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Abstract: This paper gives an overview of the main ingredients needed to incorporate
reconstruction operators, as known from higher order finite volume (FV) and spec-
tral volume (SV) schemes, into the discontinuous Galerkin (DG) method. Such an
operator constructs higher order approximations from the lower order DG scheme, in-
creasing the order of convergence, while leading to a more efficient numerical scheme
than the corresponding higher order DG scheme itself. We discuss theoretical, as well
as implementational aspects and numerical experiments.
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1 PROBLEM FORMULATION AND NOTATION

For simplicity, we shall be concerned with a scalar hyperbolic equation, although the
same arguments basically hold for any time-dependent PDE. We treat a nonlinear non-
stationary scalar hyperbolic equation in a bounded domain Ω ⊂ IRd with a Lipschitz-
continuous boundary ∂Ω. We seek u : Ω× [0, T ] → IR such that

∂u

∂t
+ divf(u) = 0 in Ω× (0, T) (1)

along with an appropriate initial and boundary condition. Here f = (f1, · · · , fd) and
fs, s = 1, . . . , d are Lipschitz continuous fluxes in the direction xs, s = 1, . . . , d.

Let Th be a partition (triangulation) of the closure Ω into a finite number of closed
simplices K ∈ Th. In general we do not require the standard conforming properties of
Th used in the finite element method (i.e. we admit the so-called hanging nodes). We
shall use the following notation. By ∂K we denote the boundary of an element K ∈ Th

and set hK = diam(K), h = maxK∈Th
hK .

Let K, K ′ ∈ Th. We say that K and K ′ are neighbours, if they share a common
face Γ ⊂ ∂K. By Fh we denote the system of all faces of all elements K ∈ Th.

For each Γ ∈ Fh we define a unit normal vector nΓ, such that for Γ ∈ FB
h the

normal nΓ has the same orientation as the outer normal to ∂Ω.

∗This work was supported by the Grant No. P201/11/P414 of the Czech Science Foundation.
The author is a (junior) researcher (or member) of the University center for mathematical modelling,
applied analysis and computational mathematics (Math MAC).

1



Author/authors (no academic titles)

Over a triangulation Th we define the broken Sobolev spaces

Hk(Ω, Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}.

For each face Γ ∈ F I
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that Γ ⊂ K

(L)
Γ ∩

K
(R)
Γ . We use the convention that nΓ is the outer normal to K

(L)
Γ . For v ∈ H1(Ω, Th)

and Γ ∈ F I
h we introduce the following notation:

v|(L)
Γ = trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = trace of v|

K
(R)
Γ

on Γ, [v]Γ = v|(L)
Γ − v|(R)

Γ .

On boundary edges we define v|(R)
Γ = [v]Γ := v|(L)

Γ .
Let n ≥ 0 be an integer. We define the space of discontinuous piecewise polynomial

functions
Sn

h = {v; v|K ∈ P n(K), ∀K ∈ Th},
where P n(K) is the space of all polynomials on K of degree ≤ n. Specifically,

• S0
h: is the space of piecewise constant functions as known from the FV method,

• Sn
h , n ≥ 0: the DG solution lies in this space of piecewise nth degree polynomials,

• SN
h , N > n: the higher order reconstructed DG solution will lie in this space.

2 DISCONTINUOUS GALERKIN

We multiply (1) by an arbitrary ϕn
h ∈ Sn

h , integrate over an element K ∈ Th and apply
Green’s theorem. By summing over all K ∈ Th and rearranging, we get

d

dt

∫

Ω

u(t) ϕn
h dx +

∑
Γ∈Fh

∫

Γ

f(u) · n [ϕn
h] dS −

∑
K∈Th

∫

K

f(u) · ∇ϕn
h dx = 0. (2)

The boundary convective terms will be treated similarly as in the finite volume method,
i.e. with the aid of a numerical flux H(u, v,n):

∫

Γ

f(u) · n [ϕn
h] dS ≈

∫

Γ

H(u(L), u(R),n)[ϕn
h] dS. (3)

We assume that H is Lipschitz continuous, consistent and conservative, cf. [4].
Finally, we define the convective form bh(·, ·) defined for v, ϕ ∈ H1(Ω, Th):

bh(v, ϕ) =

∫

Fh

H(v(L), v(R),n)[ϕ] dS −
∑

K∈Th

∫

K

f(v) · ∇ϕdx.

