 + \theta^\beta)
\]

(4.25)

for some \(0 < \hat{c}_\min \leq \hat{c}_\max < +\infty \). Summing (4.23) with (4.24), we get the total-energy balance:

\[
\frac{d}{dt} \int_{\Omega} \left(\frac{\rho}{2} \left| \frac{\partial u_{k_e}}{\partial t} \right|^2 + \frac{1}{2} C e(u_{k_e}) : e(u_{k_e}) + \tilde{c}(\theta_{k_e}) \right) \, dx - \int_{\Omega} f_k \cdot \frac{\partial u_{k_e}}{\partial t} \, dx
\]

\[- \int_{\Omega} g_k \, dx - \int_{\Gamma} h_k \, dS = -\varepsilon \int_{\Omega} \left(\left| \frac{\partial u_{k_e}}{\partial t} \right|^{2p} + |\theta_{k_e}| \theta_{k_e} \right) \, dx \leq 0.
\]

(4.26)

Since \(\theta_{k_e} \geq 0 \), by estimating \(\int_{\Omega} f_k \cdot \frac{\partial u_{k_e}}{\partial t} \, dx \leq \|f_k\|_{L^2(\Omega;\mathbb{R}^d)} (1+\|\frac{\partial u_{k_e}}{\partial t}\|^2) \) and by using Gronwall’s inequality and the assumption (4.3) with the growth (4.25) of \(\hat{c} \), the estimate (4.26) yields the \(L^\infty \)-estimates in (4.21a,d) independently of \(\varepsilon \) and \(k \). Here we use also the coercivity (4.25) of \(\hat{c} \). Still, however, this does not allow for a limit passage in the nonlinear term \(\theta_{k_e} \mathbb{C} B : \frac{\partial}{\partial t} e(u_{k_e}) \), nor in \(\mathbb{D} \left(\frac{\partial}{\partial t} e(u_{k_e}) \right) : \frac{\partial}{\partial t} e(u_{k_e}) \).

Following the technique from [3, 4], we test (2.2) by \(\phi_n(\theta_{k_e}) \) with \(\phi_n : \mathbb{R}^+ \to [0,1] \) defined by

\[
\phi_n(\theta) := \begin{cases}
0 & \text{if } \theta \leq n, \\
\theta - n & \text{if } n \leq \theta \leq n + 1, \\
1 & \text{if } \theta \geq n + 1.
\end{cases}
\]

(4.27)

Denote the primitive function \(\hat{\phi}_n \) of \(\phi_n \) such that \(\hat{\phi}_n(0) = 0 \) and

\[
R_{k_e} := \mathbb{D} \left(\frac{\partial e(u_{k_e})}{\partial t} \right) : \frac{\partial e(u_{k_e})}{\partial t} - \theta_{k_e} \mathbb{C} B : \frac{\partial e(u_{k_e})}{\partial t}.
\]

(4.28)

By integration in time and the Green formula and denoting \(B_n := \{ (t,x) \in Q : n \leq \theta \leq n + 1 \} \), we have:

\[
\int_{B_n} \tilde{c}(\theta_{k_e}) \, dx - \int_{B_n} \left(\frac{\rho}{2} \left| \frac{\partial u_{k_e}}{\partial t} \right|^2 + \frac{1}{2} C e(u_{k_e}) : e(u_{k_e}) + \tilde{c}(\theta_{k_e}) \right) \, dx - \int_{\partial B_n} f_k \cdot n \, ds
\]

\[- \sum_{i=1}^m \int_{\Omega_{i,n}} g_{k_i} \, dx - \int_{\Gamma_{i,n}} h_{k_i} \, dS = -\varepsilon \sum_{i=1}^m \int_{\Omega_{i,n}} \left(\left| \frac{\partial u_{k_i}}{\partial t} \right|^{2p} + |\theta_{k_i}| \theta_{k_i} \right) \, dx \leq 0.
\]
\[\theta_{k}(t, x) \leq n + 1, \] we get

\[
\kappa \int_{B_{n}} |\nabla \theta_{k}\|^2 \, dx \, dt = \kappa \int_{Q} |\nabla \phi_n(\theta_{k})\|^2 \, dx \, dt
\]

\[
\leq \int_{Q} (\nabla \theta_{k} \cdot \nabla \theta_{k}) \phi_n(\theta_{k}) \, dx \, dt = \int_{Q} \nabla \theta_{k} \cdot \nabla \phi_n(\theta_{k}) \, dx \, dt
\]

\[
\leq \int_{Q} \nabla \theta_{k} \cdot \nabla \phi_n(\theta_{k}) \, dx \, dt + \int_{Q} \tilde{c} \phi_n(T(\cdot)) \, dx
\]

\[
= \int_{\Omega} \phi_n(\theta_{0,k}) \, dx + \int_{Q} g \phi_n(\theta_{k}) \, dx \, dt
\]

\[
+ \int_{\Sigma} h_k \phi_n(\theta_{k}) \, dS \, dt + \int_{Q} R_{k} \phi_n(\theta_{k}) \, dx \, dt
\]

\[
\leq c_{\max} \left(\|\theta_{0,k}\|_{L^1(\Omega)} + \frac{1}{\omega} \|\theta_{0,k}\|_{L^\omega(\Omega)} \right)
\]

\[
+ \|g\|_{L^1(Q)} + \|h_k\|_{L^1(\Sigma)} + \|R_k\|_{L^1(Q)},
\] (4.29)

where \(\tilde{c} \phi_n \) is the primitive function of \(c \phi_n \) such that \(\tilde{c} \phi_n(0) = 0 \) and where \(c_{\max} \) is from (3.3h). Note that \(\phi_n(\theta) \leq c_{\max}(\theta + \frac{1}{\omega} \theta^{\omega}) \) due to (3.3h). For \(\zeta > 0 \) fixed, we get

\[
\int_{Q} \frac{1}{(1 + \theta_{k})^{1+\zeta}} \, dx \, dt = \sum_{n=0}^{\infty} \int_{B_{n}} \frac{1}{(1 + \theta_{k})^{1+\zeta}} \, dx \, dt
\]

