Optimal estimates for the Hardy averaging operator

Aleš Nekvinda\(^1\) and Luboš Pick\(^2\)

\(^1\) Faculty of Civil Engineering, Czech technical University, Thákurova 7, 166 29 Praha 6, Czech Republic
\(^2\) Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

Received for example 15 May 2004, revised xxxx , accepted yyyyy
Published online aaaaaa

Key words Hardy averaging operator, optimal source, optimal domain, solid Banach space, variable-exponent Lebesgue space
MSC (2000) Primary: 47G10

Let \(A f(x) := \frac{1}{x} \int_0^x f(t) \, dt \) be the one-dimensional Hardy averaging operator. It is well known that \(A \) is bounded on \(L^p \) whenever \(1 < p \leq \infty \). We improve this result in the following sense: we introduce a pair of new function spaces, the ‘source’ space \(S_p \), which is strictly larger than \(L^p \), and the ‘target’ space \(T_p \), which is strictly smaller than \(L^p \), and prove that \(A \) is bounded from \(S_p \) into \(T_p \). Moreover, we show that this result cannot be improved within the environment of Banach lattices. We present applications of this result to variable-exponent Lebesgue spaces \(L^{p(x)} \).

\[\text{Corresponding author: e-mail: pick@karlin.mff.cuni.cz, Phone: +00420 221 913 264, Fax: +00420 222 323 390} \]

1 Introduction

Let \(f \in L^1_{\text{loc}}(0, 1) \). We consider the **Hardy averaging operator** \(A \), defined by

\[Af(x) = \frac{1}{x} \int_0^x f(t) \, dt, \quad x \in (0, 1), \]

and the **Hardy–Littlewood maximal operator** \(M \), defined by

\[Mf(x) = \sup_{a < x < b} \frac{1}{b-a} \int_a^b |f(t)| \, dt, \quad x \in (0, 1). \]

We note that we can extend a function which is defined on \((0, 1)\) by zero outside \((0, 1)\), and obtain thereby \(Af \) and \(Mf \) defined on the entire \(\mathbb{R} \).

It is well known that both the operators \(M \) and \(A \) are bounded on \(L^p \) whenever \(1 < p \leq \infty \). Of course, this result cannot be improved in an essential way within the Lebesgue spaces. However, it turns out that an improvement is possible when we consider other, more general function spaces and classes.

In this paper we focus on the question of how far we can improve this result within the framework of solid Banach spaces. The environment of solid Banach spaces is fairly general as it, for example, covers all the Banach function spaces. Our main general aim can be described as follows: given \(p \in (1, \infty) \), we construct a pair of new function spaces, namely the ‘source’ space \(S_p \) and the ‘target’ space \(T_p \) such that

(i) the Hardy averaging operator \(A \) satisfies

\[A : S_p \to T_p; \]

(ii) this result improves the classical estimate

\[A : L^p \to L^p \]
in the sense that
\[T_p \hookrightarrow L^p \hookrightarrow S_p \]
and both the inclusions are strict;

(iii) this result cannot be improved any further, at least not within the environment of Banach lattices, in the sense that whenever \(Y \) is a Banach lattice strictly larger than \(S_p \), then
\[A : Y \not\hookrightarrow T_p \]
and, likewise, when \(Z \) is a Banach lattice strictly smaller than \(T_p \), then
\[A : S_p \not\hookrightarrow Z. \]

It turns out that the space \(T_p \) is one of the function spaces considered in connection with different matters by K.–G. Grosse–Erdmann [3]. The space \(S_p \) is, as far as we know, new.

We finally consider a closely related question of the action of the averaging operator on the so-called variable-exponent Lebesgue spaces (or \(L^{p(x)} \) spaces), which have recently attracted a lot of attention. Therefore, naturally, we treat analogous questions for the variable-exponent Lebesgue spaces and obtain thereby several results of independent interest. The key ingredient here is a certain logarithmic control of the variation of the generating function \(p(x) \), a notion which we call a \textit{weak-Lipschitz property}, a notion sometimes in recent literature called a \textit{log-Hölder continuity}.

