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1. Introduction

The studies on flow-induced vibrations play an important role in a number
of fields in science and technology (e.g., vibrations of airplane wings or turbine
blades, interaction of wind with bridges, TV towers or cooling towers of
power stations) but also in biomechanics, e.g., simulation of the vocal folds
vibrations and voice production. In all of these examples the moving medium
is gas, i.e. compressible fluid. For low Mach number flows incompressible
models are used (as e.g. in [3], [12]), but in some cases compressibility plays
an important role.

The goal of our research is the numerical finite element (FE) simulation
of interaction of compressible 2D viscous flow in the glottal region with a
compliant tissue of the human vocal folds modeled by a 2D elastic layered
structure. A current challenging question is a mathematical and physical de-
scription of the mechanism for transforming the airflow energy in the glottis
into the acoustic energy representing the voice source in humans. The pri-
mary voice source is given by the airflow coming from the lungs that causes
self-oscillations of the vocal folds. The voice source signal travels from the
glottis to the mouth, exciting the acoustic supraglottal spaces, and becomes
modified by acoustic resonance properties of the vocal tract ([13]).

An overview [2] presents the current state of mathematical models for the
human phonation process. In current publications various simplified glottal
flow models are used. They are based on the Bernoulli equation ([13]), 1D
models for an incompressible inviscid fluid ([9]), 2D incompressible Navier-
Stokes equations solved by the finite volume method ([1]) or finite element
method ([15]). Acoustic wave propagation in the vocal tract is usually mod-
elled separately using linear acoustic perturbation theory ([14]). Work [11] is
concerned with the finite volume solution of the Navier-Stokes equations for
a compressible fluid with prescribed periodic changes of the channel cross-
section of the glottal channel. The phonation onset was studied by using the
potential flow model and three-mass lumped model for the vibrating vocal
folds in [8] and for a 2D isotropic elastic model of the vocal folds in [16].

The present paper is devoted to the numerical simulation of vocal folds
vibrations induced by compressible viscous flow. The air flow is described by
the compressible Navier-Stokes equations written in the arbitrary Lagrangian-
Eulerian (ALE) form in order to take into account the time dependence of
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the domain occupied by the air. The vocal folds are considered as isotropic
elastic bodies. Their vibrations are described by the linear elasticity equa-
tions. The coupled fluid-structure interaction problem represents a strongly
nonlinear dynamical system, which is analyzed numerically.

The flow problem is discretized in space by the discontinuous Galerkin fi-
nite element method (DGFEM), using piecewise polynomial approximations,
in general discontinuous on interfaces between neighbouring elements. The
time discretization is carried out by the backward difference formula (BDF)
in time. The structural problem is approximated by conforming finite ele-
ments and the Newmark method. The fluid-structure interaction is realized
via weak or strong coupling algorithms.

The contents of the paper is the following. In Section 2, the continuous
fluid-structure interaction (FSI) problem is formulated. Section 3 is con-
cerned with the derivation of the discrete problem. Section 4 is devoted to
the realization of the coupled FSI problem. It consists of the construction of
the ALE mapping and the formulation of the coupling algorithms. In Sec-
tion 5, we present results of numerical tests showing the applications to the
simulation of flow-induced vibrations of vocal folds. In Conclusion, subjects
for future work are formulated.

2. Continuous problem

In this section we shall formulate the problem of the interaction of a
compressible flow with an elastic structure.

2.1. Formulation of the flow problem

We consider a compressible flow in a bounded domain Ωt ⊂ IR2 depending
on time t ∈ [0, T ]. We assume that the boundary of Ωt is formed by three
disjoint parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt

, where ΓI is the inlet, ΓO is the outlet
and ΓWt

denotes impermeable walls that may move in dependence on time.
The dependence of the domain Ωt on time is taken into account with the

use of the arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [10]. It is
based on a regular one-to-one ALE mapping of the reference configuration
Ω0 onto the current configuration Ωt:

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.
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We define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (1)

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of the vector function w = w(x, t) defined for x ∈ Ωt

and t ∈ [0, T ]:
DA

Dt
w(x, t) =

∂w̃

∂t
(X, t), (2)

where
w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X).

