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1 Introduction

This is a survey on some recent results concerning scaling and the related singular limits in the models
of complete fluids. We start by introducing the Navier-Stokes-Fourier system in the “entropy” form:

∂t% + divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu), (1.2)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
= σ, σ =

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
(1.3)

The system (1.1 - 1.3) governs the evolution of a compressible, viscous, and heat conducting fluid
described in terms of the mass density % = %(t, x), the absolute temperature ϑ = ϑ(t, x), and the
velocity field u = u(t, x) in the Eulerian reference system, see Gallavotti [22]. Furthermore, the
symbol S = S(ϑ,∇xu) stands for the viscous stress, here given by the standard Newton rheological
law

S(ϑ,∇xu) = µ(ϑ)
(
∇xu +∇t

xu−
2

3
divxuI

)
+ η(ϑ)divxuI, (1.4)

and q(ϑ,∇xϑ) is the heat flux determined by the Fourier law

q = −κ(ϑ)∇xϑ. (1.5)
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Finally, p = p(%, ϑ) is the pressure and s = s(%, ϑ) the specific entropy related to the specific internal
energy e = e(%, ϑ) via Gibbs’ equation

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)
. (1.6)

In addition to (1.6) we impose the thermodynamic stability hypothesis

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0 (1.7)

that will play a crucial role in the analysis (see Callen [9] for the physical background of (1.6), (1.7)).
Equations (1.1 - 1.3) represent our primitive system that is supposed to provide a complete

description of a given fluid in motion. Given the enormous scope of applications of continuum
fluid mechanics, solutions of the Navier-Stokes-Fourier system describe the motion of general gases
and compressible liquids around or without presence of rigid bodies, the atmosphere and oceans
in meteorology, and even the evolution of gaseous stars. Obviously, these phenomena may occur
on very different time and spatial scales, where simplified models may provide equally good if not
better picture of reality. Our goal is to show how these models can be rigorously derived as singular
limits of a scaled version of (1.1 - 1.3), where certain characteristic numbers tend to zero or become
excessively large.

1.1 Scaling and dimensionless equations

The method of scaling is well known and frequently used in engineering. Instead of considering
the physical quantities in their original (typically S.I.) units, we replace a quantity X by X/Xchar,
where Xchar is the characteristic value of X. Applying this procedure to the system (1.1 - 1.3) and
keeping the same symbols for physical quantities and their dimensionless counterparts, we arrive at
the following scaled Navier-Stokes-Fourier system:

[Sr]∂t% + divx(%u) = 0, (1.8)

[Sr]∂t(%u) + divx(%u⊗ u) +
[

1

Ma2

]
∇xp(%, ϑ) =

[
1

Re

]
divxS(ϑ,∇xu), (1.9)

[Sr]∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) +
[

1

Pe

]
divx

(
q

ϑ

)
= σ, σ =

1

ϑ

([
Ma2

Re

]
S : ∇xu−

[
1

Pe

]
q · ∇xϑ

ϑ

)
,

(1.10)
with the characteristic numbers :
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• Strouhal number (Čeněk Strouhal [1850–1922]):

[Sr] =
lengthchar

timecharvelocitychar

;

• Mach number (Ernst Mach [1838–1916]):

[Ma] =
velocitychar√

pressurechar/densitychar

;

• Reynolds number (Osborne Reynolds [1842–1912]):

[Re] =
densitycharvelocitycharlengthchar

viscositychar

;

• Péclet number (Jean Claude Eugène Péclet [1793–1857]):

[Pe] =
pressurecharvelocitycharlengthchar

heat conductivitychartemperaturechar

.

As a matter of fact, specific values of characteristic numbers may correspond to physically different
systems. For instance, high Reynolds number may be associated to low viscosity of the fluid or to
extremely large length scales. We refer to the survey of Klein et al [30] for a thorough discussion of
singular limits and the applications of scaling in numerical analysis.

1.2 Inviscid, incompressible limit

We focus on the situation when

Sr = 1, Ma = ε, Re = ε−a, Pe = ε−b, a, b > 0,

where ε > 0 is a small parameter. Our goal is to identify the limit system for ε → 0, meaning the
inviscid, incompressible limit of the scaled Navier-Stokes-Fourier system:

∂t% + divx(%u) = 0, (1.11)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) = εadivxS(ϑ,∇xu), (1.12)
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∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + εbdivx

(
q

ϑ

)
= σ, σ =

1

ϑ

(
ε2+aS : ∇xu− εbq · ∇xϑ

ϑ

)
, (1.13)

supplemented with the initial conditions:

%(0, ·) = %0,ε = % + ε%
(1)
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ + εϑ

(1)
0,ε, u(0, ·) = u0,ε, (1.14)

where the reference values %, ϑ are positive constants. Note that the initial distribution of the density
and the temperature are prepared anticipating the constant values expected in the asymptotic limit
for ε → 0.

1.3 Limit system

Formally, it is easy to identify the limit system of equations. Indeed the fact that the Mach number
is small indicates incompressibility of the limit fluid flow; whence the limit system reads:

divxv = 0, (1.15)

∂tv + divx(v ⊗ v) +∇xΠ = 0, (1.16)

∂tT + v · ∇xT = 0, (1.17)

which is nothing other than the incompressible Euler system, supplemented with the transport equa-
tion for the temperature deviation T ,

T ≈ lim
ε→0

ϑε − ϑ

ε
.

1.4 Boundary conditions

Real fluid systems are typically confined to a physical space - a domain Ω ⊂ R3. Accordingly, the
boundary behavior of certain quantities must be specified. In order to avoid the so far unsurmountable
problem of the boundary layer in the inviscid limit, see for instance Kato [26], we restrict ourselves
to the Navier slip boundary condition

u · n|∂Ω = 0, εc[S(ϑ,∇xu)n]tan + β(ϑ)u|∂Ω = 0, c, β > 0. (1.18)

In addition, we impose the no-flux condition for the total energy, specifically, in terms of the heat
flux q,

q(ϑ,∇xϑ) · n|∂Ω = −βεd|u|2|∂Ω, d = 2 + a− c− b. (1.19)

Condition (1.19) implies, in particular, that the total energy of the system is a conserved quantity:

d

dt

∫
Ω

(
ε2%|u|2 + %e(%, ϑ)

)
dx = 0. (1.20)
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1.5 Singular limit

Our main goal is to discuss the singular limit process from the scaled Navier-Stokes-Fourier system
(1.11 - 1.14), supplemented with the boundary conditions (1.18), (1.19), to the target Euler system
(1.15 - 1.17) as ε → 0. Our working plan reads as follows:

• In Section 2, we introduce the relative entropy inequality together with the concept of dissipa-
tive solutions to the (primitive) Navier-Stokes-Fourier system.

• We use the relative entropy inequality to derive stability estimates for the solutions of the
scaled system, see Section 3.

• In Section 4, we analyze the asymptotic behavior of acoustic waves and show the relevant
dispersive estimates.

• Section 5 contains final comments and concluding remarks.