\[
\leq \sum_{n=0}^{\infty} \frac{1}{(1 + n)^{1+\zeta}} \int_{B_{n}} |\nabla \theta_{k}|^2 \, dx \, dt
\]

\[
\leq \frac{1}{\kappa} \sum_{n=0}^{\infty} \frac{1}{(1 + n)^{1+\zeta}} \left(c_{\max} \|\theta_{0,k}\|_{L^1(\Omega)} + \frac{c_{\max}}{\omega} \|\theta_{0,k}\|_{L^\omega(\Omega)} \right.
\]

\[
+ \|g\|_{L^1(Q)} + \|h_k\|_{L^1(\Sigma)} + \|R_k\|_{L^1(Q)} \bigg).
\] (4.30)

with \(C_{13} \) and \(C_{14} \) suitable constants:

\[
C_{13} := C_{14} \sup_{k \in \mathbb{N}} \left(c_{\max} \|\theta_{0,k}\|_{L^1(\Omega)} + \frac{c_{\max}}{\omega} \|\theta_{0,k}\|_{L^\omega(\Omega)} + \|g\|_{L^1(Q)} + \|h_k\|_{L^1(\Sigma)} \right),
\]

\[
C_{14} := \frac{1}{\kappa} \sum_{n=0}^{\infty} \frac{1}{(1 + n)^{1+\zeta}}.
\]

Take \(1 \leq r < 2 \). By Hölder inequality and (4.30),

\[
\int_{Q} |\nabla \theta_{k}|^r \, dx \, dt = \int_{Q} \frac{|\nabla \theta_{k}|^r}{(1 + \theta_{k})^{1+\zeta} r/2} \, dx \, dt
\]

\[
\leq \left(\int_{Q} (1 + \theta_{k})^{(1+\zeta) r/2} \, dx \, dt \right)^{r/2} \left(\int_{Q} (1 + \theta_{k})^{1+\zeta} \, dx \, dt \right)^{(2-r)/2}
\]

\[
\leq \left(C_{13} \|R_k\|_{L^1(Q)} \right)^{r/2} \left(\int_{0}^{T} (1 + \theta_{k}(t, \cdot)) \|L_{(1+\zeta) r/(2-r)}(\Omega) \|_{L^1(\Sigma)} \, dt \right)^{(2-r)/2}.
\] (4.31)

Now, we use Gagliardo-Nirenberg’s inequality with some \(C_{GN,1} \in \mathbb{R} \) and the norm \(\| \cdot \| \).
\[\|L^r(\Omega) + \| \cdot \|_{L^*(\Omega; \mathbb{R}^d)} \text{ on } W^{1,r}(\Omega): \]

\[\|1 + \theta_{k_\varepsilon}(t, \cdot)\|_{L^1(\Omega)} \leq C_{GN,1} \left(\|1 + \theta_{k_\varepsilon}(t, \cdot)\|_{L^1(\Omega)} + \| \nabla \theta_{k_\varepsilon}(t, \cdot)\|_{L^1(\Omega; \mathbb{R}^d)} \right)^\lambda \]

\[\leq C_{GN,1} \left(\|\Omega\|^{1/\omega} + C_8 \right)^{(1-\lambda)\|\Omega\|^{1/\omega} + C_8 \| \nabla \theta_{k_\varepsilon}(t, \cdot)\|_{L^1(\Omega; \mathbb{R}^d)}\right)^\lambda \]

(4.32)

for suitable constants \(C_{15} \) and \(C_{16} \). Joining (4.31) with (4.34) gives the estimate of the type

\[\|\nabla \theta_{k_\varepsilon}\|_{L^r(Q; \mathbb{R}^d)} \leq C_{17} + C_{18} \int_Q \left| \frac{\partial e(u_{k_\varepsilon})}{\partial t} - \theta_{k_\varepsilon} \frac{\partial e(u_{k_\varepsilon})}{\partial t} \right| \, dx \, dt \]

(4.35)

with suitable constants \(C_{17} \) and \(C_{18} \). Substituting this choice of \(\lambda := (2-r)/(1+\zeta) \) into (4.33), one gets after some algebra the conditions

\[r \leq \frac{2\omega + d - \zeta d}{\omega + d} . \]

(4.36)

Further, add (4.23) integrated over \([0, T]\) to (4.35) multiplied by a sufficiently small weight so that the dissipation term on the right-hand side \(R_{k_\varepsilon} \) in (4.30) can be dominated by the corresponding left-hand-side term in (4.23). Taking this weight as \(1/(2C_{18}) \) thus gives

\[\frac{\eta_1}{2} \left\| \frac{\partial e(u_{k_\varepsilon})}{\partial t} \right\|_{L^p(Q; \mathbb{R}^{d \times d})} + \frac{1}{2C_{18}} \left\| \nabla \theta_{k_\varepsilon} \right\|_{L^r(Q; \mathbb{R}^d)} \]

\[\leq \int_Q \frac{1}{2} D \left(\frac{\partial e(u_{k_\varepsilon})}{\partial t} \right) : \frac{\partial e(u_{k_\varepsilon})}{\partial t} + \frac{1}{2C_{18}} \left\| \nabla \theta_{k_\varepsilon} \right\|_{L^r(Q; \mathbb{R}^d)} \]

\[\leq \frac{\rho}{2} \left\| v_{0,k} \right\|_{L^2(\Omega; \mathbb{R}^d)} + \frac{1}{2} \int \mathcal{C} e(u_{0,k}) : e(u_{0,k}) \, dx \]

\[+ \int_Q f_k : \frac{\partial u_{k_\varepsilon}}{\partial t} \, dx \, dt + \frac{C_{17}}{2C_{18}} + \frac{3}{2} \int_Q \theta_{k_\varepsilon} \mathcal{C} : \frac{\partial e(u_{k_\varepsilon})}{\partial t} \, dx \, dt \]
note that η_1 came from (3.3d) and that the term $\varepsilon |\frac{\partial}{\partial t} u_{k\varepsilon}|^{2p}$ as well as the terms $\frac{3}{2} \left\| \frac{\partial}{\partial t} u_{k\varepsilon} (T, \cdot) \right\|_{L^2(\Omega;\mathbb{R}^d)}^2$ and $\frac{1}{2} \int_\Omega C\varepsilon (u_{k\varepsilon} (T, \cdot); \varepsilon (u_{k\varepsilon} (T, \cdot)) \, dz$ have been “forgotten”. We estimate the last term in (4.37) by Hölder’s and Young’s inequalities as

