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1 Introduction

In this work we use the methodology of higher order finite volume (FV) and spectral volume (SV)
schemes to introduce a reconstruction operator into the discontinuous Galerkin (DG) method.
This operator constructs higher order piecewise polynomial reconstructions from the lower order
DG scheme. This allows us to increase the accuracy of existing DG schemes with a problem-
independent reconstruction procedure. Unlike the FVM, the reconstruction stencil has minimal
size independent of the approximation order. Such a procedure was proposed already in [1]
based on heuristic arguments, however we provide a more rigorous derivation, which justifies
the increased order of accuracy. Furthermore, we provide an alternative construction of the
reconstruction procedure based on the SV method. Numerical experiments are carried out.

2 Problem formulation and notation

Let Ω ⊂ IRd be a bounded domain with a Lipschitz-continuous boundary ∂Ω. Let QT :=
Ω× (0, T ). We treat the following nonlinear nonstationary scalar hyperbolic equation:

∂u

∂t
+ div f(u) = 0 in QT (1)

along with an appropriate initial and boundary condition. Here f = (f1, · · · , fd) and fs, s =
1, . . . , d are Lipschitz continuous fluxes in the direction xs, s = 1, . . . , d.

Let Th be a partition (triangulation) of Ω into a finite number of closed simplices K ∈ Th. By ∂K
we denote the boundary of an element K ∈ Th and set h = maxK∈Th

diam(K). Let K, K ′ ∈ Th.
We say that K and K ′ are neighbours, if they share a common face Γ ⊂ ∂K. By Fh we denote
the system of all faces of all K ∈ Th. Further, we define the set of all interior and boundary
faces, by FI

h = {Γ ∈ Fh; Γ ⊂ Ω} and FB
h = {Γ ∈ Fh; Γ ⊂ ∂Ω}.

For each Γ ∈ Fh we define a unit normal vector nΓ, such that for Γ ∈ FB
h , nΓ is the outer normal

to ∂Ω. For each Γ ∈ FI
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th. We use the convention

that nΓ is the outer normal to K
(L)
Γ . For v piecewise H1 on Th and Γ ∈ FI

h we introduce

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ, [v]Γ = v|(L)
Γ − v|(R)

Γ .

On boundary edges Γ ∈ FB
h , we define v|(R)

Γ = 0, [v]Γ = v|(L)
Γ . Let n ∈ N. The approximate

solution will be sought in the space of discontinuous piecewise polynomial functions

Sn
h = {v; v|K ∈ Pn(K),∀K ∈ Th},

where Pn(K) denotes the space of all polynomials on K of degree ≤ n.
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3 Discontinuous Galerkin (DG) formulation

We multiply (1) by some ϕn
h ∈ Sn

h , integrate over K ∈ Th and apply Green’s theorem. By
summing over all K ∈ Th and rearranging, we get

d

dt

∫

Ω
u(t) ϕn

h dx +
∑

Γ∈Fh

∫

Γ
f(u) · n [ϕn

h] dS −
∑

K∈Th

∫

K
f(u) · ∇ϕn

h dx = 0. (2)

As in the FV method, we introduce a Lipschitz continuous, consistent and conservative numer-
ical flux H(u, v,n) ≈ f(u) · n. Thus, we obtain the following standard DG formulation

d

dt

(
uh(t), ϕn

h

)
+ bh

(
uh(t), ϕn

h

)
= 0, ∀ϕn

h ∈ Sn
h , ∀t ∈ (0, T ),

where bh(·, ·) is the convective form defined for v piecewise H1 on Th:

bh(v, ϕ) =
∫

Fh

H(v(L), v(R),n)[ϕ] dS −
∑

K∈Th

∫

K
f(v) · ∇ϕdx.

4 Reconstructed discontinuous Galerkin (RDG) formulation

For v ∈ L2(Ω), we denote by Πn
hv the L2(Ω)-projection of v on Sn

h :

Πn
hv ∈ Sn

h , (Πn
hv − v, ϕn

h) = 0, ∀ϕn
h ∈ Sn

h . (3)

The basis of the RDG method lies in the observation that (2) can be viewed as an equation for
the evolution of Πn

hu(t), where u is the exact solution of (1), since, due to (3),

d

dt

∫

Ω
Πn

hu(t) ϕn
h dx +

∫

Fh

f(u) · n [ϕn
h] dS −

∑

K∈Th

∫

K
f(u) · ∇ϕn

h dx = 0. (4)

Now, let N > n be an integer. We assume, that there exists a piecewise polynomial function
UN

h (t) ∈ SN
h , which is an approximation of u(t) of order N + 1, i.e.

UN
h (x, t) = u(x, t) + O(hN+1), ∀x ∈ Ω, ∀t ∈ [0, T ]. (5)

This is possible, if u is sufficiently regular in space, e.g. u(t) ∈ WN+1,∞(Ω). Now we incorporate
the approximation UN

h (t) into (4): the exact solution u satisfies

d

dt

(
Πn

hu(t), ϕn
h

)
+ bh

(
UN

h (t), ϕn
h

)
= E(ϕn

h), ∀ϕn
h ∈ Sn

h , ∀t ∈ (0, T ), (6)

where E(ϕn
h) is an error term which may be estimated using standard DG arguments, cf [2]

E(ϕn
h) = bh

(
UN

h (t), ϕn
h

)− bh

(
u(t), ϕn

h

)
= O(hN )‖ϕn

h‖L2(Ω). (7)

Definition 4.1 (Reconstruction problem.) Let v : Ω → IR be sufficiently regular. Given
Πn

hv ∈ Sn
h , find vN

h ∈ SN
h such that v − vN

h = O(hN+1) in Ω. We define the corresponding
reconstruction operator R : Sn

h → SN
h by R Πn

hv := vN
h .