Then, using the relations

DAwi

Dt
=

∂wi

∂t
+ div (zwi) − wi div z, i = 1, . . . , 4,

we can write the governing system consisting of the continuity equation, the
Navier-Stokes equations and the energy equation in the ALE form

DAw

Dt
+

2
∑

s=1

∂gs(w)

∂xs
+w divz =

2
∑

s=1

∂Rs(w,∇w)

∂xs
. (3)

See, for example [6]. Here

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T ∈ R

4, (4)

w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

gs(w) = f s(w) − zsw, s = 1, 2,

f i(w) = (fi1, · · · , fi4)
T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)

T ,

Ri(w,∇w) = (Ri1, . . . , Ri4)
T =

(

0, τV
i1 , τV

i2 , τV
i1 v1 + τV

i2 v2 + k∂θ/∂xi

)T
,

τV
ij = λ divv δij + 2µ dij(v), dij(v) =

1

2

(

∂vi

∂xj

+
∂vj

∂xi

)

.

We use the following notation: ρ – density, p – pressure, E – total energy,
v = (v1, v2) – velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic
constant, cv > 0 – specific heat at constant volume, µ > 0, λ = −2µ/3 –
viscosity coefficients, k – heat conduction, τV

ij – components of the viscous
part of the stress tensor. The vector-valued function w is called state vector,
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the functions f i are the so-called inviscid fluxes and Ri represent viscous
terms. The above system is completed by the thermodynamical relations

p = (γ − 1)(E −
1

2
ρ|v|2), θ =

1

cv

(E

ρ
−

1

2
|v|2

)

. (5)

The resulting system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (6)

and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)
T, (7)

c)

2
∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI ,

d) v|ΓWt
= zD = velocity of a moving wall, e)

∂θ

∂n
|ΓWt

= 0 on ΓWt
,

f)

2
∑

i=1

τV
ij ni = 0, j = 1, 2, g)

∂θ

∂n
= 0 on ΓO,

with prescribed data ρD,vD and zD.

2.2. Elasticity problem and fluid-structure interaction coupling

For the description of the deformation of an elastic structure we shall
use the model of dynamical linear elasticity formulated in a bounded open
set Ωb ⊂ R

2 representing the elastic body, which has a common boundary
with the reference domain Ω0 occupied by the fluid at the initial time. We
denote by u(X, t) = (u1(X, t), u2(X, t), X = (X1, X2) ∈ Ωb, t ∈ (0, T ), the
displacement of the body. The equations describing the deformation of the
elastic body Ωb have the form

̺b ∂
2ui

∂t2
+ C̺b ∂ui

∂t
−

2
∑

j=1

∂τ b
ij

∂Xj
= 0 in Ωb × (0, T ), i = 1, 2. (8)

Here τ b
ij are the components of the stress tensor defined by the generalized

Hooke’s law for isotropic bodies

τ b
ij = λbdivu δij + 2µbeb

ij(u), i, j = 1, 2. (9)
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By eb = {eb
ij}

2
i,j=1 we denote the strain tensor defined by

eb
ij(u) =

1

2

(

∂ui

∂Xj
+

∂uj

∂Xi

)

, i, j = 1, 2. (10)

The Lamé coefficients λb and µb are related to the Young modulus Eb and
the Poisson ratio σb as

λb =
Ebσb

(1 + σb)(1 − 2σb)
, µb =

Eb

2(1 + σb)
, (11)

The expression C̺b ∂ui

∂t
, where C ≥ 0, is the dissipative structural damping

of the system and ̺b denotes the material density.
We complete the elasticity problem by initial and boundary conditions.

The initial conditions read

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in Ωb. (12)

Further, we assume that ∂Ωb = Γb
W ∪Γb

D, where Γb
W and Γb

D are two disjoints
parts of ∂Ωb. We assume that Γb

W is a common part between the fluid and
structure at time t = 0. This means that Γb

W ⊂ ΓW0
. On Γb

W we prescribe
the normal component of the stress tensor and assume that the part Γb

D is
fixed. This means that the following boundary conditions are used:

2
∑

j=1

τ b
ijnj = Tn

i on Γb
W × (0, T ), i = 1, 2, (13)

u = 0 on Γb
D × (0, T ). (14)

By Tn = (T n
1 , T n

2 ) we denote the prescribed normal component of the stress
tensor.

The structural problem consists in finding the displacement u satisfying
equations (8) and the initial and boundary conditions (12) – (14).

