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Abstract The subject of the paper is the numerical simulation of inviscid
and viscous compressible flow in time dependent domains. The motion of the
boundary of the domain occupied by the fluid is taken into account with the
aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the Euler and
Navier-Stokes equations describing compressible flow. They are discretized in
space by the discontinuous Galerkin (DG) finite element method using piece-
wise polynomial discontinuous approximations. For the time discretization
the BDF method or DG in time is used. Moreover, we use a special treat-
ment of boundary conditions and shock capturing, allowing the solution of
flow with a wide range of Mach numbers. As a result we get an efficient and
robust numerical process. We show that the method allows to solve numeri-
cally the flow with a wide range of Mach numbers and it is applicable to the
solution of practically relevant problems of flow induced airfoil vibrations.

1 Introduction

In the numerical solution of compressible flow, we meet several obstacles. It
is necessary to resolve accurately shock waves, contact discontinuities and (in
viscous flow) boundary layers, wakes and their interaction. These phenomena
are connected with the simulation of high speed flow with high Mach num-
bers. However, it appears that the solution of low Mach number flow is also
rather difficult. This is caused by the stiff behaviour of numerical schemes and
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acoustic phenomena appearing in low Mach number flows at incompressible
limit.

It appears that a suitable numerical method for the solution of compress-
ible flow overcoming these difficulties is the discontinuous Galerkin finite
element method (DGFEM). It employs piecewise polynomial approximations
without any requirement on the continuity on interfaces between neighbour-
ing elements. The DGFEM was used for the numerical simulation of the
compressible Euler equations, for example, by Bassi and Rebay in [1], where
the space DG discretization was combined with explicit Runge-Kutta time
discretization. In [2] Baumann and Oden describe an hp version of the space
DG discretization with explicit time stepping to compressible flow. Van der
Vegt and van der Ven apply space-time discontinuous Galerkin method to the
solution of the Euler equations in [18], where the discrete problem is solved
with the aid of a multigrid accelerated pseudo-time-integration.

In a number of practical applications, flow problems in time dependent
domains and fluid-structure interaction have to be solved. The flow-induced
vibrations of elastic structures may affect negatively the operation and sta-
bility of the systems. Therefore, one of the main goals of aeroelasticity is
the prediction and alleviation of the aeroelastic instability. This discipline
achieved many results, particularly from the engineering point of view (see,
e.g. the monographs [3], [8] and [15]).

In our paper we shall describe a numerical method based on the appli-
cation of the DGFEM for the solution of compressible flow, which is robust
with respect to the magnitude of the Mach number and Reynolds number
and can be applied to the simulation of flows in time-dependent domains and
flow induced airfoil vibrations. The airfoil is considered as a solid flexibly
supported body with two degrees of freedom, allowing its vertical and tor-
sional oscillations. The presented examples demonstrate the robustness and
applicability of the developed numerical technique. The paper represents an
extension and generalization of results from [14] and [17].

2 Description of compressible flow

We shall be concerned with the numerical solution of compressible flow in a
bounded domain Ωt ⊂ IR2 depending on time t ∈ [0, T ]. Let the boundary
of Ωt consist of three disjoint parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt , where ΓI is the
inlet, ΓO is the outlet and ΓWt denotes impermeable walls that may move in
dependence on time.

The system describing compressible flow, consisting of the continuity,
Navier-Stokes and energy equation, can be written in the form

∂w

∂t
+

2∑
s=1

∂fs(w)
∂xs

=
2∑

s=1

∂Rs(w,∇w)
∂xs

, (1)



Discontinuous Galerkin method - a robust solver for compressible flow 3

where

w = (w1, . . . , w4)T = (ρ, ρv1, ρv2, E)T ∈ IR4, (2)
w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

f i(w) = (fi1, · · · , fi4)T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)
T

,

Ri(w,∇w) = (Ri1, . . . , Ri4)T =
(
0, τV

i1 , τV
i2 , τV

i1 v1 + τV
i2 v2 + k∂θ/∂xi

)T
,

τV
ij = λ divv δij + 2µdij(v), dij(v) =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
.