2 Weak and dissipative solutions

Solutions of the system (1.11 - 1.13), (1.18), (1.19) satisfy, together with the total energy balance
(1.20), the total entropy production relation in the form

d

dt

∫
Ω

%s(%, ϑ) dx =
∫
Ω

σ dx + ε2+a−c
∫

∂Ω

β

ϑ
|u|2 dSx. (2.1)

Thus, adding (1.20), (2.1) together, we obtain

d

dt

∫
Ω

[
1

2
%|u|2 +

1

ε2

(
%e(%, ϑ)−Θ%s(%, ϑ)

)]
dx +

Θ

ε2

∫
Ω

σ dx + Θεa−c
∫

∂Ω

β

ϑ
|u|2 dSx = 0 (2.2)

for any positive constant Θ. Relation (2.2) is usually termed total dissipation balance. The functional

(%, ϑ,u) 7→
∫
Ω

[
1

2
%|u|2 +

1

ε2

(
%e(%, ϑ)−Θ%s(%, ϑ)

)]
dx

turns out to be a Lyapunov function for the Navier-Stokes-Fourier system.
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2.1 Ballistic free energy

The functional
HΘ(%, ϑ) = %

(
e(%, ϑ)−Θs(%, ϑ)

)
(2.3)

is called ballistic free energy, see Ericksen [15].
It is a routine matter to compute

∂2HΘ(%, Θ)

∂%2
=

1

%

∂p(%, Θ)

∂%
and

∂HΘ(%, θ)

∂ϑ
= %

∂s(%, ϑ)

∂ϑ
(ϑ−Θ).

Using the hypothesis of thermodynamic stability (1.7) we therefore conclude that

% 7→ HΘ(%, Θ) is strictly convex, (2.4)

and
ϑ 7→ HΘ(%, ϑ) is decreasing for ϑ < Θ and increasing for ϑ > Θ for any fixed %. (2.5)

2.2 Relative entropy

Motivated by the discussion in the preceding section, we introduce the relative entropy functional in
the form

E
(
%, ϑ,u

∣∣∣r, Θ,U
)

(2.6)

=
∫
Ω

(
1

2
%|u−U|2 + HΘ(%, ϑ)− ∂HΘ(r, Θ)

∂%
(%− r)−HΘ(r, Θ)

)
dx.

In the light of the coercivity properties (2.4), (2.5), it is easy to check that the relative entropy
represents a kind of distance between the trio (%, ϑ,u) and (r, Θ,U). Going back to the total
dissipation inequality (2.2) we obtain

d

dt
Eε

(
%, ϑ,u

∣∣∣%, ϑ, 0
)

+
ϑ

ε2

∫
Ω

σ dx + ϑεa−c
∫

∂Ω

β

ϑ
|u|2 dSx = 0, (2.7)

where we have set
Eε

(
%, ϑ,u

∣∣∣r, Θ,U
)

(2.8)

=
∫
Ω

[
1

2
%|u−U|2 +

1

ε2

(
HΘ(%, ϑ)− ∂HΘ(r, Θ)

∂%
(%− r)−HΘ(r, Θ)

)]
dx,
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and where %, ϑ are the positive constants appearing in the initial conditions (1.14), chosen in such a
way that, at least formally, ∫

Ω
(%− %) dx = 0 (2.9)

If Ω is a bounded domain, the satisfaction of (2.9) is guaranteed if the perturbation %
(1)
0,ε is taken

of zero integral mean as the total mass of the fluid

M0 =
∫
Ω

%(t, ·) dx

is a constant of motion. In general, the constants %, ϑ will be always chosen in such a way that (2.7)
holds. The trio (%, ϑ, 0) is trivially a solution to the Navier-Stokes-Fourier system (1.1 - 1.3) that is
called a static state. In view of the coercivity properties of the relative entropy established in (2.4),
(2.5), relation (2.8) yields stability of the “static” states with respect to perturbations.

Our next goal is to derive a relation (inequality) similar to (2.7) provided (%, ϑ,u) is a weak
solution of the Navier-Stokes-Fourier system, and (r, Θ,U) is an arbitrary trio of “test functions”
satisfying natural boundary conditions. To this end, a short excursion in the theory of weak solutions
to the Navier-Stokes-Fourier system is needed.

2.3 Weak solutions

Following [19, Chapter 3] we introduce the concept of weak solution to the Navier-Stokes-Fourier
system (1.1 - 1.3), with the boundary conditions (1.18), (1.19), and the initial conditions

%(0, ·) = %0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (2.10)

To simplify presentation, we suppose that Ω ⊂ R3 is a bounded domain with smooth boundary.

2.3.1 Constitutive relations

Besides the existing restrictions imposed on the thermodynamic functions p, e, and s through Gibbs’
equation (1.6) and the thermodynamic stability hypothesis (1.7), we introduce rather technical but
still physically grounded assumptions required by the existence theory developed in [19]. More
specifically, we suppose that the pressure p is given in the form

p(%, ϑ) = ϑ5/2P
(

%

ϑ3/2

)
+

a

3
ϑ4, a > 0, P (0) = 0. (2.11)

Here, the term proportional to ϑ4 is attributed to the radiation pressure, while the specific form

ϑ5/2P
(

%

ϑ3/2

)
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can be derived from the Gibbs’ equation (1.6) as the universal formula for the monoatomic gas
satisfying

p(%, ϑ) =
2

3
%e(%, ϑ),

see [19, Chapter 1].
Accordingly, we take

e(%, ϑ) =
3

2
ϑ

(
ϑ3/2

%

)
P
(

%

ϑ3/2

)
+

a

%
ϑ4, (2.12)

and

s(%, ϑ) = S
(

%

ϑ3/2

)
+

4a

3

ϑ3

%
, (2.13)

where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2

The thermodynamic stability hypothesis (1.7) stated in terms of the structural properties of the
function P gives rise to:

P ′(Z) > 0, 0 <
5
3
P (Z)− P ′(Z)Z

Z2
< c for all Z > 0. (2.14)

In particular, the function Z 7→ P (Z)/Z5/3 is non-increasing, and we take

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (2.15)

Finally, the Third law of thermodynamics is imposed through

lim
Z→∞

S(Z) = 0. (2.16)

As for the transport coefficients µ, λ, β and κ, we shall assume that they are continuously
differentiable functions of the absolute temperature ϑ ∈ [0,∞) satisfying:

µ ∈ C1[0,∞) is globally Lipschitz continuous, 0 < µ(1 + ϑ) ≤ µ(ϑ), (2.17)

0 ≤ η(ϑ) ≤ η(1 + ϑ), (2.18)

and
β(1 + ϑ) ≤ β(ϑ) ≤ β(1 + ϑ), κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3). (2.19)
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2.3.2 Variational formulation

We introduce a weak (variational) formulation of the Navier-Stokes-Fourier system, taking into ac-
count the boundary conditions (1.18), (1.19), together with the initial conditions (2.10), see [19,
Chapter 3].

