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Abstract

In this short note, we give an overview of the tools needed to estimate the error of
finite element methods applied to nonlinear convective problems with smooth solutions.
These results along with their generalizations to fully discrete explicit and implicit schemes
represent a new, promising technique first outlined by [5] and extended in [4].

1 Continuous problem and discretization

Let Ω ⊂ Rd, d ∈ N, be a bounded open polyhedral domain. We treat the following nonlinear
convective problem. Find u : Ω× (0, T ) → R such that

a)
∂u

∂t
+ div f(u) = g in QT , (1)

b) u
∣∣
ΓD×(0,T )

= 0, (2)

d) u(x, 0) = u0(x), x ∈ Ω. (3)

Here g : QT → R and u0 : Ω → R are given functions and ΓD ⊂ ∂Ω has positive measure. We
assume that the convective fluxes f = (f1, · · · , fd) ∈ (C2

b (R))d = (C2(R) ∩W 2,∞(R))d, hence f
and f ′ = (f ′1, · · · , f ′d) are globally Lipschitz continuous. The technique presented in [4] allows to
generalize the results also to f = (f1, · · · , fd) ∈ (C2(R))d, i.e. the locally Lipschitz case.

As for the boundary condition (2), we assume in our analysis that ΓN := ∂Ω \ ΓD is an outflow
boundary for the exact or approximate solution, i.e. e.g. ΓN ⊆ {x ∈ ∂Ω; f ′(u(x, t)).n ≥ 0}.
We discretize problem (1)-(3) using the standard conforming p-order finite element method.
Over a quasi-uniform, shape regular, conforming system of triangulations {Th}h∈(0,h0), h0 > 0 of
Ω we define the space of globally continuous piecewise p-order polynomial functions Sh = {v ∈
C(Ω); v|ΓD

= 0, v|K ∈ P p(K)∀K ∈ Th}. We set h = maxK∈Th
diam(K). In this function space

we introduce the space semidiscrete version of problem (1). We seek uh ∈ C1([0, T ];Sh) such
that uh(0) = u0

h ≈ u0 and

d

dt

(
uh(t), ϕh

)
+ b

(
uh(t), ϕh

)
= l

(
ϕh

)
(t), ∀ϕh ∈ Sh, t ∈ (0, T ). (4)

Here, we have introduced the convective and right-hand side forms defined for v, ϕ ∈ H1(Ω):

b(v, ϕ) = −
∫

Ω
f(v)·∇ϕdx +

∫

ΓN

f(v)·nϕ dS, l(ϕ)(t) =
∫

Ω
g(t)ϕ dx.

We note that a sufficiently regular exact solution u of problem (1) also satisfies (4) for all
ϕh ∈ Sh, i.e. we have Galerkin orthogonality property of the error.
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2 Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution u is sufficiently regular:

u, ut ∈ L2
(
0, T ;Hp+1(Ω)

)
, u ∈ L∞(0, T ; W 1,∞(Ω)).

Let ηh(t) = u(t)−Πhu(t) ∈ Hp+1(Ω) and ξh(t) = Πhu(t)− uh(t) ∈ Sh, where Πhv is the L2(Ω)-
projection of v on Sh. Then we can write the error eh as eh(t) := u(t) − uh(t) = ηh(t) + ξh(t).
By C we will denote a generic constant independent of h. In our analysis, we shall need the
following standard inverse inequalities

|vh|H1 ≤ CIh
−1||vh||,

‖vh‖∞ ≤ CIh
−d/2‖vh‖

and approximation properties of η, (cf. [2]):

‖ηh(t)‖ ≤ Chp+1|u(t)|Hp+1 ,
∥∥∂ηh(t)

∂t

∥∥ ≤ Chp+1
∣∣∂u(t)

∂t

∣∣
Hp+1 ,

The key estimate of the convective terms is inspired by the work [5], originally derived for the
DG method. A complete proof of our case can be found in [4].

Lemma 2.1. There exists a constant C ≥ 0 independent of h, t, such that

b
(
uh(t), ξ(t)

)− b
(
u(t), ξ(t)

) ≤ C
(
1 +

‖eh(t)‖∞
h

)(
h2p+1|u(t)|2Hp+1 + ‖ξ(t)‖2

)
. (5)

Proof. The key trick of the estimate is performing a Taylor expansion of f with respect to u:

f(u)− f(uh) = f ′(u)ξ + f ′(u)η − 1
2
f ′′u,uh

e2
h,

where f ′′u,uh
is the Lagrange form of the remainder of the Taylor expansion. Substituting into

the definition of b(·, ·), we obtain the interior terms
∫

Ω
f ′(u)ξ·∇ξ dx +

∫

Ω
f ′(u)η·∇ξ dx− 1

2

∫

Ω
f ′′u,uh

e2
h·∇ξ dx.

Estimating these terms by (5) is straightforward, using the inverse inequalities and estimates of
η. A similar procedure is done for the boundary terms of b(·, ·). ¤

3 Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we subtract the
equations for u and uh and set ϕh := ξh(t) ∈ Sh. Since

(∂ξh
∂t , ξh

)
= 1

2
d
dt ‖ξh‖2, we get

1
2

d
dt
‖ξh(t)‖2 = b

(
uh(t), ξh(t)

)− b
(
u(t), ξh(t)

)−
(∂ηh(t)

∂t
, ξh(t)

)
.