We use the following notation: ρ – density, p – pressure, E – total energy,
v = (v1, v2) – velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic
constant, cv > 0 – specific heat at constant volume, µ > 0, λ = −2µ/3 –
viscosity coefficients, k – heat conduction. The vector-valued function w is
called state vector, the functions f i are the so-called inviscid fluxes and Ri

represent viscous terms.
The above system is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ =
(E

ρ
− 1

2
|v|2

)/
cv. (3)

The resulting system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (4)

and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)T, (5)

c)
2∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI ,

d) v|ΓWt
= zD = velocity of a moving wall, e)

∂θ

∂n
|ΓWt

= 0 on ΓWt ,

f)
2∑

i=1

τV
ij ni = 0, j = 1, 2, g)

∂θ

∂n
= 0 on ΓO.

It is easy to see that fs(αw) = α fs(w) for α > 0. This implies that

fs(w) = As(w)w, s = 1, 2, (6)

where As(w) = Dfs(w)/Dw, s = 1, 2, are the Jacobi matrices of the map-
pings fs. The viscous terms Rs(w,∇w) can be expressed in the form

Rs(w,∇w) =
2∑

k=1

Ks,k(w)
∂w

∂xk
, s = 1, 2, (7)
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where Ks,k(w) ∈ IR4×4 are matrices depending on w (cf. [6]).
In order to treat the time dependence of the domain, we use the so-called

arbitrary Lagrangian-Eulerian ALE technique, see e.g. [16]. We define a ref-
erence domain Ω0 and introduce a regular one-to-one ALE mapping of Ω0

onto Ωt:

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.
Further, we define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and
t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (8)

where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

As a direct consequence of the chain rule we get the relation

DAf

Dt
=

∂f

∂t
+ div (zf)− f div z.

This leads to the ALE formulation of the Navier-Stokes equations

DAw

Dt
+

2∑
s=1

∂gs(w)
∂xs

+ w divz =
2∑

s=1

∂Rs(w,∇w)
∂xs

, (9)

where
gs(w) := fs(w)− zsw, s = 1, 2,

are the ALE modified inviscid fluxes.
We see that in the ALE formulation of the Navier-Stokes equations the

time derivative ∂w/∂t is replaced by the ALE derivative DAw/Dt, the in-
viscid fluxes fs are replaced by the ALE modified inviscid fluxes gs and a
new additional ”reaction” term w divz appears.
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3 Discrete flow problem

3.1 Space discretization by the discontinuous Galerkin
method

For the space semidiscretization we use the discontinuous Galerkin finite
element method (DGFEM). We construct a polygonal approximation Ωht

of the domain Ωt. By Tht we denote a partition of the closure Ωht of the
domain Ωht into a finite number of closed triangles K with mutually disjoint
interiors such that Ωht =

⋃
K∈Tht

K.
By Fht we denote the system of all faces of all elements K ∈ Tht. Further,

we introduce the set of boundary faces FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} , the

set of “Dirichlet” boundary faces FD
ht = {Γ ∈ FB

ht; a Dirichlet condition is
prescribed on Γ} and the set of inner faces FI

ht = Fht \FB
ht. Each Γ ∈ Fht is

associated with a unit normal vector nΓ to Γ . For Γ ∈ FB
ht the normal nΓ

has the same orientation as the outer normal to ∂Ωht. We set d(Γ ) = length
of Γ ∈ Fht and hK = diameter of K ∈ Tht.

For each Γ ∈ FI
ht there exist two neighbouring elements K

(L)
Γ ,K

(R)
Γ ∈ Th

such that Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the

direction of nΓ and K
(L)
Γ lies in the opposite direction to nΓ . If Γ ∈ FB

ht,
then the element adjacent to Γ will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of piecewise polyno-
mial functions

Sht = [Sht]4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (10)

where r > 0 is an integer and Pr(K) denotes the space of all polynomials on K
of degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces
Γ ∈ FI

ht. By ϕ
(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered

from the interior and the exterior of K
(L)
Γ , respectively, and set 〈ϕ〉Γ =

(ϕ(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ .

The discrete problem is derived in the following way: We multiply system
(9) by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s
theorem, sum over all elements K ∈ Tht, use the concept of the numerical flux
and introduce suitable terms mutually vanishing for a regular exact solution
and linearize the resulting forms on the basis of properties (6) and (7) of the
functions fs and Rs (see, e.g. [13]). In this way we get the following forms
(followed by the explanation of symbols appearing in their definitions):
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âh(wh, wh,ϕh, t) =
∑

K∈Tht

∫

K

2∑
s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
· ∂ϕh

∂xs
dx (11)

−
∑

Γ∈FI
ht

∫

Γ

2∑
s=1

〈
2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉
(nΓ )s · [ϕh] dS

−
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(nΓ )s ·ϕh dS

−Θ
∑

Γ∈FI
ht

∫

Γ

2∑
s=1

〈
2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk

〉
(nΓ )s · [wh] dS

−Θ
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk
(nΓ )s ·wh dS,

dh(wh, ϕh, t) =
∑

K∈Tht

∫

K

(wh ·ϕh) divz dx, (12)

Jh(wh, ϕh, t) =
∑

Γ∈FI
ht

∫

Γ

σ[wh] · [ϕh] dS +
∑

Γ∈FD
ht

∫

Γ

σwh ·ϕh dS, (13)

`h(wh,ϕh, t) =
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

σwB ·ϕh dS (14)

− Θ
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk
(nΓ )s ·wB dS,

b̂h(wh, wh,ϕh, t) = (15)

−
∑

K∈Thtk+1

∫

K

2∑
s=1

(As(wh(x))− zs(x))I)wh(x))· ∂ϕh(x)
∂xs

dx

+
∑

Γ∈FI
ht

∫

Γ

(
P+

g

(〈
wh

〉
Γ
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
Γ
, nΓ

)
w

(R)
h

)
· [ϕh] dS

+
∑

Γ∈FB
ht

∫

Γ

(
P+

g

(〈
wh

〉
Γ
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
Γ
, nΓ

)
w

(R)
h

)
·ϕh dS,

We set Θ = 1 or Θ = 0 or Θ = −1 and get the so-called symmetric ver-
sion (SIPG) or incomplete version (IIPG) or nonsymmetric version (NIPG),
respectively, of the discretization of viscous terms.

The symbols P+(w,n) and P−(w,n) denote the positive and negative part
of the matrix P(w, n) =

∑2
s=1(As(w)− zsI)ns defined in the following way.

By [12], this matrix is diagonalizable. It means that there exists a nonsingular
matrix T = T(w,n) such that
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Pg = TIΛT−1, IΛ = diag(λ1, . . . , λ4), (16)

where λi = λi(w,n) are eigenvalues of the matrix Pg. Now we define the
”positive” and ”negative” parts of the matrix Pg by

P± = TIΛ±T−1, IΛ± = diag(λ±1 , . . . , λ±4 ), (17)

where λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we intro-
duce the modified Vijayasundaram numerical flux (cf. [19] or [12]) as

H(wL, wR, n) = P+
(wL + wR

2
,n

)
wL + P−

(wL + wR

2
,n

)
wR, (18)

which is used in the definition of the convective form (15).
In (13), σ|Γ = CW µ/d(Γ ) and CW > 0 is a sufficiently large constant.

The boundary state wB is defined on the basis of the Dirichlet boundary
conditions (5), a), b), d) and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1
2
ρD|vD|2) on ΓI , (19)

wB = w
(L)
Γ on ΓO, (20)

wB = (ρ(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1
2
ρ
(L)
Γ |zD|2) on ΓWt . (21)

For Γ ∈ FB
ht we set 〈wh〉Γ = (w(L)

Γ + w
(R)
Γ )/2 and the boundary state w

(R)
Γ

is defined with the aid of the solution of the 1D linearized initial-boundary
Riemann problem as in [11].