We say that a trio (%, ϑ,u) is a weak solution of the (unscaled) Navier-Stokes-Fourier system (1.1
- 1.3) if

% ≥ 0, % ∈ Cweak([0, T ]; L5/3(Ω)) ∩ Lq((0, T )× Ω) for a certain q >
5

3
, (2.20)

ϑ > 0 a.a. in (0, T )×Ω, ϑ ∈ L∞(0, T ; L4(Ω))∩L2(0, T ; W 1,2(Ω)), log(ϑ) ∈ L2(0, T ; W 1,2(Ω)), (2.21)

u ∈ L2(0, T ; W 1,2(Ω; R3)), u · n|∂Ω = 0, %u ∈ Cweak([0, T ]; L5/4(Ω)), (2.22)

and the following integral identities are satisfied:[∫
Ω

%ϕ(t, ·) dx
]τ
t=0

=
∫ τ

0

∫
Ω

(%∂tϕ + %u · ∇xϕ) dx dt (2.23)

for any τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω);[∫

Ω
%u · ϕ(t, ·) dx

]τ
t=0

=
∫ τ

0

∫
Ω

(%u · ∂tϕ + (%u× u) : ∇xϕ + p(%, ϑ)divxϕ− S : ∇xϕ) dx dt (2.24)

−
∫ τ

0

∫
∂Ω

βu · ϕ dSx

for any τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω; R3), ϕ · n|∂Ω = 0;[∫

Ω
%s(%, ϑ)ϕ(t, ·) dx

]τ
t=0

≥
∫ τ

0

∫
Ω

(
%s(%, ϑ)∂tϕ + %s(%, ϑ)u · ∇xϕ +

q

ϑ
· ∇xϕ− S

)
dx dt (2.25)

+
∫ τ

0

∫
Ω

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
ϕ dx dt +

∫ τ

0

∫
∂Ω

β|u|2ϕ dSx dt

for a.a. τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω), ϕ ≥ 0.

Since the weak formulation is stated for the unscaled system, we have taken ε = 1 in the boundary
conditions (1.18), (1.19). Note that the initial conditions are “hidden” in the quantities on the left-
hand side of the above integral formulas.

While the integral identities (2.23), (2.24) represent the standard weak formulation of the equa-
tions (1.1), (1.2), the reader will have noticed that the entropy balance (1.3) has been replaced by
inequality (2.25) corresponding to the entropy production rate

σ ≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
.
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In order to compensate for this obvious lack of information, the variational formulation will be
augmented, similarly to [19, Chapter 3], by the total energy balance[∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx
]τ
t=0

= 0 for a.a. τ ∈ [0, T ]. (2.26)

It can be shown that any weak solution that is sufficiently smooth solves the system of equations
(1.1 - 1.3), see [19, Chapter 2]. The resulting concept of weak solution is mathematically tractable.
In particular, we report the following global-in-time existence result in the class of weak solutions,
see [19, Theorems 3.1,3.2].

Theorem 2.1 Let Ω ⊂ R3 be a bounded domain of class C2+ν. Suppose that the thermodynamic
functions p, e, s, and the transport coefficients µ, η, β, κ comply with the structural restrictions
introduced in Section 2.3.1. Finally, let the initial data be taken such that

%0 > 0, ϑ0 > 0 a.a. in Ω, E0 =
∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)

)
dx < ∞.

Then the Navier-Stokes-Fourier possesses a weak solution in (0, T )×Ω for any T > 0 in the sense
specified through (2.20 - 2.26).

Possible generalizations with respect to the structural properties of p, e, and s as well as relaxation
of the growth conditions (2.17), (2.18) are discussed at length in [19, Chapter 3]. We also remark
that the initial density %0 may be taken only non-negative in Ω, however, such a generalization seems
to be at odds with the standard derivation of the Navier-Stokes system as a model of non-dilute
fluids.

An alternative approach in the framework of weak solutions to the Navier-Stokes-Fourier system
was proposed by Bresch and Desjardins [5], [6]. They assume that the viscosity coefficients dependent
on the density % in a special way and derive a priori bounds on the density gradient in certain function
spaces.

2.4 Dissipative solutions

The dissipative solutions of the Navier-Stokes-Fourier system will be characterized by relative entropy
inequality we are going to derive. After a bit tedious but absolutely routine manipulation we obtain[

E
(
%, ϑ,u

∣∣∣r, Θ,U
)]τ

t=0
(2.27)

+
∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx dt +

∫ τ

0

∫
∂Ω

Θβ

ϑ
|u|2 dSx dt
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≤
∫ τ

0

∫
Ω

(
%
(
∂tU + u · ∇xU

)
· (U− u) + S(ϑ,∇xu) : ∇xU

)
dx dt +

∫ τ

0

∫
∂Ω

βu ·U dSx dt

+
∫ τ

0

∫
Ω

[(
p(r, Θ)− p(%, ϑ)

)
divU +

%

r
(U− u) · ∇xp(r, Θ)

]
dxdt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r, Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r, Θ)

)
u · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx dt

+
∫ τ

0

∫
Ω

r − %

r

(
∂tp(r, Θ) + U · ∇xp(r, Θ)

)
dx dt

for any (smooth) solution (%, ϑ,u) of the Navier-Stokes-Fourier system and any trio of smooth “test”
functions (r, Θ,U) satisfying

r > 0, Θ > 0,U · n|∂Ω = 0, (2.28)

see [18].
Relation (2.27) is called relative entropy inequality. Our next observation is that it can be extended

to the class of weak solutions. Indeed we may write

E
(
%, ϑ,u

∣∣∣r, Θ,U
)

=
6∑

i=1

Ii,

where

I1 =
∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx,

I2 = −
∫
Ω

%u ·U dx, I3 =
∫
Ω

1

2
%|U|2 dx,

I4 = −
∫
Ω

%s(%, ϑ)Θ dx, I5 = −
∫
Ω

∂HΘ(r, Θ)

∂%
% dx,

and

I6 =
∫
Ω

(
∂HΘ(r, Θ)

∂%
r −H(r, Θ)

)
dx.

Since the functions (r, Θ,U) are smooth and U satisfies the relevant boundary conditions, all quan-
tities [Ii]

τ
t=0 can be expressed by means of the weak formulation (2.23 - 2.26), cf. [18] for details.

Motivated by a similar definition introduced by DiPerna and Lions [33] in the context of inviscid
fluids, we say that (%, ϑ,u) is a dissipative solution to the Navier-Stokes-Fourier system if the relative
entropy inequality (2.27) holds for all smooth test functions satisfying (2.28).

As we have just observed, the weak solutions of the Navier-Stokes-Fourier system in a bounded
regular domain Ω are dissipative solutions. The relative entropy inequality is a powerful tool that
has been successfully applied to the following topics:
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• the unconditional stability of the static states and attractors for the full Navier-Stokes-Fourier
system, see [21];

• the problem of weak-strong uniqueness, see [18];

• the singular limits for low Mach and high Reynolds and Péclet numbers, see [17].