$$\frac{3}{2} \int_0^T \int_Q \theta_{k\varepsilon} C B : \frac{\partial e(u_{k\varepsilon})}{\partial t} \, dx \, dt \leq C_\delta \left\| \frac{\partial e(u_{k\varepsilon})}{\partial t} \right\|_{L^{p/(p-1)}(Q)}^{p/(p-1)} + \delta \left\| \frac{\partial e(u_{k\varepsilon})}{\partial t} \right\|_{L^p(Q;\mathbb{R}^{d \times d})}^p$$

(4.38)

where C_δ depends on B, C, and also on $\delta > 0$. If $\delta > 0$ is small, the last term can be absorbed in the left-hand side of (4.37). Further, using Gagliardo-Nirenberg’s inequality once more yields:

$$\left\| \theta_{k\varepsilon} (t, \cdot) \right\|_{L^{p/(p-1)}(\Omega)} \leq C_{GN,2} \left\| \theta_{k\varepsilon} (t, \cdot) \right\|_{L^\infty(\Omega)}^{1-\mu} \left(\left\| \theta_{k\varepsilon} (t, \cdot) \right\|_{L^\infty(\Omega)} + \left\| \nabla \theta_{k\varepsilon} (t, \cdot) \right\|_{L^\infty(\Omega;\mathbb{R}^d)} \right)^\mu$$

(4.39)

for

$$\frac{p-1}{p} \geq \mu \left(\frac{1}{p} - \frac{1}{d} \right) + \frac{1-\mu}{\omega}. \quad (4.40)$$

Now, rise (4.39) to the power $p/(p-1)$ and assume

$$\frac{\mu p}{p-1} < r \quad (4.41)$$

and integrate it over $[0, T]$ and use Young inequality

$$\left\| \theta_{k\varepsilon} \right\|_{L^{p/(p-1)}(Q)}^{p/(p-1)} \leq C_{GN,2}^{p/(p-1)} \int_0^T \left(C_8 + \left\| \nabla \theta_{k\varepsilon} (t, \cdot) \right\|_{L^\infty(\Omega;\mathbb{R}^d)} \right)^{\mu p/(p-1)} \, dt$$

$$\leq \int_0^T C_\delta + \delta \left\| \nabla \theta_{k\varepsilon} (t, \cdot) \right\|_{L^\infty(\Omega;\mathbb{R}^d)}^r \, dt = TC_\delta + \delta \left\| \nabla \theta_{k\varepsilon} \right\|_{L^r(Q;\mathbb{R}^d)}.$$

(4.42)

where C_δ depends here, beside $\delta > 0$, also on $C_{GN,2}$, C_8, μ, p and r. Substitute it into (4.38), and use in (4.37). Choosing $\delta > 0$ small, we can absorb both the already discussed right-hand side term $\delta \left\| \frac{\partial e(u_{k\varepsilon})}{\partial t} \right\|_{L^p(Q;\mathbb{R}^{d \times d})}$ of (4.38), and the right-hand side term $\delta \left\| \nabla \theta_{k\varepsilon} \right\|_{L^r(Q;\mathbb{R}^d)}$ in the left-hand side of (4.35). It eventually gives the estimates (4.21b) and

$$\left\| \nabla \theta_{k\varepsilon} \right\|_{L^r(Q;\mathbb{R}^d)} \leq C_{17}. \quad (4.43)$$

Now, let us analyze the above conditions. From (4.41) with (4.40), one gets

$$\frac{\mu}{r} > \frac{p-1}{p} = \frac{\mu}{r} - \frac{1-\mu}{\omega}, \quad (4.44)$$

which yields $\mu > d/(d+\omega)$. Substituting this condition, i.e. $\mu = d/(d+\omega) + \eta$ with $\eta > 0$ and also (4.36) into (4.41) gives, after some algebra, eventually

$$p > \frac{2\omega + d - \zeta d}{2\omega - \zeta d - \eta (\omega + d)}. \quad (4.45)$$

Of course, we are allowed for taking $\zeta > 0$ and $\eta > 0$ arbitrarily small, which eventually arise the condition (3.2).
The \(\varepsilon\)-terms in the right-hand side terms in (4.26) give the estimate (4.22a) and
\[\|\theta_{ke}\|_{L^2(Q)} = O(\varepsilon^{-1/2}). \]
The later estimate, though being uniform with respect to \(k\) and \(\varepsilon\), obviously just shows the term
\[\varepsilon|\theta_{ke}|\theta_{ke} \text{ bounded in } L^1(\Omega) \] (4.46)
but this would not suffice for convergence of this term to zero for \(\varepsilon \to 0\), as we will need in Lemma 3. For this, we need a "higher-power estimate", namely (4.22b), though dependent on \(k\). We derive it by testing (4.17b) separately by \(\theta_{ke}\). It is important that we have
\[\|\partial_t u_{ke}\|_{L^\infty(I; L^2(\Omega; \mathbb{R}^d))} \]
bounded independently of \(\varepsilon\), cf. (4.21a), and then, considering
\[k \in \mathbb{N} \text{ fixed so that the norm } L^2(\Omega)- \text{ and } W^{1,\infty}(\Omega)\text{-norms are mutually equivalent on the finite-dimensional space } V_k, \]
we have also \(\|\partial_t u_{ke}\|_{L^\infty(Q; \mathbb{R}^d)} \) bounded independently of
\(\varepsilon\) (though not on \(k\)). Then (4.22b) follows standardly.