The paper is structured as follows. In Section 2 we collect some background material. In Section 3 we present a key equivalence between two variable-exponent Lebesgue spaces whose generating functions are ‘close’ in a certain sense. In Section 4 we introduce the spaces \(S_p \) and \(T_p \). In Section 5 we present the first main result of this paper, namely, we show that \(A \) is bounded from \(L^{p(x)} \) into \(T_p \). A comparison of the new spaces to the classical ones is carried out in Section 6. The results obtained so far are then used in Section 7 to obtain sharp estimates for the action of \(A \), and their optimality is proved in Section 8.

2 Preliminaries

We denote by \(\mathcal{B} \) the set of all measurable functions \(p(\cdot) \) defined on \((0, 1) \) such that \(1 \leq \text{ess inf } p(x) \leq \text{ess sup } p(x) < \infty \) and by \(\mathcal{B}_1 \) the set of all functions \(p(\cdot) \) defined on \((0, 1) \) such that \(1 < \text{ess inf } p(x) \leq \text{ess sup } p(x) < \infty \). By \(\mathcal{M}(0, 1) \) we define the set of all Lebesgue-measurable functions on \((0, 1) \).

Definition 2.1 Given a function \(p(\cdot) \in \mathcal{B} \) we define the functional
\[m_{p(\cdot)}(f) = \int_0^1 |f(x)|^{p(x)} \, dx, \quad f \in \mathcal{M}(0, 1), \]
the corresponding \textit{Luxemburg norm}
\[\|f\|_{L^{p(\cdot)}} = \inf \{ \lambda > 0; \ m_{p(\cdot)} \left(\frac{f(x)}{\lambda} \right) \leq 1 \}, \quad f \in \mathcal{M}(0, 1), \]
and the corresponding function space
\[L^{p(\cdot)} = \{ f \in \mathcal{M}(0, 1); \|f\|_{L^{p(\cdot)}} < \infty \}. \]

Remark 2.2 Under our assumptions on \(p(\cdot) \), \(m_{p(\cdot)} \) is a \textit{convex modular} (see for example [8] for details), and \(L^{p(\cdot)} \) is a Banach space under the Luxemburg norm. We will make use of the following simple but useful property of modulars ([7, Lemma 1.2]): whenever \(h \) is a positive function on \([0, \infty) \) which is bounded in some right neighborhood of zero, \(T \) is a linear operator, \(m_1, m_2 \) are two convex modulars on \(\mathcal{M}(0, 1) \) and \(\| \cdot \|_1, \| \cdot \|_2 \) are the corresponding Luxemburg norms, then the modular inequality
\[m_2(Tf) \leq h(m_1(f)), \quad f \in \mathcal{M}(0, 1), \]
implies its norm counterpart,
\[\|Tf\|_2 \leq C\|f\|_1, \quad f \in \mathcal{M}(0, 1). \]
The following known result can be found for example in [6].

Theorem 2.3 Let \(p(\cdot), q(\cdot) \in \mathcal{B}, \) \(p(x) \geq q(x) \) almost everywhere in \(x \in (0, 1) \). Then

\[
L^p(0, 1) \hookrightarrow L^q(0, 1).
\]

We shall now introduce a key notion of the weak-Lipschitz property.

Definition 2.4 Let \(p(\cdot) : [0, 1] \to \mathbb{R} \). We say that \(p(\cdot) \) is weak-Lipschitz if there is a \(C > 0 \) such that

\[
|p(x) - p(y)| \leq \frac{C}{\ln |x - y|} \quad (2.1)
\]

for all \(x, y \in [0, 1], \) \(0 < |x - y| \leq 1 \).

Moreover, given a \(p \in (1, \infty) \), we say that \(p(\cdot) \) is weak-Lipschitz at zero with respect to \(p \) if there exists a \(\delta \in (0, 1) \) such that

\[
|p(x) - p| \leq \frac{C}{\ln \frac{e}{x}} \quad (2.2)
\]

for all \(x \in (0, \delta) \).

Note that a perhaps more natural definition should contain the term \(\ln \frac{e}{|x - y|} \) in the denominator at the right hand side. But, in the proof of Lemma 5.3 we use the fact that a function \(x \mapsto \ln \frac{x^2}{|x - y|} \) is concave on the whole interval \((0, 1)\) and a function \(x \mapsto \ln \frac{e}{x^2} \) is concave on a neighbourhood of zero. This is not an essential fact, but it simplifies the proof.