In order to avoid spurious oscillations in the approximate solution in the
vicinity of discontinuities or steep gradients, we apply artificial viscosity
forms. They are based on the discontinuity indicator

gt(K) =
∫

∂K

[ρh]2 dS
/
(hK |K|3/4), K ∈ Tht, (22)

introduced in [7]. By [ρh] we denote the jump of the function ρh on the
boundary ∂K and |K| denotes the area of the element K. Then we define
the discrete discontinuity indicator Gt(K) = 0 if gt(K) < 1, Gt(K) =
1 if gt(K) ≥ 1, and the artificial viscosity forms (see [14])

β̂h(wh,wh, ϕh, t) = ν1

∑

K∈Tht

hKGt(K)
∫

K

∇wh·∇ϕh dx, (23)

Ĵh(wh,wh, ϕh, t) = ν2

∑

Γ∈FI
h

1
2
(
Gt(K

(L)
Γ ) + Gt(K

(R)
Γ )

) ∫

Γ

[wh]· [ϕh] dS,

with parameters ν1, ν2 = O(1).
In order to increase the quality of the numerical approximations, in [4],

isoparametric elements were used.
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3.2 Time discretization by the BDF method

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval [0, T ] and
define the time step τn = tn − tn−1. We use the approximations wh(tn) ≈
wn

h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . .. Let us assume that wn
h, n = 0, . . . , m−

1, are already known. Then we introduce the functions ŵn
h = wn

h ◦ Atn ◦
A−1

tm
for n = m − 1,m − 2, . . ., which are defined in the domain Ωhtm

. The
ALE derivative at time tm is approximated by the backward finite difference
formula (BDF) of order q:

DAwh

Dt
(tm) ≈ DA

apprwh

Dt
(tm) = α0w

m
h +

q∑

l=1

αlŵ
m−l
h ,

with coefficients αl, l = 0, ..., q, depending on τm−l, l = 0, ..., q − 1. In
the beginning of the computation, when m < q, we approximate the ALE
derivative by formulas of the lower order q := m. In nonlinear terms we use
the extrapolation for the computation of the state wm

h :

wm
h =

q∑

l=1

βlŵ
m−l
h , (24)

where βl, l = 1, ..., q, depend on τm−l, l = 0, ..., q − 1. If m < q, then we
apply extrapolation of order m. Namely, for q = 1 we have

DA
apprwh

Dt
(tm) =

wm
h − ŵm−1

h

τm
(25)

and
wm

h = ŵm−1
h . (26)

If q = 2, then

DA
apprwh

Dt
(tm) (27)

=
2τm + τm−1

τm(τm + τm−1)
wm+1

h − τm + τm−1

τmτm−1
ŵm

h +
τm

τm−1(τm + τm−1)
ŵm−1

h

and
wm

h =
τm + τm−1

τm−1
ŵm

h − τm

τm−1
ŵm−1

h . (28)

By the symbol (·, ·)tm we shall denote the scalar product in L2(Ωhtm), i.e.

(wh, ϕh)tm =
∫

Ωhtm

wh ·ϕh dx. (29)
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The resulting BDF-DG scheme has the following form: For each m =
1, 2, . . . we seek wm

h ∈ Shtm
such that

(
DA

apprwh

Dt
(tm), ϕh

)

tm

+ b̂h(wm
h , wm

h , ϕh, tm) + âh(wm
h , wm

h , ϕh, tm) (30)

+ Jh(wm
h , ϕh, tm) + dh(wm

h , ϕh, tm) + β̂h(wm
h ,wm

h ,ϕh, tm)

+ Ĵh(wm
h , wm

h , ϕh, tm) = `(wm
B , ϕh, tm), ∀ϕh ∈ Shtm

.

3.3 Space-time discontinuous Galerkin method

We again consider a partition 0 = t0 < t1 < . . . < tM = T of the time
interval [0, T ] and denote Im = (tm−1, tm), Im = [tm−1, tm], τm = tm−tm−1,
for m = 1, . . . ,M . We define the space Sr,q

h,τ = (Sr,q
h,τ )4, where

Sr,q
h,τ =

{
φ ; φ|Im

=
q∑

i=0

ζiφi, where φi ∈ Sht, ζi ∈ P q(Im)

}

with integers r, q ≥ 1, P q(Im) denoting the space of all polynomials in t on
Im of degree ≤ q and the space Sht defined in (10). For ϕ ∈ Sr,q

h,τ we introduce
the following notation:

ϕ±m = ϕ(t±m) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ+
m − ϕ−m. (31)

The derivation of the discrete problem can be carried out similarly as
above. The difference is now that time t is considered continuous, test func-
tions ϕhτ ∈ Sr,q

h,τ are used and also the the integration over Im is applied. In
order to bind the solution on intervals Im−1 and Im, we augment the resulting
identity by the penalty expression

({whτ}m−1, ϕhτ (t+m−1)
)
tm−1

. The initial
state whτ (0+) ∈ Sp

h0 is defined as the L2(Ωh0)-projection of w0 on Sp
h0, i.e.