The estimate (4.21c) follows from the already proved estimates (4.21a,b,d,e). Also
(4.21f) follows (4.21b,d,e) and also from (4.46). This is a bit technical, however. As the
right-hand side \(R_{ke} + g_k\) of (4.17b) belongs to \(L^2(Q)\) and \(h_k \in W^{1,2}(I; L^2(\Gamma))\) due to (4.2c), and as
\[-\text{div}(\kappa \nabla \theta_{ke}) + |\theta_{ke}|\theta_{ke} \]
has a non-negative potential \(\Phi(\theta_{ke}) := \int_\Omega \frac{1}{2}\kappa \nabla \theta_{ke} \cdot \nabla \theta_{ke} + \frac{1}{4}|\theta_{ke}|^3 \text{dx}\) and \(\Phi(\theta_{0,k}) < +\infty\) due to the assumed symmetry of \(\kappa\) and due to \(\theta_{0,k} \in V_k \subset W^{1,\infty}(\Omega)\) by (4.3c), we can test (4.17b) by \(\frac{\partial}{\partial t}\theta_{ke}\) This shows
\[\sqrt{\epsilon(\theta_{ke})\frac{\partial}{\partial t}\theta_{ke}} \in L^2(Q) \] and thus also
\[\frac{1}{\epsilon(\theta_{ke})} \text{div}(\kappa \nabla \theta_{ke}) = \frac{\epsilon(\theta_{ke})}{\sqrt{\epsilon(\theta_{ke})}}(\sqrt{\epsilon(\theta_{ke})\frac{\partial}{\partial t}\theta_{ke}} - \frac{1}{\epsilon(\theta_{ke})}(R_{ke} + g_k)) \in L^2(Q), \]
although their norms in these spaces are not uniform with respect to \(k\). Thus the following calculus applied to (4.17b) divided by \(\epsilon(\theta_{ke})\) is legal:

\[
\int_Q \frac{\partial \theta_{ke}}{\partial t} w \, dx \, dt = \int_Q \frac{R_{ke} + g_k + \text{div}(\kappa \nabla \theta_{ke})}{\epsilon(\theta_{ke})} w \, dx \, dt \\
= \int_Q \frac{(R_{ke} + g_k)w}{\epsilon(\theta_{ke})} - \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} \, dx \, dt \\
= \int_Q \frac{(R_{ke} + g_k)w}{\epsilon(\theta_{ke})} - \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} + \frac{\epsilon'(\theta_{ke})}{\epsilon(\theta_{ke})^2} \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} \, dx \, dt \\
(4.47)
\]
for any \(w \in L^\infty(I; W^{1+d/2}_{0}(\Omega))\). Thus

\[
\left\| \frac{\partial \theta_{ke}}{\partial t} \right\|_{L^1(I;W^{-1-d/2}_{0}(\Omega))} = \sup_{w \in L^\infty(I; W^{1+d/2}_{0}(\Omega))} \int_Q \frac{\partial \theta_{ke}}{\partial t} w \, dx \, dt
\]

\[
= \sup_{w \in L^\infty(I; W^{1+d/2}_{0}(\Omega))} \int_Q \frac{(R_{ke} + g_k)w}{\epsilon(\theta_{ke})} - \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} + \frac{\epsilon'(\theta_{ke})}{\epsilon(\theta_{ke})^2} \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} \, dx \, dt.
\]

Now we can estimate it by using \(\nabla w\) bounded in \(L^\infty(Q; \mathbb{R}^d)\) and the already proved estimates (4.21a,b,d,e) as well as the assumption that \(1/\epsilon(\cdot)\) is bounded, cf. (3.3h). In particular, we estimate

\[
\int_Q \frac{\epsilon'(\theta_{ke})}{\epsilon(\theta_{ke})^2} \kappa \nabla \theta_{ke} \cdot \nabla \frac{w}{\epsilon(\theta_{ke})} \, dx \, dt \leq \int_Q C_{\max} |\kappa| |\nabla \theta_{ke}|^2 \frac{1}{(1 + \theta_{ke})^{1+\zeta}} |w| \, dx \, dt \\
\leq C_{\max} |\kappa| \left(C_{13} + C_{14} \|R_{ke}\|_{L^1(Q)} \right) \|w\|_{L^\infty(Q)}
(4.48)
\]

with \(C_{\max}\) from (3.3i) and \(C_{13}\) and \(C_{14}\) from (4.30), and the fact that \(R_{ke}\) is already proved bounded in \(L^1(Q)\). Here we took \(\zeta > 0\) small enough to make (3.3i) effective. It is important that, though the regularity estimates that allowed for (4.47) were not uniform, the last estimate is again uniform with respect to both \(\varepsilon\) and \(k\).

Now, by passing \(\varepsilon \to 0\), we want to get a solution, let us denote it by \((u_k, \theta_k)\), to a non-regularized semi-Galerkin problem, i.e. (4.17) but with \(\varepsilon = 0\) and thus the \(\varepsilon\)-terms as well as the indexes \(\varepsilon\) omitted. It is important still to hold \(k\) fixed because (4.22b) depends on \(k\).
Lemma 3 (Passage $\varepsilon \to 0$.) Let the assumptions of Proposition 1 hold. Then the sequence $\{(u_{ke}, \theta_{ke})\}_{\varepsilon > 0}$ contains a subsequence converging weakly* in the topologies induced by the estimates (4.18) to a limit (u_k, θ_k) which solves the weak sense the semi-Galerkin non-regularized system, i.e.