For the last right-hand side term, we use the Cauchy and Young’s inequalities and estimates of
η and Lemma 2.1 for the convective terms. We integrate from 0 to t ∈ [0, T ],

‖ξh(t)‖2≤ C

∫ t

0

(
1+ ‖eh(ϑ)‖∞

h

)(
h2p+1|u(ϑ)|2Hp+1 + h2p+2|ut(ϑ)|2Hp+1 + ‖ξh(ϑ)‖2

)
dϑ, (6)
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where C ≥ 0 is independent of h, t. For simplicity, we have assumed that ξh(0) = 0, i.e.
u0

h = Πhu0. Otherwise we must assume e.g. ‖ξh(0)‖2 ≤ Ch2p+1|u0|2Hp+1 and include this term
in the estimate.

We notice that if we knew apriori that ‖eh‖∞ = O(h) then the unpleasant term h−1‖eh‖∞ in
(6) would be O(1). Thus we could simply apply the standard Gronwall lemma to obtain the
desired error estimates. We state this formally:

Lemma 3.1. Let t ∈ [0, T ] and p ≥ d/2. If ‖eh(ϑ)‖ ≤ h1+d/2 for all ϑ ∈ [0, t], then there exists
a constant CT independent of h, t such that

max
ϑ∈[0,t]

‖eh(ϑ)‖2 ≤ C2
T h2p+1. (7)

Proof. The assumptions imply, by the inverse inequality and estimates of η, that

‖eh(ϑ)‖∞ ≤ ‖ηh(ϑ)‖∞ + ‖ξh(ϑ)‖∞ ≤ Ch|u(t)|W 1,∞ + CIh
−d/2‖ξh(ϑ)‖

≤ Ch + CIh
−d/2‖eh(ϑ)‖+ CIh

−d/2‖ηh(ϑ)‖ ≤ Ch + Chp+1−d/2|u(ϑ)|Hp+1(Ω) ≤ Ch,

where the constant C is independent of h, ϑ, t. Using this estimate in (6) gives us

‖ξh(t)‖2 ≤ C̃h2p+1 + C

∫ t

0
‖ξh(ϑ)‖2 dϑ, (8)

where the constants C̃, C are independent of h, t. Gronwall’s inequality applied to (8) states
that there exists a constant C̃T , independent of h, t, such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖2 ≤ C̃T h2p+1,

which along with similar estimates for η gives us (7). ¤

Now it remains to get rid of the apriori assumption ‖eh‖∞ = O(h). For an explicit scheme, this
can be done using mathematical induction. Starting from ‖e0

h‖ = O(hp+1/2), we prove:

‖en
h‖ = O(hp+1/2) =⇒ ‖en+1

h ‖∞ = O(h) =⇒ ‖en+1
h ‖ = O(hp+1/2).

For the method of lines we have continuous time and hence cannot use mathematical induction
straightforwardly. However, we can use some continuous version of mathematical induction, cf.
[1], [3]. In our case, we can use the simplest version:

Lemma 3.2 (Continuous mathematical induction). Let ϕ(t) be a propositional function depend-
ing on t ∈ [0, T ] such that

(i) ϕ(0) is true,
(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t + δ), ∀t ∈ [0, T ] ∀δ ∈ [0, δ0] : t + δ ∈ [0, T ].

Then ϕ(t) holds for all t ∈ [0, T ].

Theorem 1 (Semidiscrete error estimate). Let p > (1 + d)/2. Let h1 > 0 be such that
CT h

p+1/2
1 = 1

2h
1+d/2
1 , where CT is the constant from Lemma 3.1. Then for all h ∈ (0, h1]

we have the estimate
max

ϑ∈[0,T ]
‖eh(ϑ)‖2 ≤ C2

T h2p+1.
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Proof. Since p > (1+d)/2, h1 is uniquely determined and CT hp+1/2 ≤ 1
2h1+d/2 for all h ∈ (0, h1].

We define the propositional function ϕ by

ϕ(t) ≡
{

max
ϑ∈[0,t]

‖eh(ϑ)‖2 ≤ C2
T h2p+1

}
.

We shall use Lemma 3.2 to show that ϕ holds on [0, T ], hence ϕ(T ) holds.

(i) ϕ(0) holds, since this is the error of the initial condition.

(ii) Induction step: We fix an arbitrary h ∈ (0, h1]. Due to the regularity assumptions, the
functions u(· ), uh(· ) are uniformly continuous function from [0, T ] to L2(Ω). Therefore, there
exists δ0 > 0, such that if t ∈ [0, T ), δ ∈ [0, δ0], then ‖eh(t + δ) − eh(t)‖ ≤ 1

2h1+d/2. Now
let t ∈ [0, T ) and assume ϕ(t) holds. Then ϕ(t) implies ‖eh(t)‖ ≤ CT hp+1/2 ≤ 1

2h1+d/2. Let
δ ∈ [0, δ0], then by uniform continuity

‖eh(t + δ)‖ ≤ ‖eh(t)‖+ ‖eh(t + δ)− eh(t)‖ ≤ 1
2h1+d/2 + 1

2h1+d/2 = h1+d/2.

This and ϕ(t) implies that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, t] ∪ [t, t + δ] = [0, t + δ]. By Lemma 3.1,
ϕ holds on [0, t + δ]. This proves the ”induction step” ϕ(t) =⇒ ϕ(t + δ) for all δ ∈ [0, δ0]. ¤

4 Conclusion

We gave a simple overview of the concepts used to obtain error estimates of smooth solutions of
nonlinear convective problems. The results can be extended much further beyond this expository
account. For example, for a fully discrete implicit scheme, similar estimates can be obtained
after introducing a suitable continuation of the discrete solution. As mentioned, the technique
can be extended to locally Lipschitz continuous nonlinearities as well. We refer to [4] for details.
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