(whτ (0+),ϕh)t0
=

(
w0, ϕh

)
t0

∀ϕh ∈ Sp
h0. (32)

Similarly as in Section 3.2 we introduce the linearization with aid of the
extrapolation whτ (t) := whτ (t−m−1) for t ∈ Im.

Now the space-time DG (STDG) approximate solution is defined as a func-
tion whτ ∈ Sr,q

h,τ satisfying (32) and the following relation for m = 1, ..., M :
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∫

Im

((
DAwhτ

Dt
(t), ϕhτ

)

t

+ âh(whτ , whτ , ϕhτ , t)
)

dt (33)

+
∫

Im

(
b̂h(whτ ,whτ , ϕhτ , t) +

∫

Im

Jh(whτ ,ϕhτ , t)
)

dt

+
∫

Im

(
β̂h(whτ , whτ ,ϕhτ , t) + Ĵh(whτ , whτ , ϕhτ , t)

)
dt

+({whτ}m−1, ϕhτ (tm−1+)) =
∫

Im

`h(whD, ϕhτ , t) dt, ∀ϕhτ ∈ Sr,q
h,τ .

Remark 1. In practical computations, integrals appearing in the definitions of
the forms âh, b̂h, dh, Jh, Ĵh and β̂h and also the time integrals are evaluated
with the aid of quadrature formulas.

The linear algebraic systems equivalent to (30) and (33) are solved either
by the direct solver UMFPACK ([5]) or by the GMRES method with block
diagonal preconditioning.

The developed numerical schemes can also be used for the numerical so-
lution of inviscid flow described by the Euler equations. This means that we
consider µ = λ = k = 0.

4 Numerical experiments

In this section, we shall present results of numerical examples proving that
the worked out method allows the numerical solution with very low Mach
number flow as well as high-speed flow. Moreover, the application to fluid-
structure interaction will be demonstrated.

4.1 Inviscid stationary flow with low Mach number

First we present numerical experiments carried out in [14] in the case
of inviscid low Mach number flow at the incompressible limit. We con-
sider flow past a negatively oriented Joukowski profile given by parameters
∆ = 0.07, a = 0.5, h = 0.05 (under the notation from [10], Section 2.2.68)
with zero angle of attack. The flow is irrotational and homoentropic, be-
cause the far-field quantities are constant. The complex function method
from [10], allowed us to obtain the exact solution of incompressible inviscid
irrotational flow. The velocity circulation is chosen in such a way that the
Kutta–Joukowski trailing condition is satisfied.

Compressible inviscid flow past the profile with far-field Mach number
M∞ = 0.0001 was computed by the developed scheme (30), using the first-
order BDF time discretization. The steady state solution was obtained via
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time stabilization for ”t → ∞”. This means that the numerical scheme was
used as an iterative process for ”k → ∞”. This process was stopped, when
the approximation of the time derivative satisfied the condition

∥∥∥∥
wm

h −wm−1
h

τm

∥∥∥∥
L∞(Ω)

< 10−8. (34)

Figure 1 shows a detail near the profile of the velocity isolines for the exact
solution of incompressible flow and for the approximate solution of compress-
ible flow. In Figure 2, pressure isolines of incompressible and compressible
flow are plotted. Further, in Figures 3 and 4, the velocity distribution and
pressure coefficient distribution, respectively, past the profile is plotted in the
direction from the leading edge to the trailing edge (◦ ◦ ◦ – exact solution of
incompressible flow, —— – approximate solution of compressible flow). The
pressure coefficient was defined as 107 · (p − p∞), where p∞ denotes the far
field pressure. The maximum density variation is 1.04 · 10−8, which means
that the computed flow field is practically incompressible.