$$\frac{\partial^2 u_k}{\partial t^2} - \text{div} \left(C(\varepsilon(u_k) - \theta_k) B \right) + \text{D} \left(\frac{\partial (u_k)}{\partial t} \right) = f_k + r_k, \quad (4.49a)$$

$$\varepsilon(\theta_k) \frac{\partial \theta_k}{\partial t} - \text{div} (K \nabla \theta_k) = D \left(\frac{\partial (u_k)}{\partial t} \right) - \theta_k C B : \frac{\partial (u_k)}{\partial t} + g_k, \quad (4.49b)$$

with the initial conditions $u_k(0, \cdot) = u_{0,k}$, $\frac{\partial u_k}{\partial t}(0, \cdot) = v_{0,k}$, and $\theta_k(0, \cdot) = \theta_{0,k}$ and the boundary conditions $\sigma_k \nu = 0$ and $\frac{\partial}{\partial \nu} \theta_k = h_k$ on Σ with σ_k denoting the stress tensor as in (2.1b) but with u_k and θ_k in place of u and θ, respectively, and where the residuum $r_k \in W^{1,p}(\Omega; \mathbb{R}^d)^*$ is orthogonal to V_k^d. Moreover, (4.21) is inherited for this limit and (4.21c) can be improved to

$$\frac{\partial^2 u_k}{\partial t^2} \bigg|_{k,(L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d)))^*} \leq C_{18} \quad \text{for } \hat{k} \geq k. \quad (4.50)$$

Proof. Likewise in Lemma 2, this passage limit is easy because u_{ke} ranges still a fixed finite-dimensional space V_k^d. The difference here is that the regularizing terms are now to be shown vanishing in the limit, which is due to the estimates

$$\left\| \int_Q \varepsilon \left| \frac{\partial u_{ke}}{\partial t} \right|^{2p-2} \frac{\partial u_{ke}}{\partial t} \cdot z \right\|_{L^{2p/(2p-1)}(Q)} \leq \varepsilon \left\| \left| \frac{\partial u_{ke}}{\partial t} \right|^{2p-1} \right\|_{L^{2p/(2p-1)}(Q)} \leq C_{18} \leq \varepsilon^{1/(2p)} C_{11} \leq \varepsilon \left\| \frac{\partial u_{ke}}{\partial t} \right\|_{L^{2p}(Q; \mathbb{R}^d)}$$

and

$$\left\| \int_Q \varepsilon \left| \theta_{ke} \right| \theta_{ke} w \right\|_{L^\infty(Q)} \leq \varepsilon \left\| \theta_{ke}^2 \right\|_{L^{3/2}(Q)} \leq \varepsilon \left\| \theta_{ke} \right\|_{L^3(Q)} \leq \varepsilon \left\| \theta_{ke} \right\|_{L^3(Q)} \leq \varepsilon^{1/3} C_{12,k} \left\| w \right\|_{L^3(Q)}$$

which both tend to 0 for $\varepsilon \to 0$ provided $k \in \mathbb{N}$ and $z \in C(\hat{Q}; \mathbb{R}^d)$ or $w \in C(\hat{Q})$ are fixed; here C_{11} and $C_{12,k}$ are from (4.22a) and (4.22b), respectively. We thus get a weak solution (u_k, θ_k) to the non-regularized semi-Galerkin problem (4.49).

The equation (4.49a) now allows for a test by functions from $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d))$ valued in V_k^d which gives (4.50).

Remark 2 The equation (4.26) represents an energy balance (cf. also (4.57) below) where the ε-term represents an artificial dissipated energy related with our regularization. It is interesting that this artificial dissipated energy converges to zero. Indeed,

$$\limsup_{\varepsilon \to 0} \int_Q \left(\frac{\partial u_{ke}}{\partial t} \right)^2 + \left| \theta_{ke} \right| \theta_{ke} \right) \right\|_{L^\infty(I)} \leq 0$$

$$\left\| \theta_{ke} \right\|_{L^3(Q)} \leq \varepsilon \left\| \theta_{ke} \right\|_{L^3(Q)} \leq \varepsilon^{1/3} C_{12,k} \left\| w \right\|_{L^3(Q)}$$

which both tend to 0 for $\varepsilon \to 0$ provided $k \in \mathbb{N}$ and $z \in C(\hat{Q}; \mathbb{R}^d)$ or $w \in C(\hat{Q})$ are fixed; here C_{11} and $C_{12,k}$ are from (4.22a) and (4.22b), respectively. We thus get a weak solution (u_k, θ_k) to the non-regularized semi-Galerkin problem (4.49).

The equation (4.49a) now allows for a test by functions from $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d))$ valued in V_k^d which gives (4.50).

Remark 2 The equation (4.26) represents an energy balance (cf. also (4.57) below) where the ε-term represents an artificial dissipated energy related with our regularization. It is interesting that this artificial dissipated energy converges to zero. Indeed,
where the last equation can be obtained by summing (4.49a) tested by $\frac{\partial u_k}{\partial t}$ and (4.49b) tested by 1. For this equality, it is important that $\frac{\partial^2 u_k}{\partial t^2}$ is in duality with $\frac{\partial u_k}{\partial t} \in L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$ because of (4.50) and of (4.21a,b) inherited for u_k. Similarly, $\frac{\partial \theta_k}{\partial t}$ is in duality with 1 due to (4.21f) inherited for θ_k.

For the limit passage in the approximate solutions, the only essential point is now to show the strong convergence of $\frac{\partial v_k}{\partial t}$ in $L^p(Q; \mathbb{R}^{d \times d})$. For this, d-monotonicity assumed in (3.3f) is to be used.

Proposition 2 (*Passage $k \to \infty$, existence of a solution.*) Let the assumptions of Proposition 1 hold. Then the sequence $\{v_k, \theta_k\}_{k \in \mathbb{N}}$ contains a subsequence converging weakly* in the topologies induced by the estimates (4.18) and (4.50) to a limit (u, θ) which solves the original boundary-value problem in the sense of Definition 1 and also (3.9) holds.

Proof. Let us abbreviate $v_k := \frac{\partial}{\partial t} u_k$ and $v := \frac{\partial}{\partial t} u$. Like in the proof of Lemma 2, the uniform estimate (4.50) allows for successive extension of $\frac{\partial}{\partial t} u\in \frac{\partial}{\partial t} v \in (L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d)))^*$.

