Optimal control of
Navier-Stokes equations by
Oseen approximation

Miroslav Pošta & Tomáš Roubíček

Preprint no. 2007-013
Optimal control of Navier-Stokes equations by Oseen approximation

MIROSLAV POŠTA
Dept. of Mathematical Analysis, Math.-Phys. Faculty, Charles University,
Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

TOMÁŠ ROUBÍČEK
Mathematical Institute, Charles University,
Sokolovská 83, CZ-186 75 Praha 8, Czech Republic,
and
Institute of Information Theory and Automation, Academy of Sciences,
Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic.

Abstract. A non-standard sequential-quadratic-programming-type iterative process based on Oseen’s approximation is proposed and analyzed to solve an optimal control problem for the steady-state Navier-Stokes equations. Further numerical approximation by a finite-element method and sample computational experiments are presented, too.

Key Words. Incompressible flow, steady state, optimization, quadratic-programming approximation, Banach contraction principle.

AMS Subject Classification: 49K20, 35Q30, 65N30, 76D55, 90C55.

1 Introduction

Flow of incompressible viscous Newtonian fluids is described by Navier-Stokes system. Optimization of such flow received significant attention both for its industrial applications and for its theoretical and computational difficulties. In this paper, we confine ourselves to steady-state problems. Optimal control problem of this sort was already studied in particular by Bilić [1], Bubáč [2], Burkardt and Peterson [3], Casas [4], Desai and Ito [5], Gattas and Bark [6], Gunzburger, Hou and Svobodny [7, 8, 9], Hou and Ravindran [10, 11], Heinkenschloss [12], Lions [13], Málek in [14], Tröltzsch in [15], Tröltzsch and Wachsmuth

1 Comments of Prof. M. Feistauer to Remark 3.3 and of Prof. M. Hinze to [17] are very acknowledged. This work has been partly created as a research activity of “Nečas center for mathematical modeling” LC 06052 (MŠMT ČR).

2 This author has been supported partly through the grant 6/2005/R (GAUK).

3 This author has been supported partly through the grants A 1075402 (GA AV ČR), and MSM 0021620839 (MŠMT ČR).
[16], and also [17, 18], but the relevant literature is, of course, more extensive. Besides, optimization of transient regimes, i.e. governed by the evolution Navier-Stokes system, is more difficult because uniqueness of the response is still the well-known open problem for 3-dimensional flows in general situations. Anyhow, even this evolution variant has been intensively scrutinized e.g. in [19, 20, 21, 22, 23, 24, 25, 26, 13, 27, 28].

As the governing Navier-Stokes equations are nonlinear, the resulting optimization problem is generally nonlinear and efficient numerical strategies are not simple. Often, numerical approaches are based on sequential-quadratic programming (=SQP). This is an iterative algorithm whose philosophy is to apply the Newton method to the 1st-order optimality conditions which results in solving of system of linear equations or equally in a linear-quadratic program. This conventional approach (or its modifications by using quasi-Newton method) for Navier-Stokes (or similar) equations was scrutinized (often rather in the evolution variant or with state-space constraints) e.g. by Gattas and Bark [6], Heinkenschloss [12], Hintermüller and Hinze [29, 30], Hinze [31], Hinze and Kunish [25], Hou and Ravindran [11], Tröltzsch and Volkwein [32].

Another 2nd-order method used in the context of time-dependent fluid flow consist in replacing the reduced cost functional $\tilde{J}(f) := J(u(f), f)$ (for the definition of $J, u$ and $f$ see below) by its second-order Taylor expansion with the derivatives of $\tilde{J}$ being expressed via the implicit function theorem, c.f. Hinze [24], Hinze and Kunish [25, 26]. This method, however, requires evaluating $u = u(f)$, i.e. solving the nonlinear Navier-Stokes equations, at each iteration in contrast to the SQP method which contains only linearized Navier-Stokes equations. This difference is not so significant in the case of the time-dependent problem because the nonlinear equations as well as the linearized equations are solved iteratively.

In this paper, we propose still another linearization strategy based on Oseen’s linearization of the controlled Navier-Stokes equations. This linearization is known to have advantageous numerical properties as well as allows for similar a-priori estimates as the original Navier-Stokes equations, and leads already to a linear-quadratic optimization problem provided the cost functional is quadratic but, on the other hand, the convergence is expectedly not of the 2nd-order. The general philosophy behind such strategy is that there is no need to solve the nonlinear Navier-Stokes equations exactly at each iteration of the optimization algorithm because this effort is partly lost in the next iteration, and it suffices to get the desired effect only in a limit. In Sect. 2, we will scrutinize this strategy on an optimal control problem for the steady-state Navier-Stokes system:

\[
\begin{align*}
\text{(P)} & \quad \begin{cases}
\text{Minimize} & J(f, u) := \int_{\Omega} \left( \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot } u|^2 + \frac{1}{2} |f|^2 \right) \, dx \\
\text{subject to} & \quad \begin{aligned}
(u \cdot \nabla)u - \nu \Delta u + \nabla p &= f \\
\text{div } u &= 0 \\
u &> 0 \\
\nu &> 0 \\
\Omega &\subset \mathbb{R}^n \\
f &\in \mathcal{F}_{\text{ad}}
\end{aligned}
\end{cases}
\end{align*}
\]

where $\Omega \subset \mathbb{R}^n$ is a bounded domain with a Lipschitz boundary $\Gamma := \partial \Omega$, $n = 2$ or $n = 3$, $\nu > 0$ is the viscosity, $f$ is a distributed control, and $(u, p)$ a state response, i.e. the velocity and the pressure profiles, respectively, $u_d$ is a given desired velocity profile, and $\alpha, \beta \geq 0$. 

\[
\begin{align*}
\text{(P)} & \quad \begin{cases}
\text{Minimize} & J(f, u) := \int_{\Omega} \left( \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot } u|^2 + \frac{1}{2} |f|^2 \right) \, dx \\
\text{subject to} & \quad \begin{aligned}
(u \cdot \nabla)u - \nu \Delta u + \nabla p &= f \\
\text{div } u &= 0 \\
u &> 0 \\
\nu &> 0 \\
\Omega &\subset \mathbb{R}^n \\
f &\in \mathcal{F}_{\text{ad}}
\end{aligned}
\end{cases}
\end{align*}
\]

where $\Omega \subset \mathbb{R}^n$ is a bounded domain with a Lipschitz boundary $\Gamma := \partial \Omega$, $n = 2$ or $n = 3$, $\nu > 0$ is the viscosity, $f$ is a distributed control, and $(u, p)$ a state response, i.e. the velocity and the pressure profiles, respectively, $u_d$ is a given desired velocity profile, and $\alpha, \beta \geq 0$. 