Here, we focus on the last issue discussing the limit ε → 0 in the scaled system.

2.4.1 Possible extensions

The concept of dissipative solution can be easily extended to problems on general unbounded domains.
In such a situation, the constants %, ϑ are taken to characterize the far field behavior, specifically,

% → %, ϑ → ϑ as |x| → ∞. (2.29)

Moreover, we shall always assume that the velocity vanishes for large x,

u → 0 as |x| → ∞. (2.30)

Now, the relative entropy inequality remains formally the same as (2.27), where, in addition to
(2.28), the test functions r, Θ, U admit suitable “far field” behavior. We may assume that

r − %, ϑ− ϑ, U ∈ C∞
c ([0, T ]× Ω), (2.31)

or that they decay rapidly to their asymptotic limits depending on the integrability of the weak
solutions.

As the relative entropy inequality contains a complete piece of information we need to perform
the singular limit we are interested in, we focus in the future only on dissipative solutions. Note that
the global-in-time existence of dissipative solutions occupying a general unbounded physical space
can be easily shown via the method of invading domains, where we construct weak (dissipative)
solutions on a family of bounded domains

ΩR = Ω ∩ {|x| < R}

and let R →∞, see Jesslé, Jin, and Novotný [23].
Since in the future we will deal exclusively with the scaled system (1.11 - 1.13), we start by

reformulating (2.27) in the ε−framework:[
Eε

(
%, ϑ,u

∣∣∣r, Θ,U
)]τ

t=0
(2.32)
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+
∫ τ

0

∫
Ω

Θ

ϑ

(
εaS(ϑ,∇xu) : ∇xu− εb−2q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx dt + εa−c

∫ τ

0

∫
∂Ω

Θβ

ϑ
|u|2 dSx dt

≤
∫ τ

0

∫
Ω

(
%
(
∂tU + u · ∇xU

)
· (U− u) + εaS(ϑ,∇xu) : ∇xU

)
dx dt + εa−c

∫ τ

0

∫
∂Ω

βu ·U dSx dt

+
1

ε2

∫ τ

0

∫
Ω

[(
p(r, Θ)− p(%, ϑ)

)
divU +

%

r
(U− u) · ∇xp(r, Θ)

]
dxdt

− 1

ε2

∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r, Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r, Θ)

)
u · ∇xΘ + εbq(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx dt

+
1

ε2

∫ τ

0

∫
Ω

r − %

r

(
∂tp(r, Θ) + U · ∇xp(r, Θ)

)
dx dt

for all test functions

r > 0, Θ > 0, U · n|∂Ω = 0, %− r, ϑ−Θ ∈ C∞
c ([0, T ]× Ω), U ∈ C∞

c ([0, T ]× Ω; R3). (2.33)

As we shall see in the next section, the integrability properties of the dissipative solutions on
unbounded domains are slightly different from those on bounded ones. As a matter of fact, they
follow directly from (2.32).

3 Uniform bounds, stability

Anticipating the existence of global-in-time dissipative solutions (%ε, ϑε,uε) satisfying the relative
entropy inequality (2.32), we derive uniform bounds independent of ε → 0. To this end, it is
convenient to introduce the following notation:

h = hess + hres, hess = Ψ(%ε, ϑε)h, hres = h− hess,

Ψ ∈ C∞
c (0,∞)2, 0 ≤ Ψ ≤ 1, Ψ = 1 on an open neighborhood of the point (%, ϑ)

for any measurable function h. The idea behind this notation is the it is the essential component
hess that bears all the relevant information while the residual part hres disappears in the asymptotic
limit, see [19, Chapter 4] for details.

3.1 Coercivity of the relative entropy and uniform bounds

Let K ⊂ K ⊂ (0,∞)2 be an open set containing (r, Θ). It follows from relations (2.4), (2.5), and the
structural restrictions imposed of the functions e, s in Section 2.3.1 that

HΘ(%, ϑ)− ∂HΘ(r, Θ)

∂%
(%− r)−HΘ(r, Θ) ≥ c(K)

(
|%− r|2 + |ϑ−Θ|2

)
for all (%, ϑ) ∈ K, (3.1)

14



HΘ(%, ϑ)− ∂HΘ(r, Θ)

∂%
(%− r)−HΘ(r, Θ) (3.2)

≥ c(K) (1 + %e(%, ϑ) + %s(%, ϑ)) whenever (%, ϑ) ∈ [0,∞)2 \K,

see [19, Chapter 3, Proposition 3.2].

3.1.1 First application of the relative entropy inequality

The desired uniform bounds follow immediately from the relative entropy inequality (2.32) evaluated
at r = %, Θ = ϑ, U = 0 yielding [

Eε

(
%ε, ϑε,uε

∣∣∣%, ϑ, 0
)]τ

t=0
(3.3)

+
∫ τ

0

∫
Ω

ϑ

ϑ

(
εaS(ϑε,∇xuε) : ∇xuε − εb−2q(ϑε,∇xϑε) · ∇xϑε

ϑε

)
dx dt + εa−c

∫ τ

0

∫
∂Ω

ϑβ(ϑε)

ϑε

|uε|2 dSx dt

≤ 0.

Observing that Eε

(
%0,ε, ϑ0,ε,u0,ε

∣∣∣%, ϑ, 0
)

remains bounded for ε → 0 as soon as we have

‖%(1)
0,ε‖L2∩L∞(Ω) + ‖ϑ(1)

0,ε‖L2∩L∞(Ω) + ‖u0,ε‖L2(Ω;R3) ≤ c (3.4)

in (1.14), we deduce the following list of estimates:

ess sup
t∈(0,T )

‖√%εuε‖L2(Ω;R3) ≤ c, (3.5)

ess sup
t∈(0,T )

∥∥∥∥[%ε − %

ε

]
ess

∥∥∥∥
L2(Ω)

≤ c, (3.6)

ess sup
t∈(0,T )

∥∥∥∥∥
[
ϑε − ϑ

ε

]
ess

∥∥∥∥∥
L2(Ω)

≤ c, (3.7)

ess sup
t∈(0,T )

[
‖1res‖L1(Ω) + ‖[%ε]res‖

5/3

L5/3(Ω)
+ ‖[ϑε]res‖

4
L4(Ω)

]
≤ ε2c, (3.8)

together with the “integral” bounds:

εa
∫ T

0

∫
Ω

∣∣∣∣∇xuε +∇t
xuε −

2

3
divxuεI

∣∣∣∣2 dx dt + εa−c
∫ T

0

∫
∂Ω
|uε|2 dSx dt ≤ c, (3.9)

εb−2
∫ T

0

∫
Ω
|∇xϑε|2 dx dt ≤ c, (3.10)

where all constants are independent of ε → 0.
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3.2 Convergence

The uniform bounds (3.5 - 3.10) are sufficient to pass to the limit in the family of solutions (%ε, ϑε,uε)
for ε → 0. We obtain, in accordance with (3.5), (3.6), and (3.8),

ess sup
t∈(0,T )