Now we shall deal with the formulation of the coupled FSI problem. We
denote the common boundary between the fluid and the structure at time t
by Γ̃Wt

. It is given by

Γ̃Wt
=

{

x ∈ R
2; x = X + u(X, t), X ∈ Γb

W

}

. (15)

Thus, the domain Ωt is determined by the displacement u of the part Γb
W

at time t. The ALE mapping At is constructed with the aid of a special
stationary linear elasticity problem - see Section 4.1.
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If the domain Ωt occupied by the fluid at time t is known, we can solve the
problem describing the flow and compute the surface force acting onto the
body on the interface Γ̃Wt

, which can be transformed to the reference config-
uration, i.e. to the interface Γb

W . In case of the linear elasticity model, when
only small deformations are considered, we get the transmission condition

2
∑

j=1

τ b
ij(X)nj(X) = −

2
∑

j=1

τ f
ij(x)nj(X), i = 1, 2, (16)

where τ f
ij are the components of the stress tensor of the fluid:

τ f
ij = −pδij + τV

ij , i, j = 1, 2, (17)

the points x and X satisfy the relation

x = X + u(X, t). (18)

and n(X) = (n1(X), n2(X)) denotes the unit outer normal to the body Ωb

on Γb
W at the point X. Further, the fluid velocity is defined on the moving

part of the boundary Γ̃Wt
by the second transmission condition

v(x, t) = zD(x, t) =
∂u(X, t)

∂t
. (19)

Now we formulate the continuous FSI problem: We want to determine
the domain Ωt, t ∈ (0, T ] and functions w = w(x, t), x ∈ Ωt, t ∈ [0, T ]

and u = u(X, t), X ∈ Ω
b
, t ∈ [0, T ] satisfying equations (3), (8), the

initial conditions (6), (12), the boundary conditions (7), (13), (14) and the
transmission conditions (16), (19).

This FSI problem represents a strongly nonlinear dynamical system. The-
oretical analysis of qualitative properties of this problem, as the existence,
uniqueness and regularity of its solution, is open. Therefore, in the sequel
we shall be concerned with its numerical solution.

3. Discrete problem

First we describe numerical methods for the solution of separately con-
sidered flow and structural problems.
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3.1. Discretization of the flow problem

3.1.1. Space discretization

For the space semidiscretization we use the discontinuous Galerkin finite
element method (DGFEM). We construct a polygonal approximation Ωht of
the domain Ωt. By Tht we denote a partition of the closure Ωht of the domain
Ωht into a finite number of closed triangles K with mutually disjoint interiors
such that Ωht =

⋃

K∈Tht
K.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further,
we introduce the set of all interior faces F I

ht = {Γ ∈ Fht; Γ ⊂ Ωt} , the set of
all boundary faces FB

ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} and the set of all “Dirichlet”
boundary faces FD

ht =
{

Γ ∈ FB
ht; a Dirichlet condition is prescribed on Γ

}

.
Each Γ ∈ Fht is associated with a unit normal vector nΓ to Γ. For Γ ∈ FB

ht

the normal nΓ has the same orientation as the outer normal to ∂Ωht. We set
d(Γ) = length of Γ ∈ Fht.

For each Γ ∈ F I
ht there exist two neighbouring elements K

(L)
Γ , K

(R)
Γ ∈ Tht

such that Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the

direction of nΓ and K
(L)
Γ lies in the opposite direction to nΓ. If Γ ∈ FB

ht,

then the element adjacent to Γ will be denoted by K
(L)
Γ .

The approximate solution will be sought in the space of piecewise poly-
nomial functions

Sht = [Sht]
4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (20)

where r ≥ 1 is an integer and Pr(K) denotes the space of all polynomials on K
of degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces
Γ ∈ F I

ht. By ϕ
(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered from

the interior and the exterior of K
(L)
Γ , respectively, and set

〈ϕ〉Γ = (ϕ
(L)
Γ +ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ − ϕ

(R)
Γ . (21)

The discrete problem is derived in the following way: We multiply system
(3) by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s
theorem, sum over all elements K ∈ Tht, use the concept of the numerical
flux and introduce suitable terms mutually vanishing for a regular exact
solution. Moreover, we carry out a linearization of nonlinear terms. In a
similar way as in [6] we define the following forms.