\[
\begin{align*}
\text{(P)} & \quad \begin{cases}
\text{Minimize} & J(f, u) := \int_{\Omega} \left( \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot } u|^2 + \frac{1}{2} |f|^2 \right) \, dx \\
\text{subject to} & \quad \begin{aligned}
(u \cdot \nabla)u - \nu \Delta u + \nabla p &= f \\
\text{div } u &= 0 \\
u &> 0 \\
\nu &> 0 \\
\Omega &\subset \mathbb{R}^n \\
f &\in \mathcal{F}_{\text{ad}}
\end{aligned}
\end{cases}
\end{align*}
\]
As usual, rot $u$ denotes the vorticity, namely the vector function
\begin{equation}
\text{rot } u = \begin{cases} 
\left( \frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}, \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}, \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) & \text{if } n = 3, \\
\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} & \text{if } n = 2.
\end{cases}
\end{equation}

We also define the vector function rot rot $u = \left( \frac{\partial \text{rot } u}{\partial x_2}, -\frac{\partial \text{rot } u}{\partial x_1} \right)$ in the case $n = 2$. Moreover, we use the usual notation $L^2(\Omega; \mathbb{R}^n)$ for the Banach space (classes of) Lebesgue measurable square integrable functions $\Omega \to \mathbb{R}^n$, while $W^{1,2}(\Omega; \mathbb{R}^n)$ denotes the Sobolev space of functions $u \in L^2(\Omega; \mathbb{R}^n)$ whose distributional gradient $\nabla u$ belongs to $L^2(\Omega; \mathbb{R}^{n \times n})$. We utilize $W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) := \{ v \in W^{1,2}(\Omega; \mathbb{R}^n); \ n|_\Gamma = 0, \ \text{div } v = 0 \}$ where $n|_\Gamma$ is the trace of $v$ on $\Gamma$ and div $v$ is understood in the sense of distributions, and finally we denote $L^2_0(\Omega) := \{ p \in L^2(\Omega); \ \int_\Omega p \, dx = 0 \}$. We will consider $W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)$ endowed with the norm $\| u \|_{W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)} := \| \nabla u \|_{L^2(\Omega; \mathbb{R}^{n \times n})} := \left( \int_\Omega |\nabla u(x)|^2 \, dx \right)^{1/2}$. Let us note that the distributed control is rather artificial and usually a control through boundary conditions occurs in engineering applications, but nevertheless even a distributed control can be realized through electromagnetic forcing in polarizable fluids, cf. [33]. The quadratic velocity-tracking term (i.e. the “$\alpha$-term”) in the cost functional $J$ is a standard option in flow control, see Gunzburger [7] or also, e.g., [1, 23, 12, 29, 25, 26, 16]. The “$\beta$-term” in $J$ is another standard option, see again [7] or [12, 25, 10], to make the vorticity of the optimal flow small. The last term in $J$ penalizes the control force. All terms are quadratic, which has still reasonable applicability and simultaneously simplifies the analysis considerably. Anyhow, (3) is obviously not a linear-quadratic problem due to the bilinear convective term $(u \cdot \nabla)u$ in the state equation.

The philosophy of cumulating the accuracy of solving nonlinear state problems only in the limit can be combined with numerical approximation of the controlled state equations by, e.g., finite-element method (=FEM), which is presented in Section 3. This makes the method ready to be implemented on computers and to perform computational experiments, which are reported in Section 4.

2 The SQP-type conceptual algorithm

Let us first specify the basic assumptions we will need as to the parameters $\alpha$, $\beta$, the desired velocity profile $u_d$, and the set of admissible controls $F_{\text{ad}}$. We assume
\begin{align}
\alpha & \geq 0, \ \ \beta \geq 0, \ \ \ u_d \in L^2(\Omega; \mathbb{R}^n), \quad (2.1a) \\
F_{\text{ad}} & \text{ is closed, convex subset of } L^2(\Omega; \mathbb{R}^n), \quad (2.1b) \\
\forall f \in F_{\text{ad}} : \ |f|_{L^2(\Omega; \mathbb{R}^n)}^2 & < \frac{\nu^2}{N_2 N_4^2}, \quad (2.1c)
\end{align}

with $N_p, p < 2n/(n-2)$, denoting the norm of the embedding $W^{1,2}_0(\Omega; \mathbb{R}^n) \subset L^p(\Omega)$. In particular, the condition (2.1c) guarantees by standard arguments (see e.g. [14]) uniqueness of the response $u$ of the Navier-Stokes equations for a given control $f$ and also uniqueness of the corresponding adjoint state $w$ used below.

For the convenience we recall the frequently used notation. In $L^2(\Omega; \mathbb{R}^n)$ we introduce the scalar product $(u, v) := \int_\Omega \sum_{i=1}^n u_i v_i \, dx$ while $(U : V) := \int_\Omega \sum_{i=1}^n \sum_{j=1}^n U_{ij} V_{ij} \, dx$...
is the associated one in $L^2(\Omega, \mathbb{R}^{n \times n})$. Further, $(u \cdot \nabla)u$ denotes the vector valued function $\sum_{k=1}^n u_k \frac{\partial}{\partial x_k} u$ and $(\nabla u)^\top$ is the matrix having the column vectors $\nabla u_1, \ldots, \nabla u_n$. In the context of Navier-Stokes equations, it is common to use the trilinear form

$$b : W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)^3 \rightarrow \mathbb{R},$$

$$b(w, u, v) := ((w \cdot \nabla) u, v).$$

(2.2)

It is known that $b(w, u, v) = -b(w, v, u)$ if $\text{div } w = 0$ and the normal component of $w$ on $\Gamma$ vanishes. Here we will always have $w|_\Gamma = 0$. In particular, these assumptions imply $b(w, u, u) = 0$.

We call $u \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$ a weak solution to the no-slip boundary-value problem for the steady-state Navier-Stokes system in $(\mathcal{P})$ if the variational equation

$$((u \cdot \nabla) u, v) + \nu(\nabla u : \nabla v) = (f, v)$$

(2.3)

is satisfied for all $v \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$.