‖%ε(t, ·)− %‖L2(Ω)+L5/3(Ω) ≤ εc (3.11)

ϑε − ϑ

ε
→ T weakly-(*) in L∞(0, T ; L2(Ω)), (3.12)

and √
%εuε → ũ weakly-(*) in L∞(0, T ; L2(Ω; R3)). (3.13)

3.2.1 Another use of the relative entropy inequality

Of course, our goal is to show that ũ =
√

%v, where v is a solution of the limit Euler system (1.15),
(1.16), and that T solves the transport equation (1.17). To this end, we use again the relative
entropy inequality (2.32), this time for the choice of “test functions” that corresponds to the first
order ε−approximation. Specifically, we rewrite formally the system (1.11 - 1.13) as

ε∂t
%ε − %

ε
+ divx(%εuε) = 0, (3.14)

ε∂t (%εuε) +∇x

(
∂%p(%, ϑ)

%ε − %

ε
+ ∂ϑ(%, ϑ)

ϑε − ϑ

ε

)
= F1,ε, (3.15)

∂t

(
%∂ϑs(%, ϑ)

ϑε − ϑ

ε
+ %∂%s(%, ϑ)

%ε − %

ε

)
+ divx

[(
%∂ϑs(%, ϑ)

ϑε − ϑ

ε
+ %∂%s(%, ϑ)

%ε − %

ε

)
uε

]
= F2,ε,

(3.16)
where, in view of the uniform bounds established in Section 3.1.1, the “forces” F1,ε, F2,ε tend to zero
for ε → 0.

Thus we have
%ε ≈ % + εRε, ϑε ≈ ϑ + εTε, uε ≈ v +∇xΦε,

where v is a solution of the Euler system (1.15), (1.16), and the functions Rε, Tε, Φε satisfy the
acoustic equation 

∂t (αRε + βTε) + ω∆Φε = 0,

∂t∇xΦε +∇x (αRε + βTε) = 0,

∇xΦε · n|∂Ω = 0,


(3.17)
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together with the transport equation

∂t (δTε − βRε) + divx [(δTε − βRε) (v +∇xΦε)] = 0, (3.18)

see [17] for details.
In accordance with (3.14 - 3.16),

α =
1

%
∂%p(%, ϑ) > 0, β =

1

%
∂ϑp(%, ϑ), δ = %∂ϑs(%, ϑ) > 0, ω = %

(
α +

β2

δ

)
> 0.

The initial values are determined in accordance with (1.14), more specifically, we set

Rε(0, ·) = R0,ε,δ =
[
%

(1)
0,ε

]
δ
, Tε(0, ·) = T0,ε,δ =

[
ϑ

(1)
0,ε

]
δ
,

while
v0 = H[u0], ∇xΦ0,ε = ∇xΦ0,ε δ =

[
H⊥[u0,ε]

]
δ
,

where H denotes the standard Helmholtz projection onto the space of solenoidal functions in Ω,
and where [·]δ are suitable regularizing operators specified in Section 4.2 below. The reason for
regularizing the data is that we want to take

r = rε = Rε, Θ = Θε = Tε, U = Uε = v +∇xΦε

as test functions in the relative entropy inequality (2.32).
Seeing that

Eε

(
%ε, ϑε,uε

∣∣∣rε, Θε,Uε

)
(0) ≈

∫
Ω

%0,ε

∣∣∣H[u0,ε − u0] + H⊥[u0,ε]−
[
H⊥[u0,ε]

]
δ

∣∣∣2 dx

+
∫
Ω

(∣∣∣%(1)
0,ε −

[
%

(1)
0,ε

]
δ

∣∣∣2 +
∣∣∣ϑ(1)

0,ε −
[
ϑ

(1)
0,ε

]
δ

∣∣∣2) dx

we suppose that
%

(1)
0,ε → %

(1)
0 in L2(Ω) and weakly-(*) in L∞(Ω), (3.19)

ϑ
(1)
0,ε → ϑ

(1)
0 in L2(Ω) and weakly-(*) in L∞(Ω), (3.20)

and
u0,ε → u0 in L2(Ω; R3). (3.21)

The leading idea of the proof of convergence towards the limit (target) system is to let first ε → 0,
then δ → 0, in the relative entropy inequality and to use a Gronwall type argument to “absorb” all
terms in the remainder on the right-hand side of (2.32). This step was performed in full detail in [17]
in the case Ω = R3. The same procedure can be repeated for a general unbounded domain Ω ⊂ R3

as soon as we make sure that:
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• the Euler system (1.15), (1.16) possesses a regular solution on some time interval [0, Tmax) for
the initial datum

v(0, ·) = H[u0];

• the acoustic waves described by the system (3.17) become “negligible”, meaning vanish, in the
asymptotic limit ε → 0.

These issues will be addressed in the remaining part of the paper.

3.3 Solvability of the Euler system

The Euler system (1.15), (1.16) is well known to possess local-in-time regular solutions provided the
initial datum v0 is sufficiently smooth. Results of this type were obtained by many authors, see
Beirao da Veiga [4], Kato [25], Kato and Lai [27], among others. Moreover, in their remarkable work,
Beale, Kato, and Majda [3] identified a celebrated regularity criterion, namely, the local smooth
solution v can be extended up to the critical time Tmax provided∫ Tmax

0
‖curl v‖L∞ dt < ∞.

Of course, these results depend also on the geometry of the underlying physical space Ω. Starting
with the known local existence result of Kato and Lai [27] on bounded domains, we can construct
local-in-time solutions on a general (unbounded) domain Ω by taking

ΩR = Ω ∩ {|x| < R}

and passing to the limit for R →∞. Such a method works provided

• we restrict ourselves to finite energy solutions decaying to zero for |x| → ∞ in sufficiently
high-order Sobolev spaces;

• we are interested only in local-in-time solutions.

Indeed the technique of Kato [25], Kato and Lai [27] is based on energy estimates obtain via mul-
tiplication of the equations by v and its derivatives and the resulting existence time can be taken
independent of the size of the domain.

In what follows, we shall therefore assume that the initial velocity satisfies

v0 = H[u0] ∈ W k,2(Ω; R3) for a certain k >
5

2
, (3.22)
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for which the Euler system (1.15), (1.16), supplemented with the boundary condition

v · n|∂Ω = 0 (3.23)

admits a unique solution on the time interval [0, Tmax) belonging to the class

v ∈ C([0, Tmax), W
k,2(Ω, R3)), ∂tv ∈ C([0, Tmax); W

k−1,2(Ω; R3)). (3.24)

Note that global existence of solutions to the Euler system, say in the class of weak solutions, is
a delicate problem, where many surprising new facts emerged only recently in the work by DeLellis
and Székelyhidi [13], [14], Wiedemann [38].