Remark 2.5 We emphasize that, in the preceding definition, the function \(p(\cdot) \) can attain negative values. However, if \(p(\cdot) \) is weak-Lipschitz at zero with respect to some \(p \in (1, \infty) \) and, at the same time, \(p(\cdot) \in \mathcal{B} \), then we can take \(\delta = 1 \) in (2.2). Indeed, this is a simple consequence of the fact that \(p \) is bounded on \((0, 1)\) and that \(\ln \frac{e}{x} \) is bounded away from zero on \((\delta, 1)\) for every \(\delta > 0 \).

It has been known that the condition (2.1) plays a crucial role for the action of integral operators on \(L^p(\cdot) \). In particular, Diening (see [1]) showed that, when \(p(\cdot) \in \mathcal{B} \), is weak-Lipschitz, then

\[
M : L^p(\cdot) \to L^p(\cdot).
\]

3 A key lemma

Lemma 3.1 Let \(p(x), q(x) \in \mathcal{B} \). Assume that there are \(0 < \delta < 1 \) and \(C > 0 \) such that for all \(x \in (0, \delta) \)

\[
|p(x) - q(x)| \leq \frac{C}{\ln \frac{e}{x}}. \quad (3.1)
\]

Let \(f \) be a nonnegative and nonincreasing function on \((0, 1)\). Then

\[
\int_0^1 f(x)^{p(x)} dx < \infty \quad \text{if and only if} \quad \int_0^1 f(x)^{q(x)} dx < \infty.
\]

Moreover, there is a \(A > 1 \) such that

\[
A^{-1} \|f\|_{q(\cdot)} \leq \|f\|_{p(\cdot)} \leq A \|f\|_{q(\cdot)}.
\]

Proof. By symmetry, it suffices to prove just the ‘only if’ part. To this end, suppose that \(\int_0^1 f(x)^{p(x)} dx < \infty \). Since \(p(x) \geq 1 \) on \((0, 1)\), we have \(L^{p(x)} \hookrightarrow L^1 \) (see e.g. [6]). Thus, \(\int_0^1 f(x) dx < \infty \). Since \(f \) is non-increasing, we have \(xf(x) \leq \int_0^1 f(y) dy =: K \), which gives

\[
f(x) \leq \frac{K}{x}, \quad x \in (0, 1).
\]
Moreover, since both $p(\cdot)$ and $q(\cdot)$ are bounded on $(0, 1)$, (3.1) holds in fact for every $x \in (0, 1)$. We thus have, for $x \in (0, 1)$,
\[f(x) \frac{c^2}{x^2} \leq \left(\frac{K}{c^2} \right)^\frac{c^2}{x^2} \left(\frac{c^2}{x^2} \right)^\frac{c^2}{x^2} \leq \left(\max \left\{ 1, \frac{K}{c^2} \right\} \right)^\frac{c^2}{x^2} e^{c^2} =: L. \]
Then,
\[
\int_0^1 f(x)^{q(x)} dx \\
= \int_{\{x; f(x) \leq 1\}} f(x)^{q(x)} dx + \int_{\{x; f(x) > 1\}} f(x)^{p(x)+q(x)-p(x)} dx \\
\leq 1 + \int_{\{x; f(x) > 1\}} f(x)^{p(x)+q(x)-p(x)} dx \\
= 1 + \int_{\{x; f(x) > 1\}} f(x)^{p(x)} f(x)^{m} dx \\
\leq 1 + L \int_0^1 f(x)^{p(x)} dx.
\]
This shows the modular inequality
\[m_{q(\cdot)}(f) \leq h(m_{p(\cdot)}), \quad \text{where } h(t) = Lt + 1. \]
By Remark 2.2, we get the desired norm inequality.

\section{Spaces S_p and T_p and their elementary properties}

We will now introduce two new function spaces.

\begin{definition}
Let f be a measurable function on $(0, 1)$. We then define for $p > 1$ two functionals
\[\|f\|_{S_p} = \left(\int_0^1 \text{ess sup}_{t \in (x, 1)} \left(\frac{1}{t} \int_0^t |f(s)| ds \right)^p dx \right)^\frac{1}{p}, \]
and
\[\|f\|_{T_p} = \left(\int_0^1 \text{ess sup}_{t \in (x, 1)} |f(t)|^p dx \right)^\frac{1}{p}, \]
and the corresponding spaces
\[S_p = \{ f; \|f\|_{S_p} < \infty \}, \]
and
\[T_p = \{ f; \|f\|_{T_p} < \infty \}. \]
It is a routine matter to verify that S_p and T_p are Banach spaces.