For the limit passage in the heat equation, we must ultimately have the strong convergence of $\frac{\partial}{\partial t} e(u_k)$ in $L^p(Q; \mathbb{R}^{d \times d})$. We use by-part integration:

\[
\int_0^T \left(\frac{\partial (v_k - v)}{\partial t}, v_k - v \right) dt \\
= \int_0^T \left(\frac{\partial v_k}{\partial t}, v_k \right) + \left(\frac{\partial v}{\partial t}, v \right) - \left(\frac{\partial v_k}{\partial t}, v_k \right) \right) dt \\
= \frac{1}{2} \|v_k(T, \cdot)\|^2_{L^2(\Omega)} - \frac{1}{2} \|v_{0,k}\|^2_{L^2(\Omega)} + \frac{1}{2} \|v(T, \cdot)\|^2_{L^2(\Omega)} - \frac{1}{2} \|v_0\|^2_{L^2(\Omega)} \\
\quad - \int_\Omega v_k(T, \cdot) \cdot (v(T, \cdot) - v_{0,k} \cdot v_0) dx \\
= \frac{1}{2} \|v_k(T, \cdot) - v(T, \cdot)\|^2_{L^2(\Omega)} - \frac{1}{2} \|v_{0,k} - v_0\|^2_{L^2(\Omega)} \geq - \frac{1}{2} \|v_{0,k} - v_0\|^2_{L^2(\Omega)} . \tag{4.51}
\]

Here it was important that $\frac{\partial}{\partial t} v$ is in duality to $v \in L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$. Furthermore, the meaning of $\frac{\partial}{\partial t} v$ in the expression $\int_0^T \left(\frac{\partial v}{\partial t}, v \right) dt$ contained in (4.51) is a Hahn-Banach extension of $\frac{\partial v}{\partial t}$, being a bounded linear functional on $L^p(I; V_0^d)$, onto the whole $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$ but, anyhow, the value of $\int_0^T \left(\frac{\partial v}{\partial t}, v \right) dt$ is independent of the particular extension and in (4.51) we used that, in fact, it equals just to

\[
\int_0^T \left(\frac{\partial v_k}{\partial t}, v \right) dt = \int_\Omega v_k(T, \cdot) \cdot (v(T, \cdot) - v_{0,k} \cdot v_0) dx - \int_0^T \left(\frac{\partial v}{\partial t}, v_k \right) dt . \tag{4.52}
\]

Linearity of the elastic response allows for

\[
\int_Q C e(u_k - u) : e(v_k - v) \, dx \, dt = \frac{1}{2} \int_0^T \frac{d}{dt} \left(\int_Q C e(u_k - u) : e(u_k - u) \, dx \right) dt \\
\geq - \frac{1}{2} \int_\Omega C e(u_{0,k} - u_0) : (u_{0,k} - u_0) \, dx \\
\geq - \frac{1}{2} \|C \| \|e(u_{0,k} - u_0)\|^2_{L^2(\Omega; \mathbb{R}^{d \times d})} . \tag{4.53}
\]

We take some approximation w_k in $L^\infty(I; W^{1,p}(\Omega; \mathbb{R}^d))$ of v valued in V_0^d such that $w_k \to v$ strongly in $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d))$. Existence of such an approximation can
be seen by density of $L^\infty(I; W^{1,p}(\Omega; \mathbb{R}^d))$ in $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$, by possibility of approximation of functions from $L^\infty(I; W^{1,p}(\Omega; \mathbb{R}^d))$ by simple functions valued in $W^{1,p}(\Omega; \mathbb{R}^d)$, and eventually by possibility of approximation in the norm of $L^\infty(I; W^{1,p}(\Omega; \mathbb{R}^d))$ of such functions by functions valued in V^e_k because of (4.1). Having such a sequence $\{w_k\}_{k\in\mathbb{N}}$, by using also the Galerkin identity for u_k, i.e.

$$
\int_0^T \left(\varrho \left\langle \frac{\partial u_k}{\partial t}, z \right\rangle + \int_\Omega (D(e(v_k)) + C(e(u_k))) : e(z) \, dx \right) \, dt = \int_Q f_k \cdot z + \theta_k \mathbb{C} B : e(z) \, dx \, dt
$$

for any $z \in L^p(I; V^e_k)$, in particular for $z := v_k - w_k$, and by using the uniform monotonicity (3.3f), we obtain

$$
\eta_2 \left\| e(v_k - v) \right\|_{L^p(\Omega; \mathbb{R}^{d \times d})} \leq \int_Q \left(\mathbb{D}(e(v_k)) - \mathbb{D}(e(v)) \right) : e(v_k - v) \, dx \, dt
$$

for $\varrho \left\langle \frac{\partial u_k}{\partial t}, v_k - v \right\rangle$

$$
+ \int_\Omega \left(\mathbb{D}(e(v_k)) - \mathbb{D}(e(v)) + C(e(u_k)) \right) : e(v_k - v) \, dx \, dt
$$

$$
+ \frac{\varrho}{2} \left\| v_0 - v \right\|_{L^2(\Omega)}^2 + \frac{1}{2} \left\| C(e(u_0) - u_0) \right\|_{L^2(\Omega; \mathbb{R}^{d \times d})}^2
$$

$$
= \int_Q \theta_k \mathbb{C} : e(w_k - v) \, dx \, dt + \int_Q f_k \cdot (w_k - v) \, dx \, dt - \int_0^T \left\langle \frac{\partial v}{\partial t}, v_k - v \right\rangle \, dt
$$

$$
+ \int_Q \left(\mathbb{D}(e(v)) + C(e(u)) \right) : e(v_k - v) \, dx \, dt + \int_0^T \left\langle \frac{\partial v}{\partial t}, w_k - v \right\rangle \, dt
$$

$$
+ \int_Q \left(\mathbb{D}(e(v_k)) + C(e(u_k)) \right) : e(v_k - v) \, dx \, dt =: \sum_{\ell=1}^6 I_k^{(\ell)}. \quad (4.54)
$$

We push all the integrals $I_k^{(\ell)}$ to zero.