Fig. 1 Velocity isolines for the exact solution of incompressible flow (left) and ap-
proximate solution of compressible flow (right)

Fig. 2 Pressure isolines for the exact solution of incompressible flow (left) and ap-
proximate solution of compressible flow (right)
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Fig. 3 Flow past a Joukowski profile, velocity distribution along the profile: ◦ ◦ ◦
– exact solution of incompressible flow, —— – approximate solution of compressible
flow
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Fig. 4 Flow past a Joukowski profile, pressure distribution along the profile: ◦ ◦ ◦
– exact solution of incompressible flow, —— – approximate solution of compressible
flow

4.2 Flow induced airfoil vibrations

The second example is concerned with the simulation of vibrations of an
elastically supported NACA 0012 airfoil, induced by compressible viscous
flow. The airfoil has two degrees of freedom: the vertical displacement H
(positively oriented downwards) and the angle of rotation around an elastic
axis α (positively oriented clockwise), cf. Figure 5. The motion of the airfoil
is described by the system of nonlinear ordinary differential equations for the
unknowns H and α:

mḦ + kHHH + Sα α̈ cosα− Sαα̇2 sin α + dHHḢ = −L(t), (35)

SαḦ cosα + Iαα̈ + kααα + dααα̇ = M(t).

The dot and two dots denote the first- and second-order time derivative,
respectively. We use the following notation: L(t) – aerodynamic lift force
(upwards positive), M(t) – aerodynamic torsional moment (clockwise posi-
tive), m - mass of the airfoil, Sα – static moment around the elastic axis EO,
Iα – inertia moment around the elastic axis EO, kHH – bending stiffness, kαα
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Fig. 5 Elastically supported airfoil with two degrees of freedom.

– torsional stiffness, dHH – structural damping in bending, dαα – structural
damping in torsion, c - length of the chord of the airfoil, l – airfoil depth.

System (35) is equipped with the initial conditions prescribing the values
H(0), α(0), Ḣ(0), α̇(0). It is transformed to a first-order ODE system and
solved numerically by the fourth-order Runge-Kutta method. For the deriva-
tion of equations (35), see [17]. The aerodynamic lift force L acting in the
vertical direction and the torsional moment M are defined by

L = − l

∫

ΓW t

2∑

j=1

τ2jnjdS, M = l

∫

ΓW t

2∑

i,j=1

τijnjr
ort
i dS, (36)

where

τij = (−p + λ divv)δij + µ
( ∂ui

∂xj
+

∂uj

∂xi

)
, (37)

rort
1 = −(x2 − xEO2), rort

2 = x1 − xEO1.

By τij we denote the components of the stress tensor, δij denotes the Kro-
necker symbol, n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt (pointing
into the airfoil) and xEO = (xEO1, xEO2) is the position of the elastic axis (ly-
ing in the interior of the airfoil). Relations (36) and (37) define the coupling
of the fluid dynamical model with the structural model.

In the solution of the complete coupled fluid-structure interaction problem
we apply the following algorithm:

1) Assume that the approximate solution of the discrete flow problem at
time levels tm−2 and tm−1 is known and the force L and torsional moment
M are computed from (36).

2) Extrapolate L and M on the time interval [tm−1, tm].
3) Compute the displacement H and angle α at time tm as the solution of

system (35).
4) Determine the position of the airfoil at time tm, the domain Ωtm , the

ALE mapping and the domain velocity at time tm.
5) Solve the discrete system at time tm.
6) Compute L andM at time tk+1 and interpolate L andM on [tm−1, tm].
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Fig. 6 Triangulation with 42821 elements and its detail near the airfoil.

7) Is higher accuracy needed? YES: go to 3); NO: m := m + 1, go to 2).

If in step 7) one goes to 2), the so-called loose (weak) coupling is applied.
In our numerical experiments the stronger coupling was applied with 4 – 5
loops for obtaining the difference between two approximations of H and α
less than 10−5. The ALE mapping and the domain velocity are computed in
the same way as in [9].