4 Acoustic waves

We study the decay properties of solutions to the acoustic equation (3.17) that can be written in a
more concise form as

ε∂tZ + ∆Φ = 0, ε∂tΦ + Z = 0, (4.1)

∇xΦ · n|∂Ω = 0, Φ, Z → 0 as |x| → ∞, (4.2)

Φ(0, ·) = Φ0, Z(0, ·) = Z0, (4.3)

which is nothing other than a (scaled) linear wave equation for the acoustic potential Φ supplemented
with the homogeneous Neumann boundary conditions. For the sake of simplicity, we dropped the
subscript ε and set ω ≡ 1.

4.1 Neumann Laplacean, Duhamel’s formula

The Neumann Laplacean −∆N can be viewed as a non-negative self-adjoint operator in the Hilbert
space L2(Ω) with a domain of definition

D(−∆N) =
{
w ∈ W 1,2(Ω)

∣∣∣ ∫
Ω
∇xw · ∇xφ dx =

∫
Ω

gφ dx for a certain g ∈ L2(Ω) and all φ ∈ C∞
c (Ω)

}
,

where we set
−∆Nw = g.

As a consequence of the standard elliptic theory, we have

D(−∆N) ∈ W 2,2
loc (Ω),
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where the estimates can be extended up to the boundary ∂Ω provided the latter is smooth.
Accordingly, using the standard functional calculus related to −∆N , we can write solutions of

the acoustic equation (4.1 - 4.3) by means of Duhamel’s formula:

Φ(t, ·) =
1

2
exp

(
i
√
−∆N

t

ε

) [
Φ0 −

i√
−∆N

Z0

]
+

1

2
exp

(
−i
√
−∆N

t

ε

) [
Φ0 +

i√
−∆N

Z0

]
, (4.4)

Z(t, ·) =
1

2
exp

(
i
√
−∆N

t

ε

) [
i
√
−∆N [Φ0] + Z0

]
+

1

2
exp

(
−i
√
−∆N

t

ε

) [
−i
√
−∆N [Φ0] + Z0

]
. (4.5)

4.1.1 Decay and dispersive estimates

Our strategy is based on eliminating the effect of acoustic waves by means of dispersion. In other
words, if Ω is “large”, solutions of (4.1 - 4.3) will decay to zero locally in space as t →∞, therefore
they will vanish as ε → 0 for any positive time. A direct inspection of Duhamel’s formula (4.4), (4.5)
yields immediately that such a scenario is precluded by the presence of trapped modes - eigenvalues
with corresponding eigenfunctions in L2(Ω). In particular, all bounded domains must be excluded
from future analysis.

On the other hand, the existence of eigenvalues of the Neumann Laplacean on a general unbounded
domain is a delicate and highly unstable problem, see Davies and Parnovski [12]. Examples of
domains, where ∆N has void point spectrum are R3, exterior domains in R3, flat waveguides in R3,
see Lesky and Racke [32].

From now on, we shall therefore assume that the point spectrum of ∆N defined in Ω is empty. In
such a case, the celebrated RAGE theorem can be used to obtain local decay estimates for solutions
of the acoustic equation, see Cycon et al. [11, Theorem 5.8]):

Theorem 4.1 Let H be a Hilbert space, A : D(A) ⊂ H → H a self-adjoint operator, C : H → H a
compact operator, and Pc the orthogonal projection onto the space of continuity Hc of A, specifically,

H = Hc ⊕ clH
{
span{w ∈ H | w an eigenvector of A}

}
.

Then ∥∥∥∥1

τ

∫ τ

0
exp(−itA)CPc exp(itA) dt

∥∥∥∥
L(H)

→ 0 as τ →∞. (4.6)

Taking H = L2(Ω), A =
√
−∆N , C = χ2G(−∆N), with

χ ∈ C∞
c (Ω), χ ≥ 0, G ∈ C∞

c (0,∞), 0 ≤ G ≤ 1,
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we may apply Theorem 4.1 for τ = 1/ε to obtain

∫ T

0

∥∥∥∥χG(−∆N) exp
(
i
√
−∆N

t

ε

)
[X]

∥∥∥∥2

L2(Ω)
dt ≤ ω(ε)‖X‖2

L2(Ω) for any X ∈ L2(Ω), (4.7)

where
ω(ε) → 0 as ε → 0.

Relation (4.7) is a kind of spatially and “frequency” localized estimates that are quite general and
require only the absence of eigenvalues of the operator ∆N in Ω and certain smoothness of ∂Ω. The
decay rate characterized through ω may be arbitrarily slow depending on the geometrical properties
of ∂Ω, see [16]. The “optimal” rate ω(ε) ≈ ε can be achieved provided the operator ∆N satisfies the
limiting absorption principle (LAP), see Leis [31], Văınberg[37] :

We say that ∆N satisfies the limiting absorption principle (LAP) if the cut-off resolvent operator

(1 + |x|2)−s/2 ◦ [−∆N − µ± iδ]−1 ◦ (1 + |x|2)−s/2, δ > 0, s > 1 (4.8)

can be extended as a bounded linear operator on L2(Ω) for δ → 0 and µ belonging to compact
subintervals of (0,∞).

If ∆N satisfies (LAP), the relevant alternative to the RAGE theorem is provided by a result of
Kato [24] (see also Burq et al. [8]):

Theorem 4.2 [ Reed and Simon [34, Theorem XIII.25 and Corollary] ]
Let A be a closed densely defined linear operator and H a self-adjoint densely defined linear

operator in a Hilbert space X. For λ /∈ R, let RH [λ] = (H − λId)−1 denote the resolvent of H.
Suppose that

Γ = sup
λ/∈R, v∈D(A∗), ‖v‖X=1

‖A ◦RH [λ] ◦ A∗[v]‖X < ∞. (4.9)

Then
sup

w∈X, ‖w‖X=1

π

2

∫ ∞

−∞
‖A exp(−itH)[w]‖2

X dt ≤ Γ2.

If ∆N satisfies (LAP), Theorem 4.2 yields (see [20] for details) the decay rate

∫ ∞

0

∥∥∥∥χG(−∆N) exp
(
±i
√
−∆N t

)
[X]

∥∥∥∥2

L2(Ω)
dt ≤ c‖X‖2

L2(Ω) for any X ∈ L2(Ω), (4.10)

which is, in fact, equivalent to (4.7) with ω(ε) = ε.
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4.2 Smoothing operators

Keeping in mind the solution formulas (4.4), (4.5), we introduce the smoothing operators
[w]δ = Gδ(

√
−∆N)[w], Gδ ∈ C∞

c (R \ {0}), Gδ(−Z) = Gδ(Z), Z ∈ R

0 ≤ Gδ ≤ 1, Gδ(Z) ↗ 1 as δ → 0.

 (4.11)

First, as a consequence of the elliptic regularity,

‖[w]δ‖W k,2(Ω) ≤ c(k, δ)‖w‖L2(Ω) for any k = 0, 1, . . . (4.12)

as long as ∂Ω is smooth.
Next, we show that [w]δ decays very fast as |x| → ∞ for compactly supported w. Let us take

ϕ ∈ C∞
c (Ω), supp[ϕ] ⊂ {|x| < R}.