First, we can modify (4.31)-(4.34) to get an “anisotropic” estimate

$$
\left\| \nabla \theta_k \right\|_{L^1(I; L^r_2(\Omega; \mathbb{R}^d))} \leq C \quad (4.55)
$$

provided

$$
\frac{2}{r_1} + \frac{d}{r_2} > d + 1, \quad r_1, r_2 \geq 1; \quad (4.56)
$$

we refer to [3, Formula (1.8)] and the proof therein. Then $I_k^{(1)} \to 0$ because $\theta_k \to \theta$ in $L^p/(q-1)(Q)$ provided (3.2) while $e^*(v_k - w_k) \to e^*(v - v) = 0$ weakly in $L^p(Q; \mathbb{R}^{d \times d})$. The used strong convergence $\theta_k \to \theta$ followed by Aubin-Lions’ theorem from the estimate of $\nabla \theta_k$ in $L^p/(p-1)(I; W^{r_2}(\Omega; \mathbb{R}^d))$ with $r_2 < pd/(pd - p + 2)$, cf. (4.55)-(4.56) with $r_1 := p/(p-1)$, so that θ_k is bounded in $L^p/(p-1)(I; L^{r_2}(\Omega))$ with $r_2^{*} = \infty$ if $d = 1$, and after some algebra one can see that $L^{r_2}(\Omega)$ is compactly embedded into $L^p/(p-1)(\Omega)$ just if (3.2) holds.

Furthermore, it holds $I_k^{(2)} \to 0$ because of (4.2a) and $w_k - v_k \to 0$ weakly in $L^\infty(I; L^2(\Omega; \mathbb{R}^d))$. Also, both $I_k^{(3)} \to 0$ and $I_k^{(4)} \to 0$ because $v_k \to v$ weakly in $L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$ and $\frac{\partial v}{\partial t} \in L^p(I; W^{1,p}(\Omega; \mathbb{R}^d))$ and $D(e(v)) \in L^p/(p-1)(Q; \mathbb{R}^{d \times d})$ is in duality with $e(v_k - v) \in L^p(Q; \mathbb{R}^{d \times d})$. Note that $C(e(u)) \in L^\infty(I; L^2(\Omega; \mathbb{R}^{d \times d}))$ is indeed in duality with $e(v_k - v) \in L^p(I; L^p(\Omega; \mathbb{R}^{d \times d}))$ because $p \geq 2$ is assumed in (3.2). As to $I_k^{(5)}$, we estimate

$$
\left\| \int_0^T \varrho \left\langle \frac{\partial v_k}{\partial t}, w_k - v \right\rangle \, dt \right\| \leq \left\| \frac{\partial v_k}{\partial t} \right\|_{L^p/(1,p-1)(\Omega; \mathbb{R}^d))} \left\| w_k - v \right\|_{L^p(\Omega; \mathbb{R}^d))} \to 0
$$

19
where $\partial_n f$ means, like before, the norm-preserving Hahn-Banach extension of $\partial_n u_k \in L^p(I; V^*_k)$. Eventually, $I_k^{(6)} \rightarrow 0$ because $\epsilon(w_k - v) \rightarrow 0$ in $L^p(Q; \mathbb{R}^{d \times d}) \subset L^2(Q; \mathbb{R}^{d \times d})$ and $\mathbb{D}(e(v_k)) + \mathbb{C}(e(u_k))$ is bounded in $L^2(Q; \mathbb{R}^{d \times d})$; here again $p \geq 2$ is used.

By having shown the convergence of the right-hand side of (4.54) to zero, we can conclude the strong convergence $e(v_k) \rightarrow e(v)$ in $L^p(Q; \mathbb{R}^{d \times d})$.

Now we test (4.49a) by $z_l \in C^{\infty}(I; V^*_k)$ with $z_l(T, \cdot) = 0$ and $l \in \mathbb{N}$ fixed and (4.49b) by $w \in C^\infty(Q)$ with $w(T, \cdot) = 0$. Due to the estimates (4.50) as well as (4.21f), we can make the by-part integration in time; in fact, (4.18d) allows for this step already for $\theta_{k\epsilon}$. Having also the strong convergences of θ_k, the limit passage to (3.7)–(3.8) is then simple. Eventually, we can pass v_k to an arbitrary $z \in C^\infty(Q; \mathbb{R}^d)$ with $z(T, \cdot) = 0$ as used in (3.7).

The information (3.9a,b) is obtained from the estimates (4.21f) and (4.50). The fact that $\partial_n^{2} u$ does not concentrate but remains in $L^{p/(p-1)}(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^1(I; L^2(\Omega; \mathbb{R}^d))$ in (3.9a) follows from that $\partial_n^{2} u = (f + \text{div} \sigma)/\rho$ in the sense of distributions, see (2.1), and that $f \in L^1(I; L^2(\Omega; \mathbb{R}^d))$ and $\sigma \in L^{p/(p-1)}(Q; \mathbb{R}^{d \times d})$; note that also $\theta \in L^{p/(p-1)}(Q)$ as argued in the proof of Proposition 2.

Remark 3 (Energy balance (4.26).) The limit solutions satisfy the energy balance

$$
\frac{d}{dt} \int_{\Omega} \frac{\rho}{2} \left| \frac{\partial u}{\partial t} \right|^2 + \frac{1}{2} \mathbb{C}(u) : e(u) + \mathbb{C}(\theta) \ dx = \int_{\Omega} f \cdot \frac{\partial u}{\partial t} \ dx + \int_{\Omega} g \ dx + \int_{F} h \ dS,
$$

which can be shown by summing the mechanical equation (3.7) tested by $z = \partial_n u$ and the heat equation (3.8) tested by $w = 1$. For this equality, it is important that $\partial_n^{2} u$ is in duality with $\partial_n u \in L^p(I; W^{1,p}(\Omega; \mathbb{R}^d)) \cap L^\infty(I; L^2(\Omega; \mathbb{R}^d))$ because of (3.9a) so that we can extend (3.7) for such a test functions and make the by-part integration in time. Similarly, $\partial_n^{2} \theta$ is in duality with 1 due to (3.9c).