We will now find certain useful equivalent norms on T_p.

\begin{definition}
Let $p(\cdot) \in B$ be given. For a function f, we define the functional
\[m_{T_{p(\cdot)}}(f) = \int_0^1 \text{ess sup}_{t \in (x, 1)} |f(t)|^{p(t)} dx, \]
the norm
\[\|f\|_{T_{p(\cdot)}} = \inf \{ \lambda > 0; m_{T_{p(\cdot)}} \left(\frac{f}{\lambda} \right) \leq 1 \}, \]
and the corresponding space
\[T_{p(\cdot)} = \{ f; \|f\|_{T_{p(\cdot)}} < \infty \}. \]
Then, again, $m_{T_{p(\cdot)}}$ is a convex modular and $T_{p(\cdot)}$ is a Banach space with respect to the norm $\| \cdot \|_{T_{p(\cdot)}}$.

Theorem 4.3 Let $p \in (1, \infty)$ and let $p(\cdot) \in B_+$ be weak-Lipschitz at zero with respect to p. Then the norms in $T_{p}(\cdot)$ and T_p are equivalent.

Proof. This is an immediate consequence of Lemma 3.1. □

5 The boundedness of A from $L^{p(\cdot)}$ into T_p

Our aim in this section is to prove that the average operator A is bounded from $L^{p(\cdot)}$ to T_p whenever $p \in (1, \infty)$ and the function $p(\cdot) \in B_+$ is weak-Lipschitz at zero with respect to p. Our proof of this rather deep result will use three auxiliary lemmas, which we shall formulate and prove first, and also the following well-known Riesz’s rising sun lemma, whose proof can be found for instance in [9].

Lemma 5.1 Assume that $h(\cdot)$ is a continuous function on an interval (a, b). Set
$$U = \{x \in (a, b); \text{ there exists } \xi \in (x, b) \text{ such that } h(\xi) > h(x)\}.$$ Then there is finite or infinite sequence of open pairwise disjoint intervals (a_j, b_j), $j = 1, 2, \ldots, \alpha$, such that
$$U = \bigcup_{j=1}^{\alpha} (a_j, b_j) \quad \text{and} \quad h(a_j) \leq h(b_j) \quad \text{for each} \quad j = 1, 2, \ldots, \alpha.
$$

Lemma 5.2 Let $p(\cdot) \in B_+$ be weak-Lipschitz. Then $A : L^{p(\cdot)} \to T_{p(\cdot)}$.

Proof. Let $0 \leq f \in L^{1}_{loc}([0, 1])$. We consider f extended by zero outside $(0, 1)$. Fix $x \in (0, 1]$ and let $x \leq t \leq 2x$. Then
$$Af(t) = \frac{1}{t} \int_{0}^{t} f(s) ds \geq \frac{1}{2x} \int_{0}^{x} f(s) ds = \frac{1}{2} Af(x).$$ Thus, for $0 < y \leq x$,
$$M(Af)(y) \geq \frac{1}{2x - y} \int_{y}^{2x} Af(t) dt \geq \frac{1}{2x} \int_{x}^{2x} Af(t) dt \geq \frac{1}{4} Af(x).$$
So,
$$Af(x) \leq 4M(Af)(y) \quad \text{for} \quad y \leq x. \quad (5.1)$$
Set $g(x) = \text{ess sup}_{y \in (x, 1)} Af(y)$. Let
$$U = \{t; g(t) > Af(t)\}, \quad t \in (0, 1).$$

The function Af is continuous. Therefore, by Lemma 5.1, there exists a finite or countable sequence of pairwise disjoint intervals of the form $(x_n, x_n + \varepsilon_n)$, where $x_n \in (0, 1)$ and $\varepsilon_n > 0$ such that
$$U = \bigcup_{n=1}^{\infty} (x_n - \varepsilon_n, x_n).$$
Moreover,
$$g_n(x_n - \varepsilon_n) = g(x_n) = Af(x_n - \varepsilon_n) = Af(x_n).$$
It thus follows from the monotonicity of g that $g(x) = Af(x_n)$ for every $x \in (x_n - \varepsilon_n, x_n)$. Hence, by (5.1), for such x, $g(x) \leq 4M(Af)(x)$. As $g(x) = Af(x)$ outside U, we get, altogether,
$$g(x) \leq 4M(Af)(x), \quad x \in [0, 1].$$

By the result of Diening, mentioned at the end of Section 2, M is bounded on $L^{p(\cdot)}$ and, since $Af(x) \leq Mf(x)$, so is A. Thus, finally,
$$\|Af\|_{T_{p(\cdot)}} = \|g\|_{p(\cdot)} \leq 4\|M(Af)\|_{p(\cdot)} \leq C\|f\|_{p(\cdot)}.$$ □
Lemma 5.3 Let $C > 0$ and $p \in (1, \infty)$. Then the function $g(x) := p - \frac{C}{\ln x}$ is weak Lipschitz.