Let us remind the 1st-order necessary optimality conditions for $(\mathcal{P})$, cf. [15, 16] for more details. Considering a locally optimal pair $\{u^*, f^*\}$, they can formally be found by applying the well-known Lagrange principle, where the state-equations (2.3) are eliminated by the Lagrange function

$$L(u, f, w) = J(u, f) - (f - (u \cdot \nabla) u, w) + \nu(\nabla u : \nabla w).$$

(2.4)

Obviously, for a fixed multiplier $w \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$, the Lagrange function $L(\cdot, \cdot, w) : W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n) \rightarrow \mathbb{R}$ is quadratic and continuous, hence it is a $C^2$-function. According to the Lagrange principle, $\{u^*, f^*\}$ should satisfy the necessary optimality conditions for minimizers of $L$ with respect to $f \in \mathcal{F}_\text{ad}$, i.e. $L_u(u^*, f^*, w)(u) = 0$ for all $u \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$ and $L'_f(u^*, f^*, w)(f - f^*) \geq 0$ for all $f \in \mathcal{F}_\text{ad}$. The first relation leads to the adjoint system to the Navier-Stokes equations linearized at $u = u^*$, i.e.

$$- \nu \Delta w + (\nabla u^*)^\top w - (u^* \cdot \nabla) w + \nabla \pi = \alpha(u_4 - u^*) + \beta \text{rot } \text{rot } u^*,$$

$$\text{div } w = 0,$$

(2.5a)

for the so-called adjoint state $w$ and the adjoint pressure $\pi$, which vanishes in the weak formulation. Under a weak solution to the adjoint system (2.5) we understand any $w \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$ satisfying the integral identity

$$a(u^*; w, v) := \nu(\nabla w : \nabla v) - ((u^* \cdot \nabla) w, v) + ((v \cdot \nabla) u^*, w)$$

$$= \alpha(u_4 - u^*, v) - \beta(\text{rot } u^*, \text{rot } v)$$

(2.6)

for all $v \in W_{0, \text{DIV}}^{1,2}(\Omega; \mathbb{R}^n)$. The condition (2.1c) provides the estimate (for some $\epsilon > 0$)

$$a(u^*; v, v) \geq \nu \| \nabla v \|^2_{L^2(\Omega; \mathbb{R}^n)} + ((v \cdot \nabla) u^*, v) \geq \nu \| \nabla v \|^2_{L^2(\Omega; \mathbb{R}^n)} + \| \nabla u^* \|^2_{L^2(\Omega; \mathbb{R}^{n \times n})} \| v \|^2_{L^4(\Omega; \mathbb{R}^n)}$$

$$\geq \left( \nu - \frac{N_2}{\nu} \right) \| f^* \|^2_{L^2(\Omega; \mathbb{R}^{n \times n})} \| u_4 \|^2 \| \nabla v \|^2_{L^2(\Omega; \mathbb{R}^{n \times n})} \geq \epsilon \| \nabla v \|^2_{L^2(\Omega; \mathbb{R}^{n \times n})},$$

(2.7)

Thus, by the Lax-Milgram lemma, the adjoint equation (2.6) has a unique weak solution $w = w(u^*)$ for $\{u, f\}$ in question.

Now we formulate the standard first-order necessary optimality conditions. They were proved (mostly for the case without control constraints) in the reference mentioned in Section 1. This proof extends to control constraints by obvious modifications.
Proposition 2.1 Let (2.1) hold, and let \( f^* \) be a locally optimal control for (\( \Pi \)) with associated state \( u^* = u(f^*) \). Then the variational inequality

\[
(f^* - w^*, f - f^*) \geq 0 \quad \forall f \in \mathcal{F}_{ad}
\]

is satisfied for \( w^* = w(u^*) \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \) being the unique weak solution to the adjoint equation (2.5).

The point \{\( u^*, f^* \)\} satisfying (2.3) with \( u := u^* \) and \( f := f^*, \) (2.6), and (2.8) is called critical for (\( \Pi \)). The philosophy of our iterative procedure is to find a critical point for (\( \Pi \)) as a limit of a sequence of solutions of suitable linear-quadratic problems. As already announced, we want to replace the original nonlinear Navier-Stokes equations by a linear Oseen equations but then we must augment the cost functional by a suitable correction term (and we will see in the proof of Proposition 2.3 below that this term must be \(-(u \cdot \nabla \bar{u}) \cdot \bar{w})\) to obtain the desired result. To be more specific, for \( (\bar{u}, \bar{w}) \) denoting the velocity profile and the adjoint state from the former iteration, our auxiliary linear-quadratic problem is:

\[
\begin{aligned}
\text{(\( \Pi_{LQ} \))} \quad \begin{cases}
\text{Minimize} & \int_{\Omega} \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot} u|^2 + \frac{1}{2} |f|^2 - (u \cdot \nabla \bar{u}) \cdot \bar{w}
\text{subject to} & (\bar{u} \cdot \nabla) u - \nu \Delta u + \nabla p = f, \quad \text{div} u = 0, \\
& u \in W^{1,2}_0(\Omega; \mathbb{R}^n), \quad p \in L^2(\Omega), \quad f \in \mathcal{F}_{ad}.
\end{cases}
\end{aligned}
\]

Obviously, (2.1a,b) makes (\( \Pi_{LQ} \)) a problem with strictly convex functional on a linear manifold, and thus it has a unique solution for \( \bar{u} \) and \( \bar{w} \) given. The strict convexity of (\( \Pi_{LQ} \)) also implies that its first-order necessary optimality conditions are also the sufficient ones. Then the corresponding adjoint equation has a form:

\[
\begin{aligned}
-\nu \Delta w - (\bar{u} \cdot \nabla) w + \nabla \pi &= \alpha (u_d - u) + \beta \text{rot rot } u - (\nabla \bar{u}) \bar{w}, \\
\text{div } w &= 0.
\end{aligned}
\]

For \( \bar{u}, \bar{w}, \) and \( u \) given, the proof of uniqueness of the adjoint state \( w \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \) governed by (2.9) is similar to the proof of uniqueness of the adjoint state of the nonlinear problem (\( \Pi \)): We assume that (2.1c) and (2.3) hold with \( f := \bar{f} \) and \( u := \bar{u} \), where \( \bar{f} \) is the distributed control from the previous iteration, and we utilize the fact that the Oseen equations provide the same a-priori estimate for \( \|\nabla \bar{u}\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \) as the Navier-Stokes equations, c.f. (2.7). Thus, for \( \bar{u} \) and \( \bar{w} \) given, the unique optimal solution \{\( u, f \)\} to (\( \Pi_{LQ} \)) determines uniquely by (2.9) the adjoint state \( w \). Therefore, we can consider the mapping

\[
M : (\bar{u}, \bar{w}) \mapsto (u, w).
\]

Our next goal is to seek a fixed point of this mapping \( M \) by a Banach contraction-principle argument, which gives also an efficient numerical strategy after an additional discretization.