Convection form: We set As(w) = Df s(w)/Dw, which is the Jacobi

matrix of the mapping f s. Then
Dg

s
(w)

Dw = As(w) − zsI, and we write
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Pg(w,n) =
∑2

s=1

Dg
s
(w)

Dw ns =
∑2

s=1 (As(w)ns − zsnsI). By [5], this matrix is
diagonalizable. It means that there exists a nonsingular matrix T = T(w,n)
such that Pg = TIΛT

−1, IΛ = diag(λ1, . . . , λ4) where λi = λi(w,n) are
eigenvalues of the matrix Pg. Further, we define the ”positive” and ”nega-
tive” parts of the matrix Pg by P

±
g = TIΛ±

T
−1, IΛ± = diag(λ±

1 , . . . , λ±
4 ),

where λ+ = max(λ, 0), λ− = min(λ, 0). Now, in the same way as in [6], for
wh,wh,ϕh ∈ Sht we define the linearized convection form

b̂h(wh,wh,ϕh) (22)

= −
∑

K∈Thtk+1

∫

K

2
∑

s=1

(As(wh) − zs(x))I)wh)·
∂ϕh

∂xs

dx

+
∑

Γ∈FI

ht

∫

Γ

(

P
+
g

(〈

wh

〉

,nΓ

)

w
(L)
h + P

−
g

(〈

wh

〉

,nΓ

)

w
(R)
h

)

· [ϕh] dS

+
∑

Γ∈FB

ht

∫

Γ

(

P
+
g

(〈

wh

〉

,nΓ

)

w
(L)
h + P

−
g

(〈

wh

〉

,nΓ

)

w
(R)
h

)

·ϕh dS.

If Γ ∈ FB
ht, it is necessary to specify the boundary state w

(R)
hΓ appearing in

the numerical flux Hg in the definition of the inviscid form b̂h. Here we use
the approach applied in the case of inviscid flow simulation, treated in [5],
using a linearized initial-boundary value 1D Riemann problem.

Viscous form: The linearization of the viscous terms is based on the fact
thatRs(wh,∇wh) is linear in ∇w and nonlinear in w. We get the linearized
viscous form

âh(wh,wh,ϕh) =
∑

K∈Tht

∫

K

2
∑

s=1

Rs(wh,∇wh) ·
∂ϕh

∂xs
dx (23)

−
∑

Γ∈FI

ht

∫

Γ

2
∑

s=1

〈

Rs(wh,∇wh)
〉

(nΓ)s · [ϕh] dS

−
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

Rs(wh,∇wh)(nΓ)s ·ϕh dS.

(We use the so-called incomplete version of the approximation of the viscous
terms.)
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Interior and boundary penalty and righ-hand side forms: Further, we set

Jh(w,ϕh) =
∑

Γ∈FI

ht

∫

Γ

σ[w] · [ϕh] dS +
∑

Γ∈FD

ht

∫

Γ

σw ·ϕh dS, (24)

ℓh(w,ϕh) =
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

σwB ·ϕh dS. (25)

Here σ|Γ = CWµ/d(Γ) and CW > 0 is a sufficiently large constant. The
boundary state wB is defined on the basis of the Dirichlet boundary condi-
tions (7), a), b), d) and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1

2
ρD|vD|

2) on ΓI , (26)

wB = w
(L)
Γ on ΓO, (27)

wB = (ρ
(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1

2
ρ

(L)
Γ |zD|

2) on ΓWt
. (28)

Reaction form reads

dh(w,ϕh) =
∑

K∈Tht

∫

K

(w ·ϕh) divz dx. (29)

3.1.2. Time discretization

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval
[0, T ] and define the time step τk = tk+1 − tk. We use the approximations
wh(tn) ≈ wn

h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . ., and introduce the function
ŵk

h = wk
h ◦ Atk ◦ A−1

tk+1
, which is defined in the domain Ωhtk+1

. The ALE
derivative at time tk+1 is approximated by the first- or second-order backward
finite difference

DAwh

Dt
(x, tk+1) ≈

wk+1
h (x) − ŵk

h(x)

τk
, (30)

or

DAwh

Dt
(tk+1) ≈

2τk + τk−1

τk(τk + τk−1)
wk+1

h −
τk + τk−1

τkτk−1
ŵk

h +
τk

τk−1(τk + τk−1)
ŵk−1

h .

(31)
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By the symbol (·, ·) we shall denote the scalar product in L2(Ωhtk+1
), i.e.