Proof. Note first that every increasing concave function g defined on $[0, 1]$ with $g(0) = 0$ satisfies
\[g(x) - g(y) \leq g(x - y) \]
for $0 \leq y \leq x \leq 1$. Now, choose $0 < y < x < 1$. Since the function $x \mapsto \frac{1}{\ln x}$ is an increasing concave function on $[0, 1]$ vanishing at zero, we obtain
\[|q(x) - q(y)| = \left| -\frac{C}{\ln x} + \frac{C}{\ln y} \right| \leq \frac{C}{\ln x - y}, \]
as desired. \hfill \Box

Lemma 5.4 Let $p(\cdot), q(\cdot)$ be weak-Lipschitz with constants C_1 and C_2, respectively. Then the function $h(x) = \max(p(x), q(x))$ is weak-Lipschitz with the constant $\max\{C_1, C_2\}$.

Proof. It is easy to see that $h(\cdot) \in B_+$. Next, for $x \in [0, 1]$, $0 < |x - y| \leq 1$, we have
\[|h(x) - h(y)| \leq \max\{|p(x) - p(y)|; |q(x) - q(y)|\} \leq \max\{C_1; C_2\} \frac{1}{\ln x - y}. \]
\hfill \Box

Now we are in a position to state and prove the main result of this section.

Theorem 5.5 Let $p \in (1, \infty)$ and let $p(\cdot) \in B_+$ be weak-Lipschitz at zero with respect to p. Then
\[A : L^p(\cdot) \to T_p. \]

Proof. By Remark 2.5, we can assume that (2.2) holds with $\delta = 1$. Thus,
\[|p(x) - p| \leq \frac{C}{\ln x}, \quad x \in (0, 1). \]

We now set $d := \text{ess inf} p(x)$ and
\[q(x) := \max \left\{ d, p - \frac{C}{\ln x} \right\}. \tag{5.2} \]
Then $q(x) \leq p(x)$ for almost every $x \in (0, 1)$. Moreover, $q(\cdot) \in B_+$ whence $L^p(\cdot) \hookrightarrow L^q(\cdot)$. Next, by Lemma 5.3 and 5.4, q is weak-Lipschitz. Thus, by Lemma 5.2, $A : L^q(\cdot) \to T_q(\cdot)$. Finally, by Lemma 3.1, $T_{q(p)} \hookrightarrow T_p$. Altogether,
\[\|Af\|_{T_p} \leq C\|Af\|_{T_{q(p)}} \leq C\|f\|_{q(p)} \leq C\|f\|_{p(\cdot)}. \]
\hfill \Box

6 Further functional properties of S_p and T_p

In this section we shall collect some basic functional properties of the function spaces S_p and T_p. We focus on embeddings between these spaces and other familiar function spaces.

We will use without further reference the fact that, given a measurable function f on $(0, 1)$ such that $0 \leq f(x) < \infty$ almost everywhere, then, for almost every $x \in (0, 1)$,
\[f(x) \leq \text{ess sup}_{y \in (x, 1)} f(y). \]
Theorem 6.1 Let $p \in (1, \infty)$ and let $p(\cdot) \in B_+$ be weak Lipschitz at zero with respect to p. Then
\[T_p \hookrightarrow L^{p(\cdot)} . \]

Proof. Let $f \in T_p$. By Theorem 4.3, we have $f \in T_{p(\cdot)}$, i.e.
\[\int_0^1 (\text{ess sup}_{y \in (x, 1)} |f(y)|)^{p(x)} dx < \infty. \]
Then
\[\int_0^1 |f(x)|^{p(x)} dx \leq \int_0^1 (\text{ess sup}_{y \in (x, 1)} |f(y)|)^{p(x)} dx , \]
which finishes the proof.