Before it, we will mention still a 2nd-order analysis of the original problem (\( \Pi \)), cf. e.g. [29, 15, 16]. The second-order differential of \( L(\cdot, \cdot, w) \) at a point \{\( u, f \)\}, denoted as \( L''(u, f, w) : [W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)]^2 \to \mathbb{R} \), is given by

\[
L''(u, f, w)[(u_1, f_1), (u_2, f_2)] = \alpha (u_1, u_2) + \beta (\text{rot } u_1, \text{rot } u_2) \\
+ (f_1, f_2) + ((u_1 \cdot \nabla) u_2, w) + ((u_2 \cdot \nabla) u_1, w).
\]

\( \text{(2.10)} \)
This quadratic form is obviously symmetric and independent of \( \{u, f\} \), and even bounded due to the estimate

\[
|L''(u, f, w)((u_1, f_1), (u_2, f_2))| \leq \left( \alpha N_2^2 + 2\beta + 2N_2^2\|\nabla w\|_{L^2(\Omega; \mathbb{R}^n)} \right) \times \|u_1\|_{W^{1,2}(\Omega; \mathbb{R}^n)} \|u_2\|_{W^{1,2}(\Omega; \mathbb{R}^n)} + \|f_1\|_{L^2(\Omega; \mathbb{R}^n)} \|f_2\|_{L^2(\Omega; \mathbb{R}^n)}
\]

(2.11)

where we used the estimate \( \|\text{rot } u\|_{L^2(\Omega; \mathbb{R}^n \times \mathbb{R}^n)} \leq \sqrt{2}\|\nabla u\|_{L^2(\Omega; \mathbb{R}^n)} \).

The boundedness of the quadratic form \( L''(u, f, w) \) is even uniform with respect to all \( w \) under consideration. We need only the restriction of \( L''(u, f, w) \) to the diagonal of \([W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)]^2\), and then we simply write \( L''(u, f, w)(\tilde{u}, \tilde{f})^2 := L''(u, f, w)((\tilde{u}, \tilde{f}), (\tilde{u}, \tilde{f})) \). Due to \((\tilde{u} \cdot \nabla)\tilde{u}, w) = -(\tilde{u} \cdot \nabla)w, \tilde{u})\), this restricted second-order differential takes the form

\[
L''(u, f, w)(\tilde{u}, \tilde{f})^2 = \alpha\|\tilde{u}\|_{L^2(\Omega; \mathbb{R}^n)}^2 + \beta\|\text{rot } \tilde{u}\|_{L^2(\Omega; \mathbb{R}^n)}^2 + \|\tilde{f}\|_{L^2(\Omega; \mathbb{R}^n)}^2 - 2((\tilde{u} \cdot \nabla)w, \tilde{u})
\]

(2.12)

The standard second-order sufficient optimality condition, often abbreviated as (SSC), at \( (u^*, f^*, w^*) \) requires existence of a positive \( \delta \) such that the coercivity condition

\[
L''(u^*, f^*, w^*)(u, f)^2 \geq \delta\|f\|_{L^2(\Omega; \mathbb{R}^n)}^2
\]

(2.13)

holds for all \( \{u, f\} \) solving the Navier-Stokes system linearized at \( \{u^*, f^*\} \), i.e. in the weak formulation

\[
((u \cdot \nabla)u^*, v) + ((u^* \cdot \nabla)u, v) + \nu(\nabla u : \nabla v) = (f, v)
\]

(2.14)

for all \( v \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \).

**Proposition 2.2** Let (2.1c) hold, and let \( \{u^*, f^*, w^*\} \) satisfy the first-order necessary conditions (2.3) (with \( u := u^* \) and \( f := f^* \)) and (2.6) hold together with the second-order sufficient condition (SSC). Then \( \{u^*, f^*\} \) is locally optimal pair for (P) with respect to the topology of \([W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)]\).

The proof of the above assertion is essentially due to Casas and Tröltzsch [34], cf. also [15, Prop.2.6]. We can apply it directly to our iteration strategy:

**Proposition 2.3** Let again (2.1c) hold and let \( \{u^*, w^*\} \) be a fixed point of \( M \) with \( f^* \) being the corresponding control, i.e. \( \{u^*, f^*\} \) is a unique solution of (P\(_{LQ}\)) with \( \bar{u} = u^*, \bar{w} = w^* \), where \( w^* \) is a unique weak solution of (2.6). Then \( \{u^*, f^*\} \) is a critical point for the nonlinear problem (P). If, moreover, (SSC) are satisfied at this \( \{u^*, f^*\} \), then it is a local minimizer for (P).

**Proof.** As already mentioned, the linear-quadratic problem (P\(_{LQ}\)) is strictly convex, and thus it has a unique minimizer \( \{u, f\} \). This minimizer satisfies the first-order necessary (and now also sufficient) optimality conditions, i.e. the Oseen state problem in (P\(_{LQ}\)) in the weak formulation governed by the identity

\[
((\bar{u} \cdot \nabla)u, v) + \nu(\nabla u : \nabla v) = (f, v)
\]

(2.15)
holding for all \( v \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \), the adjoint equation (2.9) in the weak formulation governed by the identity

\[
\nu(\nabla v; \nabla w) + ((\bar{u} \cdot \nabla)v, w) + ((v \cdot \nabla)\bar{u}, w) = \alpha(u_d - u, v) - \beta(\text{rot } u, \text{rot } v) \tag{2.16}
\]

holding for all \( v \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n) \), and also the inequality

\[
(f - w, \bar{f} - f) \geq 0 \quad \forall \bar{f} \in \mathcal{F}_{\text{ad}}. \tag{2.17}
\]

Now, if \( \{u^*, w^*\} \) is a fixed point of the mapping \( M \) with \( f^* \in \mathcal{F}_{\text{ad}} \) the corresponding control, it holds \( \bar{u} = u = u^* \), \( \bar{w} = w = w^* \) and the first-order optimality conditions (2.15)–(2.17) coincide with (2.3) (with \( u = u^* \) and \( f = f^* \)), (2.6), and (2.8), and therefore \( \{u^*, f^*\} \) is a critical point for \( \mathfrak{P} \).

If it happens that also (SSC) holds, then Proposition 2.2 says that \( \{u^*, f^*\} \) is a local minimizer for \( \mathfrak{P} \).

Now, an important question is whether there is a set, say \( D \), which is mapped by \( M \) into itself and a norm with respect to which \( M \) is a contraction on \( D \). The following assertion answers it affirmatively on the condition that the fluid (i.e., \( \nu > 0 \)) as well as the domain \( \Omega \) are given and thus assumed not subjected to any choice.

**Proposition 2.4** Let (2.1) hold with \( \alpha \geq 0 \) and \( \beta \geq 0 \) sufficiently small, \( u_d \) be sufficiently small in \( L^2 \)-norm, and let the set of admissible controls \( \mathcal{F}_{\text{ad}} \) be bounded in \( L^2 \)-norm by a (sufficiently small) constant \( R_1 > 0 \); in view of (2.1c), always \( R_3 < \nu/(N_2 N_3^2) \). Then, the mapping \( M : (\bar{u}, \bar{w}) \mapsto (u, w) \) is contractive on the set \( (= \text{a complete metric space endowed with the norm } W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)^2) \)

\[
D := \left\{ (u, w) \in W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)^2; \|u\|_{W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)} \leq \frac{N_2 R_1}{\nu}, \|w\|_{W^{1,2}_{0,\text{DIV}}(\Omega; \mathbb{R}^n)} \leq R_2 \right\} \tag{2.18}
\]

for a suitable \( R_2 > 0 \).