Definition 1 (Standard DG scheme) We seek u : [0, T ] → Sn
h such that

d

dt

(
uh(t), ϕ

n
h

)
+ bh

(
uh(t), ϕ

n
h

)
= 0, ∀ϕn

h ∈ Sn
h , ∀t ∈ (0, T ). (4)

We note that if we take n = 0, i.e. uh : (0, T ) → S0
h, then from the definition of bh, we

see that the DG scheme (4) is equivalent to the standard FV method.
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3 RECONSTRUCTED DISCONTINUOUS GALERKIN

For v ∈ L2(Ω), we denote by Πn
hv the L2(Ω)-projection of v on Sn

h :

Πn
hv ∈ Sn

h , (Πn
hv − v, ϕn

h) = 0, ∀ϕn
h ∈ Sn

h . (5)

Obviously, if K ∈ Th, then the function (Πn
hv)|K is the L2(K)-projection of v|K on

P n(K). The basis of the method lies in the observation that (2) can be viewed as an
equation for the evolution of Πn

hu(t), where u is the exact solution of (1). In other
words, due to (5), Πn

hu(t) ∈ Sn
h satisfies the following equation for all ϕn

h ∈ Sn
h :

d

dt

∫

Ω

Πn
hu(t) ϕn

h dx +

∫

Fh

f(u) · n [ϕn
h] dS −

∑
K∈Th

∫

K

f(u) · ∇ϕn
h dx = 0. (6)

Now, let N > n be an integer. We assume that there exists a piecewise polynomial
function UN

h (t) ∈ SN
h , which is an approximation of u(t) of order N + 1, i.e.

UN
h (x, t) = u(x, t) + O(hN+1), ∀x ∈ Ω, ∀t ∈ [0, T ]. (7)

This is possible, if u is sufficiently regular in space, e.g. u(t) ∈ WN+1,∞(Ω), cf.[1]. Now
we incorporate the approximation UN

h (t) into (6): the exact solution u satisfies

d

dt

(
Πn

hu(t), ϕn
h

)
+ bh

(
UN

h (t), ϕn
h

)
= E(ϕn

h, t), ∀ϕn
h ∈ Sn

h , ∀t ∈ (0, T ), (8)

where E(ϕn
h) is an error term defined as

E(ϕn
h, t) = bh

(
UN

h (t), ϕn
h

)− bh

(
u(t), ϕn

h

)
. (9)

Lemma 1 The following estimate holds for all t ∈ [0, T ]:

E(ϕn
h, t) = O(hN)‖ϕn

h‖L2(Ω). (10)

Proof: Due to the consistency and Lipschitz continuity of H, we have on Γ ∈ Fh

f(u) · n−H(U
N,(L)
h , U

N,(R)
h ,n) = H(u, u,n)−H(U

N,(L)
h , U

N,(R)
h ,n) = O(hN+1).

Furthermore, due to the Lipschitz-continuity of f , we have on element K ∈ Th

f(u)− f(UN
h ) = O(hN+1).

Estimate (10) follows from these results and the application of the inverse and multi-
plicative trace inequalities, cf [4]. ¤

It remains to construct a sufficiently accurate approximation UN
h (t) ∈ SN

h to u(t),
such that (7) is satisfied. This leads to the following problem.

Definition 2 (Reconstruction problem) Let v : Ω → IR be sufficiently regular.
Given Πn

hv ∈ Sn
h , find vN

h ∈ SN
h such that v − vN

h = O(hN+1) in Ω. We define the
corresponding reconstruction operator R : Sn

h → SN
h by R Πn

hv := vN
h .
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By setting UN
h (t) := R Πn

hu(t) in (8), we obtain the following equation for the
L2(Ω)-projections of the exact solution u onto the space Sn

h :

d

dt

(
Πn

hu(t), ϕn
h

)
+ bh

(
R Πn

hu(t), ϕn
h

)
= O(hN)‖ϕn

h‖L2(Ω), ∀ϕn
h ∈ Sn

h . (11)

By neglecting the right-hand side and approximating un
h(t) ≈ Πn

hu(t), we arrive at the
following definition of the reconstructed discontinuous Galerkin (RDG) scheme.

Definition 3 (Reconstructed DG scheme) We seek un
h : [0, T ] → Sn

h such that

d

dt

(
un

h(t), ϕn
h

)
+ bh

(
Run

h(t), ϕn
h

)
= 0, ∀ϕn

h ∈ Sn
h , ∀t ∈ (0, T ). (12)

There are several points worth mentioning.

• Equation (11) indicates that the RDG scheme is formally Nth order in space.

• The derivation of the RDG scheme follows the methodology of higher order FV
and SV schemes, cf. [8]. The basis of these schemes is an equation for the
evolution of averages of the exact solution on individual elements (i.e. an equation
for Π0

hu(t)). Equation (11) is a direct generalization for the case of higher order
L2(Ω)-projections Πn

hu(t), n ≥ 0.