(wh,ϕh) =

∫

Ωhtk+1

wh ·ϕh dx, (32)

respectively.
In order to avoid spurious oscillations in the approximate solution in

the vicinity of discontinuities or steep gradients, we apply artificial viscosity
forms introduced in [7]. They are based on the discontinuity indicator

gk(K) =

∫

∂K

[ρ̂k
h]

2 dS
/

(hK |K|3/4), K ∈ Thtk+1
. (33)

By [ρ̂k
h] we denote the jump of the function ρ̂k

h on the boundary ∂K and
|K| denotes the area of the element K. Then for each K ∈ Thtk+1

we define
the discrete discontinuity indicator Gk(K) = 0 if gk(K) < 1, Gk(K) =
1 if gk(K) ≥ 1 and the artificial viscosity forms

β̂h(ŵ
k
h,w

k+1
h ,ϕh) = ν1

∑

K∈Thtk+1

hKGk(K)

∫

K

∇wk+1
h · ∇ϕh dx, (34)

Ĵh(ŵ
k
h,w

k+1
h ,ϕh) = ν2

∑

Γ∈FI

htk+1

1

2

(

Gk(K
(L)
Γ ) + Gk(K

(R)
Γ )

)

∫

Γ

[wk+1
h ]· [ϕh] dS,

with parameters ν1, ν2 = O(1).
Finally, by wk+1

h we denote the state obtained by the extrapolation:

wk+1
h = ŵk

h and wk+1
h =

τk + τk−1

τk−1

ŵk
h −

τk

τk−1

ŵk−1
h (35)

in the case of the first-order time discretization and second-order time dis-
cretization, respectively.

The resulting scheme has the following form: For each k = 0, 1, . . . we
seek wk+1

h ∈ Shtk+1
such that

(wk+1
h − ŵk

h

τk
,ϕh

)

+ b̂h(w
k+1
h ,wk+1

h ,ϕh) + âh(w
k+1
h ,wk+1

h ,ϕh)

+ Jh(w
k+1
h ,ϕh) + dh(w

k+1
h ,ϕh) + β̂h(ŵ

k
h,w

k+1
h ,ϕh)

+ Ĵh(ŵ
k
h,w

k+1
h ,ϕh) = ℓ(wk+1

B ,ϕh), ∀ϕh ∈ Shtk+1
, (36)

in the case of the first-order time discretization. In the case of the second-
order time discretization the expression (wk+1

h − ŵk
h,ϕh)/τk is replaced by

by the approximation (31).
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3.2. Discretization of the structural problem

3.2.1. Space semidiscretization

The space semidiscretization of the structural problem will be carried
out by the conforming finite element method. By Ωb

h we denote a polygonal
approximation of the domain Ωb. We construct a triangulation T b

h of the
domain Ωb

h formed by a finite number of closed triangles with the following
properties:

a) Ω
b

h =
⋃

K∈T b

h

K.

b) The intersection of two different elements K, K ′ ∈ T b
h is either empty or

a common edge of these elements or their common vertex.
c) The vertices lying on ∂Ωb

h are elements of ∂Ωb.

d) The set Γ
b

W ∩ Γ
b

D is formed by vertices of some elements K ∈ T b
h .

Further, by Γb
Wh and Γb

Dh we denote the parts of ∂Ωb
h approximating Γb

W

and Γb
D.

The approximate solution of the structural problem will be sought in the
finite-dimensional space Xh = Xh × Xh, where

Xh =
{

vh ∈ C(Ω
b

h); vh|K ∈ Ps(K), ∀K ∈ T b
h

}

(37)

and s ≥ 1 is an integer. In Xh we define the subspace Vh = Vh × Vh, where

Vh =
{

yh ∈ Xh; yh|Γb

Dh

= 0
}

. (38)

The derivation of the space semidiscretization can be obtained in a stan-
dard way. Multiplying system (8) by any test function yhi ∈ Vh, i = 1, 2,
applying Green’s theorem and using the boundary condition (13), we obtain
an identity containing the forms defined for uh = (uh1, uh2), yh = (yh1, yh2) ∈
Xh:

ah(uh,yh) =

∫

Ωb

h

λbdivuh div yh dX+2

∫

Ωb

h

µb

2
∑

i,j=1

eb
ij(uh) eb

ij(yh) dX, (39)

and

(ϕ,ψ)Ωb

h

=

∫

Ωb

h

ϕ ·ψ dX, (ϕ,ψ)ΓWh
=

∫

ΓWh

ϕ ·ψ dS. (40)

We shall use the approximation Tn

h ≈ Tn and the notation u′
h(t) = ∂uh(t)