Theorem 6.2 Let $p \in (1, \infty)$ and let $p(\cdot) \in B_+$ be weak-Lipschitz at zero with respect to p. Then
\[L^{p(\cdot)} \hookrightarrow S_p \hookrightarrow L^1 . \]

Proof. Let us first show that $L^{p(\cdot)} \hookrightarrow S_p$. Let $0 \leq f \in L^{p(\cdot)}$. By Theorem 5.5, we have $Af \in T_p$, i.e.
\[\int_0^1 (\text{ess sup}_{y \in (x, 1)} \frac{1}{y} \int_0^y f(t) dt)^p dx < \infty , \]
whence $f \in S_p$.

Now, we will prove $S_p \hookrightarrow L^1$. We have
\[\|f\|_S^p = \int_0^1 \text{ess sup}_{x \in (1, 1)} \left(\frac{1}{t} \int_0^t |f(s)| ds \right)^p dx \geq \int_0^1 \lim_{t \to 1^-} \left(\frac{1}{t} \int_0^t |f(s)| ds \right)^p dx \]
\[= \int_0^1 \left(\int_0^1 |f(s)| ds \right)^p dx = \left(\int_0^1 |f(s)| ds \right)^p = \|f\|_1^p . \]

Remark 6.3 (i) Let us note that both the embeddings $L^{p(\cdot)} \hookrightarrow S_p$ and $T_p \hookrightarrow L^{p(\cdot)}$ are strict. Indeed, given $p(\cdot)$, take $q(\cdot)$ from (5.2). Lemmas 5.4 and 5.3 imply that $q(\cdot)$ is weak-Lipschitz and, consequently, using that $\lim_{x \to 0^+} q(x) = p$, $q(\cdot)$ is also weak-Lipschitz at zero with respect to p. Set
\[r(x) = \max \left(q(x) - \frac{C}{\ln \frac{x}{\epsilon}}, \text{ess inf}_{x \in (0, 1)} q(x) \right) . \]
Clearly, $r(x) \leq q(x)$ almost everywhere in $(0, 1)$. Moreover, $r(x) < q(x)$ on an interval $(0, \eta)$ for some $\eta > 0$. Hence,
\[L^{p(\cdot)} \hookrightarrow L^{q(\cdot)} \hookrightarrow \hookrightarrow \hookrightarrow S_p . \]
The sharpness of the embedding $T_p \hookrightarrow L^{p(\cdot)}$ can be shown in an analogous manner.

(ii) For every $p \in (1, \infty)$, we have
\[T_p \hookrightarrow S_p , \]
Indeed, by Theorems 6.1 and 6.2 we have
\[T_p \hookrightarrow L^p \hookrightarrow S_p . \]
Clearly, both the embeddings are strict.
7 Boundedness of A

As mentioned above, the operator A is bounded on L^p as long as $p \in (1, \infty]$. We shall now improve this result, at least for $p \in (1, \infty)$ in the sense that we will find a better (larger) source space than L^p, and likewise a better (smaller) range space than L^p that will still render the boundedness of A true.

Theorem 7.1 Let $p \in (1, \infty)$. Then

$$A : S_p \to T_p.$$

Proof. Assume $f \in S_p$. By the definition of the spaces T_p and S_p, we have

$$\|Af\|_{T_p}^p = \int_0^1 \text{ess sup}_{t \in (x,1)} \left(\frac{1}{t} \int_0^t |f(s)| ds \right)^p dx \leq \int_0^1 \text{ess sup}_{t \in (x,1)} \left(\frac{1}{t} \int_0^t |f(s)| ds \right)^p dx = \|f\|_{S_p}^p.$$

\[\square \]

It is worth to mention some consequences of Theorem 7.1. All the assertions of the following corollary follow immediately from Theorems 7.1, 6.1, 6.2 and 6.3.

Corollary 7.2 Let $p \in (1, \infty)$. Then

1. $A : S_p \to S_p,$
2. $A : T_p \to T_p.$

(iii)\[A : L^{p(\cdot)} \to L^{k(\cdot)}. \]

It should be mentioned that the statements of Corollary 7.2 generalize some of the earlier results. Namely, in [5] it was shown that A is bounded on $L^{p(\cdot)}$ when p is weak-Lipschitz at zero and $p(x) \geq 0$. The latter estimate was chipped away in [4]. Finally, in [2], the authors reduce the sufficient condition to the weak-Lipschitz property at zero.