• Both un
h(t) and ϕn

h lie in Sn
h . Only Run

h(t), lies in the higher dimensional space SN
h .

Despite this fact, equation (11) indicates that we may expect u−Run
h = O(hN+1),

although u− un
h = O(hn+1).

• Numerical quadrature must be employed to evaluate surface and volume integrals
in (12). Since test functions are in Sn

h , as compared to SN
h in the corresponding

Nth order standard DG scheme, we may use lower order (i.e. more efficient)
quadrature formulae as compared to standard DG.

• In practice, we must also discretize (12) with respect to time. As in the case of
higher order FVM, we use an explicit time stepping method. The upper limit on
stable time steps, given by a CFL-like condition, is more restrictive with growing
N . However, in the RDG scheme, stability properties are essentially inherited
from the lower order scheme, therefore a larger time step is possible as compared
to the corresponding Nth order standard DG scheme.

3.1 Explicit time discretization
For simplicity, we formulate the forward Euler method, which is only first order accu-
rate, however in Section 5, higher order Adams-Bashforth methods are used.

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval [0, T ] and
define the time step τk = tk+1− tk. We use the approximation un

h(tk) ≈ un,k
h ∈ Sn

h . The
forward Euler scheme is given by:

Definition 4 (Explicit RDG scheme) We seek un,k
h ∈ Sn

h , k = 0, 1, . . . such that
(

un,k+1
h − un,k

h

τk

, ϕn
h

)
+ bh

(
Run,k

h , ϕn
h

)
= 0, ∀ϕn

h ∈ Sn
h , k = 0, 1, . . . , (13)

where un,0
h = uh,0 is an Sn

h approximation of the initial condition u0.
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Figure 1: 1) FV stencil for linear reconstruction, 2) FV stencil for quadratic reconstruc-
tion, 3) Control volumes in a spectral volume for linear reconstruction, 4) Analogy to
the SV approach for DG - partition of triangle into control volumes, e.g. cubic recon-
struction from linear data.

3.2 Construction of the reconstruction operator

In analogy to the construction of reconstruction operators in higher order FV schemes,
we propose two approaches.

3.2.1 ’Standard’ approach

In the standard approach, a stencil (a group of neighboring elements and the element
under consideration) is used to build an Nth-degree polynomial approximation to u on
the element under consideration ([5] [7]). In the FV method, the von Neumann neigh-
borhood of an element is used as a stencil to obtain a piecewise linear reconstruction,
cf. Figure 3.1, 1). However, for higher order reconstructions, the size of the stencil
increases dramatically, cf. Figure 3.1, 2), rendering higher degrees than quadratic very
time consuming. In the case of the RDG scheme, we need not increase the stencil size
to obtain higher order accuracy, it suffices to take the von Neumann neighborhood and
increase the order of the underlying DG scheme.

In analogy to the FV method, the reconstruction operator R is constructed on each
stencil independently and satisfies that RΠn

h is in some sense polynomial preserving.
Specifically, for each element K and its corresponding stencil S, we require that for all
p ∈ PN(S)

((
RΠn

h

)∣∣
S

p
)∣∣∣

K
= p

∣∣
K

. (14)

This requirement allows us to study approximation properties of R using the Bramble–
Hilbert technique as in the standard finite element method, [1]. The disadvantage of
this approach is that for unstructured meshes, the coefficients of the reconstruction
operator must be stored for each individual stencil.

In the FV method, different conditions on R than (14) are often used, e.g. con-
tinuous or discrete least squares. Special care must be taken in the vicinity of steep
gradients and discontinuities, where the Gibbs phenomenon may occur. In this case
different strategies are employed, e.g. limiting, ENO and WENO schemes, TVD etc.
The generalization of these concepts to the RDG method is left for future work.
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3.2.2 Spectral volume approach
In the spectral volume approach, we start with a partition of Ω into so-called spectral
volumes S, for example triangles in 2D. The triangulation Th is formed by subdividing
each spectral volume S into sub-cells K, called control volumes, cf. [8]. In the FV
method, the order of accuracy of the reconstruction determines the number of control
volumes to be generated in each spectral volume. For example, for a linear recon-
struction on a triangle, the triangle is divided into three control volumes, Figure 3.1,
3). Again, in the RDG scheme, we may use only the smallest available partition into
control volumes, and increase the accuracy by increasing the order of the underlying
scheme, cf. Figure 3.1, 4).