∂t
and

u′′
h(t) = ∂2

uh(t)
∂t2

. Then we define the approximate solution of the structural
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problem as a function t ∈ [0, T ] → uh(t) ∈ Vh such that there exist the
derivatives u′

h(t), u
′′
h(t) and the identity

(̺bu′′
h(t),yh)Ωb

h

+ (C̺bu′
h(t),yh)Ωb

h

+ ah(uh(t),yh) = (Tn

h (t),yh)ΓWh
,

∀yh ∈ Vh, ∀t ∈ (0, T ), (41)

and the initial conditions

uh(X, 0) = 0, u′
h(X, 0) = 0, X ∈ Ωb

h. (42)

are satisfied.
The discrete problem (41), (42) is equivalent to the solution of a sys-

tem of ordinary differential equations. Let functions ϕ1, . . . , ϕm form a ba-
sis of the space Vh. Then the system of n = 2m of the vector functions
(ϕ1, 0), . . . , (ϕm, 0), (0, ϕ1), . . . , (0, ϕm) form a basis of the space V h. Let
us denote them by ϕ1, . . .ϕn. Then the approximate solution uh can be
expressed in the form

uh(t) =

n
∑

j=1

pj(t)ϕj , t ∈ [0, T ]. (43)

Let us set p(t) = (p1(t), . . . , pn(t)). Using ϕj , j = 1, . . . , n, as test functions
in (41), we get the following system of ordinary differential equations

Mp′′ = G− Kp− CMp′, (44)

where M = (mij)
n
i,j=1 is the mass matrix and K = (kij)

n
i,j=1 is the stiffness

matrix with the elements mij = (ρbϕi,ϕj) and kij = ah(ϕi,ϕj), respectively.
The aerodynamic force vector G = G(t) = (G1(t), . . . , Gn(t))T has the com-
ponents Gi(t) = (T n

h (t),ϕi)ΓWh
, i = 1, . . . , n. System (44) is equipped with

the initial conditions

pj(0) = 0, p′j(0) = 0, j = 1, . . . , n. (45)

3.2.2. Time discretization of the structural problem

The discrete initial value problem (44), (45) is solved by the Newmark
method ([4]). We consider the partition of the time interval [0, T ] formed by
the time instants 0 = t0 < t1 < . . . introduced in Section 3.1.2. Let us set
p0 = 0, z0 = 0,Gk = G(tk), and introduce the approximations pk ≈ p(tk)

13



and qk ≈ p′(tk) for k = 1, 2, . . . . The Newmark scheme can be written in
the form

pk+1 = pk + τkqk + τ 2
k

(

β
(

M
−1Gk+1 − M

−1
Kpk+1 − Cqk+1

)

(46)

+

(

1

2
− β

)

(

M
−1Gk − M

−1
Kpk − Cqk

)

)

,

qk+1 = qk + τk

(

γ
(

M
−1Gk+1 − M

−1
Kpk+1 − Cqk+1

)

(47)

+ (1 − γ)
(

M
−1Gk − M

−1
Kpk − Cqk

)

)

,

where β, γ ∈ R are parameters. From equation (47) we get

qk+1 =
1

1 + Cγτk

(

qk + τk

(

γ
(

M
−1Gk+1 − M

−1
Kpk+1

)

(48)

+ (1 − γ)
(

M
−1Gk − M

−1
Kpk − Cqk

)

)

)

.

The substitution of (48) in (46) yields the relation which can be written in
the form

(

I + ξkM
−1

K
)

pk+1 = pk + (τk − Cξk) qk + ξkM
−1Gk+1 + (49)

+

(

C (γ − 1) ξkτk +

(

1

2
− β

)

τ 2
k

)

(

M
−1Gk − M

−1
Kpk − Cqk

)

.

where we set for the sake of simplicity

ξk = βτ 2
k

(

1 −
Cγτk

1 + Cγτk

)

=
βτ 2

k

1 + Cγτk
. (50)

If pk and qk are known, then pk+1 is obtained from system (49) and after-
wards qk+1 is computed from (48).

In numerical examples presented in Section 5, the parameters β = 1/4
and γ = 1/2 were used. This choice yields the Newmark method of the
second order.