By setting UN
h (t) := R Πn

hu(t) in (6)-(7), we obtain the following equation for Πn
hu(t):

d

dt

(
Πn

hu(t), ϕn
h

)
+ bh

(
R Πn

hu(t), ϕn
h

)
= O(hN )‖ϕn

h‖L2(Ω), ∀ϕn
h ∈ Sn

h . (8)
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Figure 1: 1) FV stencil for linear reconstruction, 2) FV stencil for quadratic reconstruction, 3)
Control volumes in a spectral volume for linear reconstruction, 4) Analogy to the SV approach
for DG - partition of triangle into control volumes, e.g. cubic reconstruction from linear data.

By neglecting the right-hand side and approximating un
h(t) ≈ Πn

hu(t), we arrive at the following
definition of the reconstructed discontinuous Galerkin (RDG) scheme. We seek un

h such that

d

dt

(
un

h(t), ϕn
h

)
+ bh

(
Run

h(t), ϕn
h

)
= 0, ∀ϕn

h ∈ Sn
h , ∀t ∈ (0, T ). (9)

There are several points worth mentioning:

• We have followed the methodology of higher order finite volume schemes and spectral
volume schemes, cf. [5]. The basis of these schemes is an equation for the evolution of
averages of u on individual elements (i.e. an equation for Π0

hu(t)). Equation (8) is a
generalization to the case of higher order L2(Ω)-projections Πn

hu(t), n ≥ 0.
• Both un

h(t) and ϕn
h lie in Sn

h . Only Run
h(t) lies in the larger space SN

h . Despite this fact,
equation (8) indicates, that we may expect u−Run

h = O(hN+1), although u−un
h = O(hn+1).

• Numerical quadrature must be used to evaluate integrals in (9). Since test functions are
in Sn

h , as compared to SN
h in the corresponding Nth order standard DG scheme, we may

use lower order (i.e. more efficient) quadrature formulae as compared to standard DG.
• In practice, an explicit time discretization must be applied to (9). The upper limit on stable

time steps, given by a CFL-like condition, is more restrictive with growing N . However,
in the RDG scheme, stability properties are inherited from the lower order scheme, thus a
larger time step is possible as compared to standard DG.

4.1 Construction of the reconstruction operator

’Standard’ approach. We use a stencil (group of neighboring elements and the element under
consideration) to build an Nth-degree polynomial approximation to u on the element under
consideration ([3]). In the FV method, the von Neumann neighborhood of an element is used
as a stencil to obtain a piecewise linear reconstruction, Figure 4, 1). For higher orders, the
size of the stencil increases dramatically, Figure 4, 2), rendering higher degrees than quadratic
impractical. For the RDG scheme, we need not increase the stencil size to obtain higher order
accuracy, it suffices to increase the order of the underlying DG scheme.

As in the FV method, the reconstruction operator R is constructed so that RΠn
h is in some sense

polynomial preserving. Specifically, for each element K and its stencil S, we require that
((

RΠn
h

)∣∣
S

p
)∣∣∣

K
= p

∣∣
K

, ∀p ∈ PN (S). (10)

This allows us to study approximation properties of R using the Bramble-Hilbert technique as
in standard finite element methods. The disadvantage of this approach is that for unstructured
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N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 5.82E-03 – 3.49E-03 – 3.65E-02 –
8 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11
16 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Table 1: 1D advection, P 1 RDG scheme with P 5 reconstruction.

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 2.90E-03 – 1.85E-03 – 1.63E-02 –
8 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30
16 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

Table 2: 1D advection, P 2 RDG scheme with P 8 reconstruction.

meshes, the coefficients of the reconstruction operator must be stored for each individual stencil.

Spectral volume approach. We start with a partition of Ω into so-called spectral volumes S,
e.g. triangles in 2D. The triangulation Th is formed by subdividing each spectral volume S into
control volumes K, [5]. In the FV method, the order of accuracy of the reconstruction determines
the number of control volumes to be generated in each spectral volume. For example, for linear
reconstruction on a triangle, S is divided into three control volumes, Figure 4, 3). Again, in
the RDG scheme, we may use only the smallest partition into control volumes, and increase
the accuracy by increasing the order of the underlying DG scheme, cf. Figure 4, 4). Again, as
in (10), R should be polynomial preserving. The advantage of this approach is that we may
construct R only on a reference spectral volume, since all simplices are affine equivalent.

Numerical experiments. We treat the periodic advection of a 1D sine wave on uniform
meshes. Experimental orders of accuracy α in various norms on meshes with N elements are
given in Tables 1 and 2. The increase in accuracy due to reconstruction is clearly visible.
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