The developed methods allow the numerical simulation of airfoil vibra-
tions induced by low Mach number flows as well as high-speed transonic and
hypersonic flows with large Reynolds numbers. It appears that in the method
combining the DG space discretization with the BDF time discretization in-
stabilities may appear for flows with far-field Mach numbers higher than 1.5.
This is not the case of the space-time DG method, which is very robust and
stable for a large range of Mach and Reynolds numbers. Here we present the
results of the simulation of airfoil vibrations induced by the flow with far-field
Mach number M∞ = 3 and Reynolds numbers 104 and 105. Here we present
the results of computations carried out with the following data: m = 0.086622
kg, Sα = −0.000779673 kgm, Iα = 0.000487291 kg m2, kHH = 105109 N/m,
kαα = 3696.682 Nm/rad, l = 0.05 m, c = 0.3 m, µ = 1.8375 · 10−5 kg m−1

s−1, far-field density ρ = 1.225 kg m−3, H(0) = 0.02 m, α(0) = 6 degrees,
Ḣ(0) = 0, α̇ = 0. Structural damping is neglected. The elastic axis is placed
on the airfoil chord at 40% distance from the leading edge.

The solution of the flow problem was realized by the space-time DG
method with quadratic elements in space (r = 2) and linear elements in
time (q = 1) and SIPG version of the viscous terms discretization. The pa-
rameter CW = 500 in the interior part of the penalty form Jh was used,
whereas in the boundary penalty CW = 5000. The constants in the artificial
viscosity forms were chosen ν1 = ν2 = 0.1.

The computational process started at time t = −δ < 0 by the solution of
the flow, keeping the airfoil in a fixed position given by the prescribed initial
translation H and the angle of attack α. Then, at time t = 0 the airfoil
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Fig. 7 The graphs of the displacement H and the rotation angle α in dependence
on time for far-field velocity 1020 m/s and Mach number M∞ = 3.0.

was released and we continued by the solution of a complete fluid-structure
interaction problem.

The initial triangulation (i.e. at time t = 0) is shown in Figure 6. In Figure
7, the graphs of the displacement H and the rotation angle ∠ in dependence
on time are shown for the Reynolds numbers 104 and 105. Figure 8 shows
Mach number distribution in the vicinity of the airfoil at several time instants.
One can see well resolved oblique shock wave, shock waves leaving the trailing
edge and wake leaving the airfoil.
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Fig. 8 Mach number distribution at time instants t = 0.0 s, 0.00039 s, 0.00078 s,
0.00117 s for the far-field velocity 1020 m/s (M∞ = 3.0) and Reynolds numbers
Re = 104 (left) and Re = 105 (right).
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5 Conclusion

The paper presents a description of a numerical method for the solution of
compressible flow in time-dependent domains and the applications to the
simulation of airfoil vibrations induced by compressible flow. The gas flow is
described by the 2D compressible Navier-Stokes equations in the ALE formu-
lation allowing to take into account time dependence of the computational
domain.The flow problem is coupled with the structural problem represented
by the system of second-order ordinary differential equations for the vertical
displacement and torsional angle of the airfoil. Numerical experiments show
that the method is robust with respect to a wide range of Mach numbers
and Reynolds numbers. We compare the results of the numerical solution of
compressible inviscid flow past an isolated Joukowski airfoil close to incom-
pressible limit with incompressible solution. Further, an example of airfoil
vibrations induced by hypersonic viscous flow is presented, demonstrating
the applicability of the method to fluid-structure interaction problems with
high Mach numbers and Reynolds numbers. The developed technique is based
on the following ingredients:
- the ALE method applied to the compressible Navier-Stokes equations,
- the application of the discontinuous Galerkin method to the flow problem
discretization,
- semi-implicit linearized time discretization,
- treatment of boundary conditions,
- artificial viscosity applied in the vicinity of internal and boundary layers,
- construction of the ALE mapping and the domain velocity,
- algorithm for the coupling of flow and structural problem.
There are the following subjects for further work:
- realization of further tests of the developed technique,
- solution of problems with large vibrations,
- comparison of obtained results with wind tunnel experiments,
- theoretical analysis of qualitative properties (e.g. stability, convergence) of
the numerical methods.
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