4. Realization of the coupled FSI problem

In this section we shall describe the algorithm of the numerical realization
of the complete fluid-structure interaction problem.
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4.1. Construction of the ALE mapping for fluid

The ALE mapping is constructed with the aid of an artificial stationary
elasticity problem. We seek d = (d1, d2) defined in Ω0 as a solution of the
elastostatic system

2
∑

j=1

∂τa
ij

∂xj
= 0 in Ω0, i = 1, 2, (51)

where τa
ij are the components of the artificial stress tensor

τa
ij = λadivd δij + 2µaea

ij , ea
ij(d) =

1

2

(

∂di

∂xj
+

∂dj

∂xi

)

, i, j = 1, 2. (52)

The Lamé coefficients λa and µa are related to the artificial Young modu-
lus Ea and to the artificial Poisson number σa as in (11). The boundary
conditions for d are prescribed by

d|ΓI∪ΓO
= 0, d|ΓW0h\ΓWh

= 0, d(x, t) = u(x, t), x ∈ ΓWh. (53)

The solution of (51) gives us the ALE mapping of Ω0 onto Ωt in the form

At(x) = x+ d(x, t), x ∈ Ω0, (54)

for each time t.
System (51) is discretized by the conforming piecewise linear finite ele-

ments on the mesh Th0 used for computing the flow field in the beginning of
the computational process in the polygonal approximation Ωh0 of the domain
Ω0. The use of linear finite elements is sufficient, because we need only to
know the movement of the points of the mesh.

In our computations we choose the Lamé coefficients λa and µa as con-
stants corresponding to the Young modulus and Poisson ratio Ea = 10000
and σa = 0.45.

If the displacement dh is computed at time tk+1, then in view of (54), the
approximation of the ALE mapping is obtained in the form

Atk+1h(x) = x+ dh(x), x ∈ Ω0h. (55)

The knowledge of the ALE mapping at the time instants tk−1, tk, tk+1 al-
lows us to approximate the domain velocity with the aid of the second-order
backward difference formula

zk+1
h (x) =

3x− 4Atkh(A
−1
tk+1h(x)) + Atk−1h(A

−1
tk+1h(x))

2τ
, x ∈ Ωtk+1h. (56)
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Figure 1: Computational domain at time t = 0 with a finite element mesh.

4.2. Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem
it is necessary to apply a suitable coupling procedure. See, e.g. [3] for a
general framework. Here we apply the following algorithm.

1. Assume that the approximate solution of the flow problem on the time
level tk is known as well as the deformation of the structure uh,k.

2. Set u0
h,k+1 := uh,k, l := 1 and apply the iterative process:

(a) Compute the stress tensor τ f
ij and the aerodynamical force acting

on the structure and transform it to the interface Γb
Wh.

(b) Solve the elasticity problem, compute the deformation ul
h,k+1 at

time tk+1 and approximate the domain Ωl
htk+1

.

(c) Determine the ALE mapping Al
tk+1h and approximate the domain

velocity zl
h,k+1.

(d) Solve the flow problem on the approximation of Ωl
htk+1

.

(e) If the variation of the displacement ul
h,k+1 and ul−1

h,k+1 is larger than
the prescribed tolerance, go to a) and l := l + 1. Else k := k + 1
and goto 2).

This represents the so-called strong coupling. If in the step e) we set
k := k +1 and go to 2) already in the case when l = 1, then we get the weak
(loose) coupling.

5. Numerical examples

In order to demonstrate the applicability of the developed method, we
present here results of some numerical experiments.

We consider a model of flow through a channel with two bumps which
represent time dependent boundaries between the flow and a simplified model
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Figure 2: Detail of the flow computational mesh at time t = 0 near the narrowest part of
the channel and the position of some sensors used in analysis.

of vocal folds (see Figures 1 and 2). The numerical experiments were carried
out for the following data: magnitude of the inlet velocity vin = 4 m/s, the
fluid viscosity µ = 15 · 10−6 kg m−1 s−1, the inlet density ρin = 1.225 kg m−3,
the outlet pressure pout = 97611 Pa, the Reynolds number Re = ρinvinH/µ =
5227, heat conduction coefficient k = 2.428 · 10−2 kg m s−2 K−1, the specific
heat cv = 721.428 m2 s−2 K−1, the Poisson adiabatic constant γ = 1.4. The
inlet Mach number is Min = 0.012. The Young modulus and the Poisson
ratio have values Eb = 25000 Pa and σb = 0.4, respectively, the structural
damping coefficient is equal to the constant C = 100 s−1 and the material
density ρb = 1040 kg m−3 . The quadratic (r = 2) and linear (s = 1) elements
were used for the approximation of flow and structural problem, respectively.

Figure 1 shows the situation at the initial time t = 0 the flow computa-
tional mesh consisting of 5398 elements and the strucure computational mesh
with 1998 elements. In Figure 2 we see a detail of the flow mesh near the
narrowest part of the channel at the initial time and the positions of sensor
points used in the analysis.