Our goal is to estimate [ϕ]δ outside the ball {|x| < 2R}. To this end, we introduce a weighted
(pseudo-norm)

‖v‖2
s,(2R)c =

∫
Ω∩{|x|>2R}

|v|2|x|2s dx,

and write

Gδ(
√
−∆N)[ϕ] =

1

2

∫ ∞

−∞
G̃δ(t)

(
exp(i

√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ] dt,

where G̃δ denotes the Fourier transform of Gδ.
Next, we compute∥∥∥∥Gδ(

√
−∆N)[ϕ]

∥∥∥∥
s,(2R)c

≤ 1

2

∫ ∞

−∞
|G̃δ(t)|

∥∥∥∥(exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ]
∥∥∥∥

s,(2R)c
dt,

where ∥∥∥∥(exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ]
∥∥∥∥2

s,(2R)c

=
∫
Ω

sgn+(|x| − 2R)|x|2s

∣∣∣∣(exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ]
∣∣∣∣2 dx.

However, because of the finite speed of propagation of the wave operator exp(±i
√
−∆N t), we

may infer that ∫
Ω

sgn+(|x| − 2R)|x|2s

∣∣∣∣(exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ]
∣∣∣∣2 dx
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≤ sgn+(|t| −R)(|t|+ R)2s
∫
Ω

∣∣∣∣(exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)
[ϕ]
∣∣∣∣2 dx

≤ c(s)|t|2s‖ϕ‖L2(Ω);

whence ∥∥∥∥Gδ(
√
−∆N)[ϕ]

∥∥∥∥2

s,(2R)c
≤ c(s, δ)‖ϕ‖L2(Ω) provided supp[ϕ] ⊂ {|x| < r}.

Applying the same argument to −∆α[ϕ] we deduce that

sup
x∈Ω,|x|>2R

|x|s|∂k
x [w]δ| ≤ c(s, δ, k)‖w‖L2(Ω) for all w ∈ L2(Ω), supp[w] ⊂ {|x| < R}. (4.13)

4.3 Dispersive estimates revisited

The local dispersive estimates (4.7), (4.10) are not strong enough to be used in the analysis of the
inviscid limits. Some “global” version is needed, where the cut-off function can be taken χ ≡ 1. Of
course, this is not possible with the L2−norm as the total energy of acoustic waves is conserved. On
the other hand, if Ω = R3, solutions of the system (4.1 - 4.3) satisfy the Strichartz estimates :∫ ∞

−∞

∥∥∥exp
(
±i
√
−∆t

)
[h]
∥∥∥p

Lq(R3)
dt ≤ ‖h‖p

H1,2(R3),
1

2
=

1

p
+

3

q
, q < ∞, (4.14)

where H1,2 denotes the homogeneous Sobolev space of functions having first derivatives square inte-
grable in R3, see Keel and Tao [28], Strichartz [36].

In addition, the free Laplacean satisfies also the local energy decay in the form∫ ∞

−∞

∥∥∥χ exp
(
±i
√
−∆t

)
[h]
∥∥∥2

Hα,2(R3)
dt ≤ c(χ)‖h‖2

Hα,2(R3), α ≤ 3

2
, χ ∈ C∞

c (R3), (4.15)

see Smith and Sogge [35, Lemma 2.2].
The estimates (4.14), (4.15) remain valid for the Neumann Laplacean on a ”flat” space, for

instance, on half-spaces in R3.

4.3.1 Frequency localized Strichartz estimates

We assume that Ω is a “compact” perturbation of a larger domain on which the Neumann Laplacean
satisfies the estimates (4.14), (4.15). For the sake of simplicity, we take the exterior domain Ω =
R3 \ K, where K is a compact, not necessarily connected set. Applications to other domains like
local perturbations of a half-space can be handled in a similar manner.
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Our goal is to show∫ ∞

−∞

∥∥∥∥G(−∆N) exp
(
±i
√
−∆N t

)
[h]
∥∥∥∥p

Lq(Ω)
≤ c(G)‖h‖p

H1,2(Ω),
1

2
=

1

p
+

3

q
, q < ∞ (4.16)

for any G ∈ C∞
c (0,∞), adapting the method developed by Burq [7], Smith and Sogge [35].

We start by writing

U(t, ·) = G(−∆N) exp
(
±i
√
−∆N t

)
[h] = exp

(
±i
√
−∆N t

)
G(−∆N)[h]

as
U = v + w, v = χU, w = (1− χ)U,

where
χ ∈ C∞

c (R3), 0 ≤ χ ≤ 1, χ radially symmetric, χ(x) = 1 for |x| ≤ R,

where R is so large that the ball {|x| < R} contains K.
Accordingly,

w = w1 + w2,

where w1 solves the homogeneous free wave equation

∂2
t,tw

1 −∆w1 = 0 in R3,

supplemented with the initial conditions

w1(0) = (1− χ)G(−∆N)[h], ∂tw
1(0) = ±i(1− χ)

√
−∆NG(−∆N)[h],

while
∂2

t,tw
2 −∆w2 = F in R3,

w2(0) = ∂tw
2(0) = 0,

with
F = −∇xχ∇xU − U∆χ.

As a consequence of the standard Strichartz estimates (4.14), we get∫ ∞

−∞

∥∥∥w1
∥∥∥p

Lq(R3)
dt ≤ c(G)‖h‖p

H1,2(R3),
1

2
=

1

p
+

3

q
, q < ∞. (4.17)

Furthermore, using Duhamel’s formula, we obtain

w2(τ, ·) =
1

2
√
−∆

[
exp

(
i
√
−∆τ

) ∫ τ

0
exp

(
−i
√
−∆s

)
[η2F (s)] ds

]

24



− 1

2
√
−∆

[
exp

(
−i
√
−∆τ

) ∫ τ

0
exp

(
i
√
−∆s

)
[η2F (s)] ds

]
,

with
η ∈ C∞

c (R3), 0 ≤ η ≤ 1, η radially symmetric, η = 1 on supp[F ].

Similarly to [7], we use the following result of of Christ and Kiselev [10]:

Lemma 4.1 Let X and Y be Banach spaces and assume that K(t, s) is a continuous function taking
its values in the space of bounded linear operators from X to Y . Set

T [f ](t) =
∫ b

a
K(t, s)f(s) ds, W [f ](t) =

∫ t

a
K(t, s)f(s) ds,

where
0 ≤ a ≤ b ≤ ∞.

Suppose that
‖T [f ]‖Lp(a,b;Y ) ≤ c1‖f‖Lr(a,b;X)

for certain
1 ≤ r < p ≤ ∞.

Then
‖W [f ]‖Lp(a,b;Y ) ≤ c2‖f‖Lr(a,b;X),

where c2 depends only on c1, p, and r.

We aim to apply Lemma 4.1 in the situation

X = L2(R3), Y = Lq(R3), q < ∞,
1

2
=

1

p
+

3

q
, r = 2,

and

f = F, K(t, s)[F ] =
1√
−∆

exp
(
±i
√
−∆(t− s)

)
[η2F ].