The reconstruction operator is constructed on each spectral volume independently
such that it is in some sense polynomial preserving, i.e. for each stencil S, we require
that for all p ∈ PN(S) (

RΠn
h

)∣∣
S

p = p. (15)

The advantage of this approach is that all spectral volumes are affine equivalent,
we construct the reconstruction operator R only on one reference spectral volume.

4 RELATION BETWEEN RDG AND STANDARD DG

The only difference between the DG scheme (4) and RDG scheme (12) is the presence
of the reconstruction operator R in the first variable of bh(·, ·). While the error analysis
of (4) is well understood (at least for convection-diffusion problems [4]), the analysis
of (12) or (13) poses a new challenge. The problem lies in the fact that we cannot test
(12) with ϕn

h := Run,k
h or something similar, since Run,k

h /∈ Sn
h . Therefore, we need to

establish a relation between (12) and Nth order DG, instead of only nth order DG.

Definition 5 (Auxiliary problem) We seek ũN,k
h ∈ SN

h such that

(
ũN,k+1

h − ũN,k
h

τk

, ϕN
h

)
+ bh

(
RΠn

hũN,k
h , ϕN

h

)
= 0, ∀ϕN

h ∈ SN
h , k = 0, 1, . . . , (16)

where ũN,0
h is an SN

h approximation of the initial condition u0.

Lemma 2 Let un,0
h = Πn

hũ
N,0
h . Then un,k

h ∈ Sn
h , the solution of (13) and the solution

ũN,k
h ∈ SN

h of (16) satisfy

un,k
h = Πn

hũN,k
h , ∀k = 0, 1, · · · . (17)

Proof: We prove (17) by induction:
k = 1 : Since un,0

h = Πn
hũ

N,0
h , we have for all ϕn

h ∈ Sn
h

(Πn
hũN,1

h , ϕn
h) = (ũN,1

h , ϕn
h) = (ũN,0

h , ϕn
h)− τkbh

(
RΠn

hũ
N,0
h , ϕn

h

)

= (un,0
h , ϕn

h)− τkbh

(
Run,0

h , ϕn
h

)
= (un,1

h , ϕn
h),

hence (Πn
hũ

N,1
h − un,1

h , ϕn
h) = 0 for all ϕn

h ∈ Sn
h . Therefore Πn

hũN,1
h = un,1

h .
k > 1 : Assume (17) holds for some k > 1. Then for all ϕn

h ∈ Sn
h

(
Πn

hũN,k+1
h , ϕn

h

)
=

(
ũN,k+1

h , ϕn
h

)
=

(
ũN,k

h , ϕn
h

)− τkbh

(
RΠn

hũN,k
h , ϕn

h

)

=
(
un,k

h , ϕn
h

)− τkbh

(
Run,k

h , ϕn
h

)
=

(
un,k+1

h , ϕn
h

)
,
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therefore Πn
hũ

N,k+1
h = un,k+1

h . This completes the induction step k → k + 1. ¤
As a corollary, error estimates for the auxiliary problem imply error estimates for

the RDG scheme (12). Problem (16) is basically the standard Nth order DG scheme
with the operator RΠn

h in the first variable of bh(·, ·). Therefore, sufficient knowledge
of the properties of RΠn

h (which is polynomial preserving) and standard DG error
estimates would imply the estimates for the RDG scheme.

5 NUMERICAL EXPERIMENTS

We present numerical experiments for the periodic advection of a 1D sine wave on
uniform meshes. Experimental orders of accuracy α in various norms on meshes with
N elements are given in Tables 1 and 2. Here eh = u− Run

h at t corresponding to ten
periods. The increase in accuracy due to reconstruction is clearly visible.

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 5.82E-03 – 3.49E-03 – 3.65E-02 –
8 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11
16 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Table 1: 1D advection of sine wave, P 1 RDG scheme with P 5 reconstruction.

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 2.90E-03 – 1.85E-03 – 1.63E-02 –
8 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30
16 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

Table 2: 1D advection of sine wave, P 2 RDG scheme with P 8 reconstruction.

6 CONCLUSIONS

We have presented a possible generalization of higher-order reconstruction operators
as used in the FV method to the DG method. Two constructions of the reconstruction
operator R are presented, the first analogous to the standard FV case (already treated
in [2]) and the construction analogous to the SV method. The resulting scheme has
many advantages over standard DG, FV and SV schemes:

• To increase the order of the scheme, the reconstruction stencil need not be en-
larged, we may simply increase the order of the underlying DG scheme.

• Test functions are from the lower order space, hence more efficient quadratures
may be used than in the corresponding higher order DG scheme.

• Since the RDG scheme is basically a lower order DG scheme with higher order
reconstruction, the CFL condition is less restrictive than for the corresponding
higher order DG scheme.
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