First we tested the influence of the density of the computational meshes
on the oscillations of the pressure averaged over the outlet ΓO and the cor-
responding Fourier analysis. We consider three successively refined meshes.
Figure 3 shows the behaviour of the quantity

pav(t) =

∫

ΓO

(

p(x, t) −
1

T

∫ T

0

p(x, t) dt

)

/

∫

ΓO

dS. (57)

in dependence on time, computed on the flow/structure meshes with 5398/1998
elements (red), 10130/2806 elements (green) and 20484/4076 elements (blue)
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Figure 3: Dependence of the quantity pav computed on three meshes: strong coupling
(left), weak coupling (right).
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Figure 4: Fourier analysis of the quantity pav computed on three meshes: strong coupling
(left), weak coupling (right).

with the aid of the strong coupling (left) and the weak coupling (right). Fig-
ure 4 shows the corresponding Fourier analysis. During the successive mesh
refinement one can observe the convergence tendency manifested by the de-
crease of the magnitude of the quantity pav fluctuations and the decrease of
the magnitude of the Fourier spectra. No peaks related to any basic acoustic
modes of vibration in the channel were identified in the spectra. The dif-
ference between the results obtained by the strong and weak coupling is not
too large. The main difference is in a higher stability of the strong coupling
during solving the problem on a long time interval. On the other hand, the
strong coupling requires naturally longer CPU time.

Flow-induced deformations of the vocal folds model with the computa-
tional mesh and the velocity field near the vocal folds are shown in Figure
5 at several time instants. We can see the Coanda effect represented by the
attachment of the main stream (jet) successively to the upper and lower wall
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Figure 5: Detail of the mesh and the velocity distribution in the vicinity of the narrowest
part of the channel at time instants t = 0.2656, 0.2672, 0.2688, 0.2704 s.
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and formation of large scale vortices behind the glottis. The character of the
vocal folds vibration can be indicated in Figure 6, which shows the displace-
ments of the sensor points on the vocal folds surface (marked in Figure 2)
and the fluid pressure fluctuations in the middle of the gap as well as the
Fourier analysis of the signals. The vocal folds vibrations are not symmetric
due to the Coanda effect and are composed of the fundamental horizontal
mode of vibration with the corresponding eigen-frequency 113 Hz and by
the higher eigenmode with the eigenfrequency 439 Hz. The increase of hori-
zontal vibrations due to the aeroelastic instability of the system results in a
fast decrease of the glottal gap. At about t = 0.2 s, when the gap is nearly
closed, the fluid mesh deformation in this region is too high and the numer-
ical simulation stopped. The dominant peak at 439 Hz in the spectrum of
the pressure signal corresponds well to the vertical oscillations of the glottal
gap, while the importance of the lower frequency 113 Hz associated with the
horizontal vocal folds motion is in the pressure fluctuations negligible. The
modeled flow-induced instability of the vocal folds is called phonation onset
followed in reality by a complete closing of the glottis and consequently by
the vocal folds collisions producing the voice source acoustic signal.

6. Conclusion

We have presented a robust higher-order method for the numerical sim-
ulation of the interaction of compressible flow with elastic structures with
applications to the computation of flow-induced vibrations of vocal folds
during phonation. It is based on several important ingredients:

• the ALE method applied to the compressible Navier-Stokes equations,

• the application of the discontinuous Galerkin method for the space
discretization and semi-implicit linearized time discretization,

• the use of conforming finite elements for the space discretization and
of the Newmark method for the time discretization of the elasticity
problem,

• technique for the construction of the ALE mapping,

• the application of coupling algorithms for the realization of the coupled
FSI problem.

The numerical tests and experiments show that the developed method can
be applied to the numerical solution of the interaction of compressible flow
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Figure 6: Vibrations of sensor points lying on the boundary of the vocal folds and the
pressure oscillations in the middle of the gap (left), and the corresponding Fourier analyses
(right).
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and elastic structures with applications to the simulation of air flow through
vocal folds.

Future work will be concentrated on the following topics:

• further analysis of the robustness and accuracy of the method with
respect to the Mach number and Reynolds number,

• investigation of various types of boundary conditions,

• the realization of a remeshing in the case of closing the glottal channel
during the oscillation period of the channel walls,

• the use of nonlinear elasticity models including vocal folds collision,

• the use of a suitable turbulence model,

• the identification of the acoustic signal.
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[7] M. Feistauer and V. Kučera, On a robust discontinuous Galerkin tech-
nique for the solution of compressible flow, J. Comput. Phys., 224, 208–
221 (2007).
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