**Proof.** Let \( (u_1, w_1, f_1) \) and \( (u_2, w_2, f_2) \) be the solution of the optimality conditions (2.15), (2.16), (2.17) corresponding to the quantities \( (\bar{u}_1, \bar{w}_1) \) and \( (\bar{u}_2, \bar{w}_2) \), respectively. We will abbreviate also \( u_{12} := u_1 - u_2, f_{12} := f_1 - f_2, \bar{u}_{12} := \bar{u}_1 - \bar{u}_2, \bar{w}_{12} := \bar{w}_1 - \bar{w}_2 \), etc.

At first we test the inequality (2.17) for \( f := f_1 \) and \( w := w_1 \) by \( \bar{f} := f_2 \)

\[
(f_1 - w_1, -f_{12}) \geq 0. \tag{2.19}
\]

Similarly, for \( f = f_2, w = w_2 \) and \( \bar{f} := f_1 \), we get

\[
(f_2 - w_2, f_{12}) \geq 0. \tag{2.20}
\]

Summing (2.19) with (2.20), we obtain the estimate

\[
\|f_{12}\|_{L^2(\Omega; \mathbb{R}^n)} \leq \|w_{12}\|_{L^2(\Omega; \mathbb{R}^n)}. \tag{2.21}
\]

Now we test the Oseen problem (2.15) for \( u = u_1 \) and \( \bar{u} = \bar{u}_1 \) (resp. \( u = u_2 \) and \( \bar{u} = \bar{u}_2 \)) by \( v = u_{12} \) and subtract the associated identities. We obtain

\[
\nu(\nabla u_{12} \cdot \nabla u_{12}) + ((\bar{u}_1 \cdot \nabla)u_1 - (\bar{u}_2 \cdot \nabla)u_2, u_{12}) = (f_{12}, u_{12}). \tag{2.22}
\]
Using \((\vec{u}_1 \cdot \nabla)u_1 - (\vec{u}_2 \cdot \nabla)u_2 = (\vec{u}_1 \cdot \nabla)u_{12} + (\vec{u}_2 \cdot \nabla)u_{22}\) and \(b(w, v, v) = 0\), cf. (2.2), this equation implies the estimate:

\[
\nu \left\| \nabla u_{12} \right\|^2_{L^2(\Omega; \mathbb{R}^{n \times n})} \leq \left\| \nabla u_2 \right\|_{L^2(\Omega; \mathbb{R}^n)} \left\| u_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)} + \left\| f_1 \right\|_{L^2(\Omega; \mathbb{R}^n)} \left\| u_{12} \right\|_{L^2(\Omega; \mathbb{R}^n)}.
\]  

(2.23)

Using (2.21), the Friedrichs inequality and the Sobolev embedding theorem, we can replace \(\left\| f_1 \right\|_{L^2(\Omega; \mathbb{R}^n)}\) by \(\left\| w_2 \right\|_{L^2(\Omega; \mathbb{R}^n)}\) and cancel the term \(\left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}^2\):

\[
\nu \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \leq N_2^2 \left\| \nabla u_2 \right\|_{L^2(\Omega; \mathbb{R}^n)} \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} + N_2^2 \left\| \nabla w_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}.
\]  

(2.24)

We proceed similarly with the adjoint equation (2.16). We substitute \((u_1, \vec{u}_1, w_1, \vec{w}_1)\) and \((u_2, \vec{u}_2, w_2, \vec{w}_2)\) for \((u, \vec{u}, w, \vec{w})\) in it, test both obtained equations by \(v := w_{12}\) and subtract them. As a result, we get:

\[
\nu \left( \nabla w_{12} : \nabla w_{12} \right) + ((w_{12} \cdot \nabla)\vec{u}_1, \vec{w}_1) - ((w_{12} \cdot \nabla)\vec{u}_2, \vec{w}_2) + ((\vec{u}_1 \cdot \nabla)w_{12}, w_1) - ((\vec{u}_2 \cdot \nabla)w_{12}, w_2) + \alpha(u_{12}, w_{12}) + \beta(\text{rot}
 u_{12}, \text{rot} w_{12}) = 0.
\]  

(2.25)

Using the properties of the trilinear form \(b\) generated by the convective term (2.2), we can rearrange the four terms above as follows:

\[
((w_{12} \cdot \nabla)\vec{u}_1, \vec{w}_1) - ((w_{12} \cdot \nabla)\vec{u}_2, \vec{w}_2) = -((\vec{u}_{12} \cdot \nabla)w_{12}, w_{12}), \quad \text{and}
\]

\[
((\vec{u}_1 \cdot \nabla)w_{12}, w_1) - ((\vec{u}_2 \cdot \nabla)w_{12}, w_2) = (w_{12} \cdot \nabla)\vec{u}_{12}, w_{12}) - ((w_{12} \cdot \nabla)\vec{w}_{12}, \vec{u}_{12}).
\]  

(2.26a)

(2.26b)

Furthermore, we get the estimate:

\[
\nu \left\| \nabla w_{12} \right\|^2_{L^2(\Omega; \mathbb{R}^n)} \leq \alpha \left\| u_{12} \right\|_{L^2(\Omega; \mathbb{R}^n)} \left\| w_{12} \right\|_{L^2(\Omega; \mathbb{R}^n)} + \beta \left\| \text{rot} u_{12} \right\|_{L^2(\Omega; \mathbb{R}^n)} \left\| \text{rot} w_{12} \right\|_{L^2(\Omega; \mathbb{R}^n)}
\]

\[
+ \left\| \nabla w_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| w_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)} \left\| \vec{u}_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)}
\]

\[
+ \left\| w_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)} \left\| \nabla \vec{u}_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{w}_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)}
\]

\[
+ \left\| w_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)} \left\| \nabla \vec{w}_2 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{u}_{12} \right\|_{L^4(\Omega; \mathbb{R}^n)}.
\]  

(2.27)

Using the Sobolev embedding theorem and the Friedrichs inequality, we can cancel the terms \(\left\| \nabla w_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}\) to obtain:

\[
\nu \left\| \nabla w_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \leq \alpha N_2^2 \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} + 2\beta \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}
\]

\[
+ N_2^2 \left\| \nabla w_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{u}_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}
\]

\[
+ N_2^2 \left\| \nabla \vec{u}_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{w}_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}
\]

\[
+ N_2^2 \left\| \nabla \vec{w}_2 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{u}_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}.
\]  

(2.28)