8 Optimality of S_p and T_p

In this section we shall prove that the spaces S_p and T_p that appear in Corollary 7.2 (i) and (ii) are sharp in a fairly general sense. We first need the notion of a solid Banach space of integrable functions.

Definition 8.1 A linear subset X of all Lebesgue measurable functions on $(0,1)$ equipped with the norm $\| \cdot \|_X$ is called a solid Banach space of integrable functions if the following three conditions hold:

1. $(X, \| \cdot \|_X)$ is a Banach space,
2. $X \hookrightarrow L^1$,
3. if $g \in X$ and $|f| \leq |g|$, then $f \in X$.

Theorem 8.2 Let $p \in (1, \infty)$. Let $Z \not\subseteq T_p$ be a solid Banach space of integrable functions. Then

$$A : T_p \not\hookrightarrow Z.$$

Proof. Take $g \in (T_p \setminus Z)$ and set $h(x) = \text{ess sup}_{t \in (x,1)} |g(t)|$. Then h is non-increasing, $h \geq |g|$ and $h \in T_p$. Since Z is a solid Banach space, we have $h \notin Z$. So, $h \in (T_p \setminus Z)$. Since h is non-increasing we have $Ah \geq h$ and so, $Ah \notin Z$. Consequently, $A : T_p \not\hookrightarrow Z$.

Now we turn our attention to the optimality of S_p in Corollary 7.2 (i).

Theorem 8.3 Let $p \in (1, \infty)$. Let Z be a solid Banach space such that $S_p \not\subseteq Z$. Then

$$A : Z \not\hookrightarrow S_p.$$
Proof. Take $0 \leq f \in (Z \setminus S_p)$. Since Z is a Banach lattice, we have $Z \rightarrow L_1$ and so

$$K := \text{ess sup}_{z \in (1/e, 1)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p \leq \left(e \int_0^1 f(s) ds \right)^p < \infty.$$

We estimate

$$\|Af\|_{S_p}^p = \int_0^1 \text{ess sup}_{y \in (x, 1)} \left(\frac{1}{y} \int_0^y Af(t) dt \right)^p dx = \int_0^1 \text{ess sup}_{y \in (x, 1)} \left(\frac{1}{y} \int_0^y f(s) ds \right)^p dx \geq \int_0^1 \text{ess sup}_{y \in (x, 1)} \left(\frac{1}{y} \int_0^y f(s) ds \right)^p dx = e^{-p} \int_0^1 \text{ess sup}_{y \in (x, 1)} \left(\frac{1}{y} \int_0^y f(s) ds \right)^p dx = \frac{1}{y} \int_0^y f(s) ds \right)^p dx = e^{-p} \int_0^1 \text{ess sup}_{z \in (x/e, 1/e)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p dx.$$

Fix $x \in (0, 1)$. Denote $a := \text{ess sup}_{z \in (x/e, 1/e)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p$. Due to the trivial inequality $a \geq \max(a, K) - K$ we have

$$\text{ess sup}_{z \in (x/e, 1/e)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p \geq \max \left(\text{ess sup}_{z \in (x/e, 1/e)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p, \text{ess sup}_{z \in (1/e, 1)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p \right) - K \geq \text{ess sup}_{z \in (1/e, 1)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p - K$$

and so, due to the fact $f \notin S_p$

$$\|Af\|_{S_p}^p \geq e^{-p} \int_0^1 \text{ess sup}_{z \in (x, 1)} \left(\frac{1}{z} \int_0^z f(s) ds \right)^p dx = - e^{-p}K = \infty.$$

This gives $Af \notin S_p$, which finishes the proof. \qed

Remark 8.4 It follows from Theorems 8.2 and 8.3 that the action of the operator $A : S_p \rightarrow T_p$ is optimal in the sense that neither the source space nor the target one can be essentially improved.

Acknowledgements The first author was supported by MSM 6840770010. The research of the second author was supported in part by research project MSM 0021620839 of the Czech Ministry of Education, grants no. 201/05/2033, 201/07/0388 and 201/08/0383 of the Grant Agency of the Czech Republic and by the Nečas Center for Mathematical Modeling project no. LC06052 financed by the Czech Ministry of Education.

We would like to express our thanks to the referees for their very careful reading of our paper and for many very valuable suggestions which led to a considerable improvement of the paper.

References