Remark 4 (The restriction (3.2) on p and ω.) One might be tempted to use an anisotropic and p 45 of $\nabla \theta$. Note that the condition (4.56) coincide just (4.36) in the special case $r = r_1 = r_2$. It is, however, a sad reality that this technique does not improve (3.2). Hence, after an interpolation with the $L^\infty(I; L^\infty(\Omega))$-information as in (4.39), the isotropic estimate of θ in $L^{p/(p-1)}(Q)$ for $p > 1 + d/(2\omega)$, cf. (3.2) and (4.42), is not improvable, which then also determines that $\partial_n e(u)$ must be in $L^p(Q; \mathbb{R}^{d \times d})$ to give a sense to the adiabatic term $\theta \mathbb{C} : \hat{\mathbb{D}}(u)$ in $L^1(Q)$. Thus, the bound (3.2) seems to be optimal, at least if L^1-data g, h, and u_0 are considered.

Remark 5 (Nonlinear elastic response.) A natural question arises why the elastic response through \mathbb{C} is linear while the dissipation through \mathbb{D} is not. Considering the stored energy non-quadratic leads to much more complicated theory even in isothermal case and requires also \mathbb{D} to have a (pseudo)potential, as it is well documented in [12], and its extension to anisothermal case is not obvious.

Remark 6 (Nonlocal linear viscosity.) We saw that the condition (3.2) allows for linear viscosity (i.e. $p = 2$) only in the one-dimensional case. There is another option to introduce more viscosity into the system than implemented above, i.e. faster processes dissipate more due to the super-linear growth of $\mathbb{D}(\cdot)$ if $p > 2$, namely that processes whose velocity
gradient varies faster in space dissipate more. This might be justified by similar arguments for stored energy \cite{25, 27} and certain principle that any stored mechanism in nature must be at least a bit dissipative (perhaps with only few exceptions of quantum origin like superconductivity). Such a nonlocal mechanism would give additional contribution to the stress σ in (2.1) of the form

$$\sigma_{\text{nonlocal}}(\dot{e}) = \int_\Omega K(x, \tilde{x})(\dot{e}(x) - \dot{e}(\tilde{x})) \, d\tilde{x} \quad \text{with} \quad \dot{e} = \frac{\partial e(u)}{\partial t}. \quad (4.58)$$

The assumption on the kernel K is

$$\exists \zeta_1, \zeta_2 > 0 : \quad \zeta_1 \frac{\delta_{ik} \delta_{jl}}{|x-\tilde{x}|^{d+2\gamma}} \leq K_{ijkl}(x, \tilde{x}) \leq \zeta_2 \frac{\delta_{ik} \delta_{jl}}{|x-\tilde{x}|^{d+2\gamma}} \quad (4.59)$$

for a fixed parameter $0 < \gamma < 1$ where δ's denote here the Kronecker symbol. Then $\int_\Omega \sigma_{\text{nonlocal}}(\dot{e}) : \dot{e} \, d\tilde{x}$ is equivalent to the square of the seminorm in the Sobolev-Slobodeckii spaces $W^{\gamma,2}(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})$. Such a contribution would thus be majorized by the left-hand side of (4.37) and the last term in (4.38) has still to be interpolated. We can do it in two steps. First, we use the interpolation between Hilbert-type Sobolev-Slobodetskii spaces applied on the symmetric part $e(\frac{\partial u}{\partial t})$ of $\nabla(\frac{\partial u}{\partial t})$, namely

$$\left\| \frac{\partial e(u)}{\partial t} \right\|_{W^{\beta,2}(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})} \leq C_{GN,\beta} \left(\frac{\partial u}{\partial t} \right)_{L^2(\Omega; \mathbb{R}^d)}^{1-\nu} \left(\frac{\partial e(u)}{\partial t} \right)_{W^{\gamma,2}(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})}^\nu \quad (4.60)$$

with $0 \leq \beta = (1+\gamma)\nu - 1$. Second, we use the continuous-embedding theorem for the Sobolev-Slobodetskii spaces $W^{\beta,2}(\Omega) \subset L^p(\Omega)$ provided $p \leq 2d/(d-2\beta)$. Joining these estimates, we obtain a Gagliardo-Nirenberg inequality generalized for fractional derivatives

$$\left\| \frac{\partial e(u)}{\partial t} \right\|_{L^p(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})} \leq C_{GN,\beta} \left(\frac{\partial u}{\partial t} \right)_{L^2(\Omega; \mathbb{R}^d)}^{1-\nu} \left(\frac{\partial e(u)}{\partial t} \right)_{W^{\gamma,2}(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})}^\nu \quad (4.61)$$

for

$$\frac{1}{p} \geq \frac{1}{d} - \nu \frac{1+\gamma}{d} + \frac{1}{2} \quad \text{and} \quad \frac{1}{1+\gamma} \leq \nu \leq 1. \quad (4.62)$$

To use it for further estimation of (4.38), we rise it to the power p and then we need $\nu p < 2$ to apply Young’s inequality and absorb the thus arising term $\left\| \frac{\partial e(u)}{\partial t} \right\|_{W^{\gamma,2}(\Omega; \mathbb{R}^{d \times d}_{\text{sym}})}^2$ in the correspondingly modified left-hand side of (4.37). Taking into account (3.2), we get $\nu < 4\omega/(d + 2\omega)$ and then (4.62) yield the restriction $\gamma > (d^2 + 2d - 4\omega - 2\omega d)/(8\omega)$ if $d \geq 2$. For the physically relevant case $d = 3$, we have $\gamma > 5/8$ if $\omega = 1$ or $\gamma > 0$ if $\omega = 3/2$, while for the two-dimensional case we get $\gamma > 0$ already for $\omega = 1$.

Remark 7 (Temperature dependence of the coefficients.) The method presented above allows relatively easily for a generalization to a “more coupled” system using temperature-dependent \mathbb{B} and \mathbb{D} assuming that this dependence would be continuous, $\mathbb{B}(\cdot)$ bounded, and (3.3d-f) would hold uniformly with respect to the temperature. Temperature dependence of \mathbb{D} would require slight enhancement of (4.54). On the other hand, generalization for temperature dependence of \mathbb{K} is not not clear though here it would be in conflict only with deriving of (4.47) by using estimates obtained by the test by $\frac{\partial u}{\partial t}$.

References

\begin{enumerate}
\end{enumerate}