Writing ∫ ∞

0
K(t, s)F (s) ds = exp

(
±i
√
−∆t

) 1√
−∆

∫ ∞

0
exp

(
∓i
√
−∆s

)
[χ2F (s)] ds,

we have to show, keeping in mind the Strichartz estimates (4.14), that∥∥∥∥∫ ∞

0
exp

(
±i
√
−∆s

)
[η2F (s)] ds

∥∥∥∥
L2(R3)

≤ c‖F‖L2(0,∞;L2(R3)). (4.18)
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However, ∥∥∥∥∫ ∞

0
exp

(
±i
√
−∆s

)
[χ2F (s)] ds

∥∥∥∥
L2(R3)

= sup
‖v‖L2(R3)≤1

∫ ∞

0

〈
exp

(
±i
√
−∆s

)
[χ2F (s)]; v

〉
ds

= sup
‖v‖L2(R3)≤1

∫ ∞

0

〈
χF (s); χ exp

(
−i
√
−∆s

)
[v]
〉

ds;

whence the desired conclusion (4.18) follows from the local energy decay estimates stated in (4.15).
As the norm of F is bounded in view of the local estimates established in (4.15), we may infer

that ∫ ∞

−∞

∥∥∥w2
∥∥∥p

Lq(R3)
dt ≤ c(G)‖h‖p

H1,2(R3),
1

2
=

1

p
+

3

q
, q < ∞. (4.19)

Finally, since v = χU is compactly supported, we deduce from (4.15) combined with the standard
elliptic regularity theory of ∆N that∫ ∞

0
‖v‖2

Lq(Ω) dt ≤ c(G)‖h‖2
H1,2(Ω); (4.20)

while, by virtue of the energy estimates,

sup
t>0

‖v(t, ·)‖Lq(Ω) ≤ c(G)‖h‖H1,2(Ω), (4.21)

where q < ∞ is the same as in (4.16).
Interpolating (4.20), (4.21) and combining the result with the previous estimates, we get (4.16).

As a matter of fact, our conclusion can be “strengthened” to:∫ ∞

−∞

∥∥∥∥G(−∆N) exp
(
±i
√
−∆N t

)
[h]
∥∥∥∥p

Lq(Ω)
≤ c(G)‖h‖p

L2(Ω),
1

2
=

1

p
+

3

q
, q < ∞ (4.22)

for any G ∈ C∞
c (0,∞).

In accordance with the previous discussion, we say that a domain Ω ⊂ R3 is admissible if:

• Ω is an (unbounded) smooth domain in R3, on which the Neumann Laplacean ∆N satisfies the
limiting absorption principle (4.8).

• There is R > 0 and a domain D ⊂ R3 such that ∆N satisfies the Strichartz and local decay
estimates (4.14), (4.15) on D and D ∩ {|x| > R} = Ω ∩ {|x| > R}.

As we have just observed, the Neumann Laplacean ∆N satisfies the frequency localized Strichartz
estimates (4.22) as soon as Ω is an admissible domain. Typically, the “reference” domain D is taken
R3 or a half-space in applications.
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5 Conclusion

The uniform estimates established in Section 4, specifically (4.22), are sufficient to pass to the limit in
the relative entropy inequality, first ε → 0, then δ → 0. This step can be performed exactly as in [17].
Thus we have shown (strong) convergence of the dissipative solutions of the scaled Navier-Stokes-
Fourier system (1.11 - 1.14) to the (unique) solution of the target problem (1.15 - 1.17), endowed
with the initial data

v0 = H[u0], T (0, ·) = %∂ϑs(%, ϑ)ϑ
(1)
0 − 1

%
∂ϑp(%, ϑ)%

(1)
0 . (5.1)

The convergence takes place on any compact time interval [T1, T2] provided 0 < T1 < T2 < Tmax,
where Tmax ≤ ∞ is the life span of the smooth solution to the target system. The details of the proof
can be found in [17].

Let us summarize our results that may be viewed as a generalization of [17, Theorem 3.1] to the
class of admissible domains introduced in Section 4.3.1:

Theorem 5.1 Let Ω ⊂ R3 be an admissible domain in the sense specified in Section 4.3.1. Suppose
that the thermodynamic functions p, e, s and the transport coefficients µ, λ, κ, and β comply with
the structural restrictions introduced in Section 2.3.1, with

b > 0, 0 ≤ c < a <
10

3
,

Furthermore, suppose that the initial data (1.14) satisfy

{%(1)
0,ε}ε>0, {ϑ(1)

0,ε}ε>0 bounded in L2 ∩ L∞(Ω), %
(1)
0,ε → %

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 in L2(Ω),

and
u0,ε → u0 in L2(Ω; R3),

where

%
(1)
0 , ϑ

(1)
0 ∈ W 1,2 ∩W 1,∞(Ω), H[u0] = v0 ∈ W k,2(Ω; R3) for a certain k >

5

2
.

Let Tmax ≤ ∞ be the maximal life-span of the regular solution v to the Euler system (1.15), (1.16),
with the initial datum v(0, ·) = v0. Finally, let {%ε, ϑε,uε}ε>0 be a family of dissipative solutions of
the scaled Navier-Stokes-Fourier system (1.11 - 1.14) in (0, T ) × R3, T < Tmax, supplemented with
the boundary conditions (1.18), (1.19).

Then
ess sup

t∈(0,T )

‖ %ε(t, ·)− % ‖L2+L5/3(Ω) ≤ εc,
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√
%εuε →

√
% v in L∞

loc((0, T ]; L2
loc(Ω; R3)) and weakly-(*) in L∞(0, T ; L2(Ω; R3)),

and
ϑε − ϑ

ε
→ T in L∞

loc((0, T ]; Lq
loc(Ω)), 1 ≤ q < 2, and weakly-(*) in L∞(0, T ; L2(Ω)),

where v, T is the unique solution of the Euler-Boussinesq system (1.15 - 1.17), with the initial data

v0 = H[u0], T0 = %
∂s(%, ϑ)

∂ϑ
ϑ

(1)
0 − 1

%

∂p(%, ϑ)

∂ϑ
%

(1)
0 .

5.1 Alternative techniques

An alternative approach to singular limits is based on strong solutions for both the primitive and the
target system, see Klainerman and Majda [29]. Necessarily, the results are only local-in-time even
if the target system happens to admit a global solution for a specific choice of the data. The initial
data for the primitive system must be regular and their convergence to the limit values takes place
in stronger topologies. We refer to Alazard [1], [2] for very interesting results concerning the full
Navier-Stokes-Fourier system.
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[13] C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler
equations. Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
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[17] E. Feireisl and Novotný. Inviscid incompressible limits of the full Navier-Stokes-Fourier system.
Commun. Math. Phys., 2012. To appear.
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[19] E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Birkhäuser-
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[37] B. R. Văınberg. Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki. Moskov. Gos.
Univ., Moscow, 1982.

[38] E. Wiedemann. Existence of weak solutions for the incompressible Euler equations. Ann. Inst.
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