At the end, we add the estimates (2.28) and (2.24) multiplied by a suitable \(\kappa > 0\). This yields:

\[
\left( \kappa \nu - \alpha N_2^2 - 2\beta \right) \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} + \left( \nu - \kappa N_2^2 \right) \left\| \nabla w_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}
\]

\[
\leq \left( \kappa N_2^2 \left\| \nabla u_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} + N_2^2 \left\| \nabla w_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \right) \left\| \nabla \vec{u}_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}
\]

\[
+ N_2^2 \left\| \nabla \vec{u}_1 \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})} \left\| \vec{w}_{12} \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}.
\]  

(2.29)

We choose \(\kappa = \nu / (2N_2^2)\). The estimate (2.29) then implies that \(M\) is contractive on \(D\) for sufficiently small \(\alpha, \beta, R_1\) and \(R_2\) provided we prove that \(M\) maps \(D\) into itself. We need therefore to obtain bounds on \(\left\| \nabla u \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}\) and \(\left\| \nabla w \right\|_{L^2(\Omega; \mathbb{R}^{n \times n})}\) provided \((\vec{u}, \vec{w}) \in D\).
The condition $f \in \mathcal{F}_{ad}$ implies that $\| \nabla u \|_{L^2(\Omega; \mathbb{R}^{n \times n})} < N_2 R_1 / \nu$. This could be seen by testing the Oseen equation (2.15) by its solution $u$ itself.

We now test the adjoint equation (2.16) by its solution $w$ itself:

\[
\nu \| \nabla w \|_{L^2(\Omega; \mathbb{R}^{n \times n})}^2 = -((w \cdot \nabla) \bar{u}, \bar{w}) + \alpha(u_d - u, w) - \beta(\text{rot } u, \text{rot } w)
\leq N_1^2 \| \nabla w \|_{L^2(\Omega; \mathbb{R}^{n \times n})} \| \nabla \bar{u} \|_{L^2(\Omega; \mathbb{R}^{n \times n})} + \alpha N_2 \| u_d \|_{L^2(\Omega; \mathbb{R}^n)} \| \nabla w \|_{L^2(\Omega; \mathbb{R}^{n \times n})} \\
+ 2 \beta \| \nabla u \|_{L^2(\Omega; \mathbb{R}^{n \times n})} \| \nabla \bar{w} \|_{L^2(\Omega; \mathbb{R}^{n \times n})} .
\tag{2.30}
\]

Assuming $\| \nabla \bar{w} \|_{L^2(\Omega; \mathbb{R}^{n \times n})} \leq R_2$, this estimate implies

\[
\| \nabla w \|_{L^2(\Omega; \mathbb{R}^{n \times n})} \leq \frac{1}{\nu} \left( \frac{N_1^2 N_2 R_1 R_2}{\nu} + \frac{\alpha N_2^3 R_1}{\nu} + \alpha N_2 \| u_d \|_{L^2(\Omega; \mathbb{R}^n)} + \frac{2 \beta N_2 R_1}{\nu} \right) .
\tag{2.31}
\]

It is now possible to choose $R_1$ and $u_d$ so small that $N_1^2 N_2 R_1 R_2 + \alpha N_2^3 R_1 + \nu \alpha N_2 \| u_d \|_{L^2(\Omega; \mathbb{R}^n)} + 2 \beta N_2 R_1 \leq \nu^2 R_2$ and so $M$ maps $D$ into itself.

**Remark 2.5** The smallness conditions on data can be formulated so that the functional $f \mapsto J(f, u(f))$ is convex on $\mathcal{F}_{ad}$; if $\beta = 0$ see [14] or also [15] while for $\beta > 0$ a similar term has been analyzed in [18] under assumptions of a higher integrability of $u_d$ and smoothness of $\Gamma$. Then the obtained fixed point, being a critical point, is also the global minimizer because the necessary optimality conditions are then also sufficient. The condition (SSC) is then satisfied automatically but it loses its importance in this context. In [2] it has been shown, however, that conditions guaranteeing such a convexity are quite severe.

**Remark 2.6** An example for $\mathcal{F}_{ad}$ involving point-wise constraints and satisfying (2.1b,c) is

\[
\mathcal{F}_{ad} = \{ f : \Omega \to \mathbb{R}^n \text{ measurable} : |f(x)| \leq r \text{ a.e. on } \Omega \} \quad \text{with} \quad r < \frac{\nu^2 |\Omega|^{-1/2}}{N_2 N_1^4} .
\tag{2.32}
\]

**Remark 2.7** The case with no control constraints, i.e. $\mathcal{F}_{ad} = L^2(\Omega; \mathbb{R}^2)$, is obviously not consistent with (2.1c). Yet, we can adopt a philosophy that the problem is globally coercive due to the obvious estimate

\[
\frac{1}{2} \| f^* \|_{L^2(\Omega; \mathbb{R}^n)} \leq J(u^*, f^*) \leq J(0, 0) = \frac{\alpha}{2} \| u_d \|_{L^2(\Omega; \mathbb{R}^n)}
\tag{2.33}
\]

because the pair $\{u, f\} \equiv \{0, 0\}$ obviously solves the Navier-Stokes equations with homogeneous Dirichlet boundary conditions, and therefore those $f$ for which (2.1c) possibly would not hold, i.e. $\| f \|_{L^2(\Omega; \mathbb{R}^2)} \geq \nu^2 / (N_2 N_1^4)$, cannot occur as minimizers. Then (2.8) turns simply into $w^* = f^*$ and $\mathcal{F}_{LQ}$ obviously admit a term $(u \cdot \nabla \bar{u}) \cdot \bar{w}$ instead of $(u \cdot \nabla \bar{u}) \cdot \bar{w}$ with obviously equivalent effects. This approach has been used in [17].

3 The SQP-type algorithm with a discretization

In numerical solution on computers, we need a further discretization of ($\mathcal{F}_{LQ}$). In this section, we use an abstract discretization of $W^2_0, \text{div}(\Omega; \mathbb{R}^n)$ and $\mathcal{F}_{ad}$ by some finite-dimensional
linear subspaces $V_h$ and $F_{ad,h}$, respectively. Here, $h > 0$ is an abstract discretization parameter, $V_{h1} \subset V_{h2} \subset W^{1,2}_{0, \text{DIV}}(\Omega; \mathbb{R}^n)$ and $F_{ad,h1} \subset F_{ad,h2} \subset F_{ad}$ for $h_1 \geq h_2 > 0$. Then, instead of $(\mathcal{P}_{LQ})$, we are to solve

$$(\mathcal{P}_{LQ,h})$$

$$\begin{align*}
\text{Minimize} & \quad \int_{\Omega} \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot } u|^2 + \frac{1}{2} |f|^2 - (u \cdot \nabla u) \cdot \tilde{w} \, dx \\
\text{subject to} & \quad (\tilde{u} \cdot \nabla)u - \nu \Delta u + \nabla p = f, \quad \text{div } u = 0,
\end{align*}$$

$$u \in V_h, \quad f \in F_{ad,h}, \quad p \in L^2_0(\Omega),$$

which determines the mapping $M_h : V_h^2 \rightarrow V_h^2 : (\tilde{u}, \tilde{w}) \mapsto (u, w)$ if the state equation in $(\mathcal{P}_{LQ,h})$ is assumed in the weak sense, i.e. (2.15) for all $v \in V_h$. Then the state equation (2.16) is a mapping $V_h \times F_{ad,h} \rightarrow V_h^*$ so that the adjoint state $w$ indeed belongs to $V_h^* \cong V_h$.

The corresponding discretization of the original problem $(\mathcal{P})$ results in the problem

$$(\mathcal{P}_h)$$

$$\begin{align*}
\text{Minimize} & \quad \int_{\Omega} \frac{\alpha}{2} |u - u_d|^2 + \frac{\beta}{2} |\text{rot } u|^2 + \frac{1}{2} |f|^2 \, dx \\
\text{subject to} & \quad (u \cdot \nabla)u - \nu \Delta u + \nabla p = f, \quad \text{div } u = 0,
\end{align*}$$

$$u \in V_h, \quad f \in F_{ad,h}, \quad p \in L^2_0(\Omega),$$

We naturally call $\{u^*, f^*\} \in V_h \times F_{ad,h}$ a critical point for $(\mathcal{P}_h)$ if (2.3) and (2.6) with some $w \in V_h$ hold for all $v \in V_h$, and if $(f^* - w, f - f^*) \geq 0$ for any $f \in F_{ad,h}$. A critical point just satisfies 1st-order optimality conditions for $(\mathcal{P}_h)$.

**Proposition 3.1** Let the assumptions of Proposition 2.4 hold. Then $M_h$ is contractive on $D \cap V_h^2$, and the fixed point $\{u_h, w_h\} \in V_h^2$ with the corresponding control $f_h \in F_{ad,h}$ form a critical point $\{u_h, f_h\}$ for $(\mathcal{P}_h)$.

**Proof.** It just modifies the proof of Propositions 2.3 and 2.4 by restriction on the finite-dimensional subspace in question. \hfill \Box

**Proposition 3.2** Let us assume, in addition to the assumption of Proposition 2.4, that $\bigcup_{h>0} V_h$ is dense in $W^{1,2}_{0, \text{DIV}}(\Omega; \mathbb{R}^n)$ in the weak-$W^{1,2}$-topology and $\bigcup_{h>0} F_{ad,h}$ is dense in $F_{ad}$ in the weak-$L^2$-topology, and $n \leq 3$. Then the sequence $\{u_h, w_h, f_h\}_{h>0}$ obtained in Proposition 3.1 is bounded in $W^{1,2}_{0, \text{DIV}}(\Omega; \mathbb{R}^n)^2 \times L^2(\Omega; \mathbb{R}^n)$, and hence it contains a weakly convergent subsequence with a limit, say $(u^*, w^*, f^*)$, for $h \searrow 0$. Moreover, any $\{u^*, f^*\}$ thus obtained is a critical point for $(\mathcal{P})$.

**Proof.** The boundedness of the sequence $\{u_h, w_h, f_h\}_{h>0}$ follows simply from the boundedness of $D$ and of $F_{ad}$. Let us consider a subsequence, denoted by the same indices for simplicity, such that

$$\begin{align*}
&u_h \rightarrow u^* \quad \text{weakly in } W^{1,2}_{0, \text{DIV}}(\Omega; \mathbb{R}^n), \\
&w_h \rightarrow w^* \quad \text{weakly in } W^{1,2}_{0, \text{DIV}}(\Omega; \mathbb{R}^n), \\
&f_h \rightarrow f^* \quad \text{weakly in } L^2(\Omega; \mathbb{R}^n).
\end{align*}$$

By Rellich-Kondrachov’s theorem, $u_h \rightarrow u^*$ and $w_h \rightarrow w^*$ strongly in $L^4(\Omega; \mathbb{R}^n)$ if $n \leq 3$. 

Then we can pass to the limit in the optimality conditions for \((\mathcal{P}_h)\), i.e.

\[
((\mathbf{u}_h \cdot \nabla)\mathbf{u}_h, v) + \nu(\nabla \mathbf{u}_h : \nabla v) = (f_h, v) \quad \forall v \in V_{h,0}, \\
\nu(\nabla w_h : \nabla v) - ((\mathbf{u}_h \cdot \nabla)\mathbf{u}_h, v) + ((v \cdot \nabla)\mathbf{u}_h, w_h) = \alpha(u_d - \mathbf{u}_h, v) - \beta(\text{rot} \mathbf{u}_h, \text{rot} v) \quad \forall v \in V_{h,0}, \\
(f_h - w_h, f - f_h) \geq 0 \quad \forall f \in \mathcal{F}_{ad,h_0}.
\]

(3.2a, 3.2b, 3.2c)

In fact, (3.2) holds for \(h \geq h_0\). First, we fix \(h_0\) and let \(h \to 0\). Then all the terms in (3.2a,b) allow for the limit passage. The passage in (3.2c) is only by weak-lower-semicontinuity of the functional \(f \mapsto \|f\|^2_{L^2(\Omega;\mathbb{R}^n)}\):

\[
0 \leq \limsup_{h \to 0} (f_h - w_h, f - f_h) = \lim_{h \to 0} (f_h - w_h, f) - \lim_{h \to 0} (w_h, f_h) - \liminf_{h \to 0} \|f_h\|^2_{L^2(\Omega;\mathbb{R}^n)} \\
\leq (f^* - w^*, f) - (w^*, f) - \|f^*\|^2_{L^2(\Omega;\mathbb{R}^n)} = (f^* - w^*, f - f^*).
\]

(3.3)

In this way, we obtain

\[
((u^* \cdot \nabla)u^*, v_{h_0}) + \nu(\nabla u^* : \nabla v_{h_0}) = (f^*, v_{h_0}) \quad \forall v_{h_0} \in V_{h_0}, \\
\nu(\nabla w^* : \nabla v_{h_0}) - ((u^* \cdot \nabla)u^*, v_{h_0}) + ((v_{h_0} \cdot \nabla)u^*, w^*) = \alpha(u_d - u^*, v_{h_0}) - \beta(\text{rot} u^*, \text{rot} v_{h_0}) \quad \forall v_{h_0} \in V_{h_0}, \\
(f^* - w^*, f_{h_0} - f^*) \geq 0 \quad \forall f_{h_0} \in \mathcal{F}_{ad,h_0}.
\]

(3.4a, 3.4b, 3.4c)

Eventually, for any \(f \in \mathcal{F}_{ad}\) we take a sequence \(f_{h_0} \to f\) weakly in \(L^2(\Omega;\mathbb{R}^n)\) with \(f_{h_0} \in \mathcal{F}_{ad,h_0}\), and for any \(v \in W^{1,2}_{0,\text{DIV}}(\Omega;\mathbb{R}^n)\) we take a sequence \(v_{h_0} \to v\) weakly in \(W^{1,2}(\Omega;\mathbb{R}^n)\) with \(v_{h_0} \in V_{h_0}\). Then we pass to the limit in (3.4) for \(h_0 \to 0\).

\[\square\]

**Remark 3.3** It is well known that the strong convergence for \(h \to 0\) of the finite-element Oseen scheme would require a regularity of the solution, which would then require additional qualification of the domain \(\Omega\). In view of this, it seems that the weak mode of convergence (3.1) is optimal for FEM on general domains.

**Remark 3.4** There are still interesting questions. E.g., can every cluster point obtained in Proposition 3.2 be identified with the fixed point obtained in Proposition 2.4? Can one make a limit passage directly in \((\mathcal{P}_{LQ,h})\), i.e. make Banach fixed-point iterations simultaneously with refining the discretization?

## 4 Computational tests

We have carried out some simple computational tests of the algorithm analyzed theoretically in the preceding sections. These computations show the feasibility of this approach at least in specially qualified cases, cf. Propositions 2.4, essentially in the cases of small Reynolds’s numbers.

All computations were made only in two dimensions, \(n = 2\). For the sake of simplicity, we considered no control constraints, i.e. \(\mathcal{F}_{ad} = L^2(\Omega;\mathbb{R}^2)\), cf. remark 2.7. As the assumption \(\mathcal{F}_{ad} = L^2(\Omega;\mathbb{R}^2)\) implies that (2.8) as well as (2.17) reduces to \(w^* = f^*\), it is sufficient to solve only the linear system containing the optimality conditions (2.15) and (2.16) with
and chosen conforming biquadratic $Q_2$-elements to approximate the space $W^{1,2}_{0\text{DIV}}(\Omega; \mathbb{R}^2)$ and discontinuous affine $P_1$-elements for $L^2(\Omega; \mathbb{R}^2)$. This pair is known to be stable for the problems with incompressibility constraint. This approach, however, does not allow for a direct usage of Proposition 3.1 to prove the contractiveness of the mapping $\{u_h, f_h\} \mapsto \{u_h, f_h\}$ but we rely on that the difference between discretization of (4.1) by $Q_2/P_1$-elements or by conformal elements assumed in Section 3 is not essential if $h > 0$ is small.

As a numerical example, we have considered a square domain $\Omega := [-1, 1] \times [-1, 1]$. The desired velocity profile $u_d$ is formed by two vortices whose midpoints are $s := [\frac{1}{2}, \frac{1}{2}]$ and $-s$, see Figure 4 below. To be more specific, we have taken

$$u_d(x) = \begin{cases} 
\left(\frac{1}{2} - |x-s|\right)\left(x_2 - \frac{1}{2}, -x_1 + \frac{1}{2}\right) & \text{if } |x-s| \leq \frac{1}{2}, \\
\left(\frac{1}{2} + |x+s|\right)\left(x_2 + \frac{1}{2}, -x_1 - \frac{1}{2}\right) & \text{if } |x+s| \leq \frac{1}{2}, \\
0 & \text{otherwise.}
\end{cases}$$

(4.2)

The distributions of the critical velocity $u_h$ (=the response) and the corresponding distributed force $f_h$ (=the control) for several values of viscosity $\nu$ and parameter $\alpha$ are shown on Figures 1,2, and 3. The magnitudes ($L^\infty$-norms) of depicted vector fields are provided as an information on the scales of the arrows. Note that for increasing values of $\alpha$ the response $u$ becomes more and more similar to the desired velocity profile $u_d$. The Table 1 shows the decrease of the cost functional $J$ after performing the optimization algorithm for various combinations of viscosity $\nu$ and parameter $\alpha$ while $\beta = 0$.

A reasonable choice of the stopping criterion is the requirement that the difference of the last two iterations should be small. We have used the criterion $\|\bar{u}_h - u_h\|_{L^2(\Omega; \mathbb{R}^2)} + \|f_h - f_h\|_{L^2(\Omega; \mathbb{R}^2)} < 10^{-8}$. As an initial guess, we have always chosen zero vector for all variables. All computations were performed on the same mesh containing 256 elements. Each one took about three minutes on 64-bit Alpha processor EV5, 700MHz.
Figure 1: $\nu = 0.1$, $\alpha = 0.1$, $\beta = 0$. Left: velocity $u_h$ (the scale $\|u_h\|_{L^\infty(\Omega,R^2)} = 0.0033$), Right: force $f_h$ (the scale $\|f_h\|_{L^\infty(\Omega,R^2)} = 0.0134$).

Figure 2: $\nu = 0.03$, $\alpha = 100$, $\beta = 0$. Left: velocity $u_h$ (the scale $\|u_h\|_{L^\infty(\Omega,R^2)} = 0.0619$), Right: force $f_h$ (the scale $\|f_h\|_{L^\infty(\Omega,R^2)} = 0.106$).
The Reynold’s numbers of the critical flow in all presented cases was rather small as the viscosity \( \nu \) was relatively big and \( \alpha, \beta \), and \( \|u_d\|_{L^2(\Omega;\mathbb{R}^n)} \) were small. In this case, the algorithm converges after a few iterations. Conversely, the algorithm fails if the Reynold’s number is big, say bigger than 6. This case would require adding additional stabilization terms into the discretization of the system (4.1).

**Remark 4.1** In spite of the fact that the algorithm studied in this article is required to converge only linearly in contrast to the standard SQP method which provides locally quadratic convergence, our numerical experiments suggest that in case of small Reynold’s numbers the rate of convergence for both methods is approximately the same. On the other hand, the steepest-descent method requires much more time to decrease the cost functional comparably with the other methods. However, the steepest descent method requires about four times less amount of memory (on the same mesh) for the storage of the stiffness matrix, because it solves the Navier-Stokes equations and the adjoint equation separately, cf. [25] for instance.

### References

Figure 4: The desired velocity profile $u_d$.


[26] M. Hinze and K. Kunisch, Second order methods for boundary control of the insta-

[27] S.S.Sritharan, Deterministic and stochastic control of Navier-Stokes equation with

381.

[29] M. Hintermüller and M. Hinze, Globalization of SQP-methods in control of the in-
725–746.

plied to Control of the Instationary Navier-Stokes System Subject to Control Con-
straints, Report TR03-11, Dept. Comp. Appl. Math., Rice University (2003), submit-
ted.


[33] T.Weier and G.Gerbeth, Control of separated flows by time periodic Lorentz forces.

[34] E.Casas and F.Tröltzsch, Second order necessary and sufficient optimality conditions
for optimization problems and applications to control theory, SIAM J. Optimization