
MAXIMAL MARCINKIEWICZ MULTIPLIERS

PETR HONZÍK

Abstract. Let us have a family of Marcinkiewicz multipliers M = {mj} of suffi-
cient uniform smoothness in Rn. We show that the Lp norm (1 < p < ∞) of the
related maximal operator

MNf(x) = sup
1≤j≤N

|F−1(mjFf)|(x)

is at most C(log(N + 2))n/2. We show that this bound is sharp.

1. Introduction

Marcinkiewicz multiplier on Rn is a Fourier multiplier with a symbol which satisfies
a set of conditions

(1) |∂i1 · · · ∂ikmj|(ξ) ≤ A|ξi1|−1 · · · |ξik |−1,
for all {i1, . . . , ik} ⊂ {1, . . . , n}. We consider a family of N symbols m1, . . . ,mN which
satisfy these conditions uniformly. We form a maximal operator

MNf(x) = sup
i=1,...,N

|F−1(mif̂)|(x).

We show that the norm of this operator grows as C(log(N + 2))n/2. Previously,
similar theorem was proved for Hörmander-Mikhlin symbols in [3] and [5]. The main
difference is that in the case of Hörmander-Mikhlin symbols the bound is C(log(N +
2))1/2 independently of dimension.

The smoothness of the symbol is not optimal here, as the Marcinkiewicz multiplier
theorem may be formulated with a BV type condition. Also a different maximal
theorem for Marcinkiewicz multipliers appeared recently in [7], with condition even
weaker than BV . It is not clear to us if the smoothness of the symbol may be relaxed
in our theorem.

Theorem 1. Suppose M = {mj} is a family of functions in Rn such that

(2) |∂i1 · · · ∂ikmj|(ξ) ≤ A|ξi1|−1 · · · |ξik |−1

for all {i1, . . . , ik} ⊂ {1, . . . , n}. Then for any N ∈ N and 1 < p <∞ we have

‖ sup
j∈{1,...,N}

|F−1(mj f̂)|(x)‖Lp(x) ≤ ACn,p(logn/2(N + 2))‖f‖p.
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Also, for any given N ≥ 1 and 1 < p < ∞ there is a sequence M = {mj} which
satisfies (2) and a function g such that

‖ sup
j∈{1,...,N}

|F−1(mj ĝ)|(x)‖Lp(x) ≥ AC̃n,p(logn/2(N + 2))‖g‖p.

One motivation for the study of the maximal Marcinkiewicz multipliers was the
open problem of the maximal hyperbolic Bochner-Riesz means. We give a brief
discussion of this problem at the end of the paper.

2. Multiple martingales

In this section we introduce the dyadic multiple martingales, which we use as a tool
to study the Marcinkiewicz multipliers. First, let us introduce the classical dyadic
martingale. Consider an integrable function f on [0, 1]. Let us denote Dk the set of
dyadic intervals of length 2−k and define the expectation operator

Ekf(x) = 2k
∫
I:I∈Dk , x∈I

f(y)dy.

We define the martingale differences as Dk = Ek − Ek−1 and the square function

Sf(x) =

(∑
k

(Dkf(x))2

)1/2

.

The maximal martingale function f ∗ is defined as f ∗(x) = supk |Ekf |(x). There is
an equivalent representation of this object using Haar functions. For each dyadic
interval I, we define a function hI which is equal to |I|−1/2 on the left half and to
−|I|−1/2 on the right half of the interval. These functions, together with the function
h0(x) = 1 form an orthonormal basis in L2([0, 1]), and also a Schauder basis in
Lp([0, 1]), 1 ≤ p <∞. One sees that for k ≥ 1

Dkf =
∑

I∈Dk−1

〈hI , f〉hI .

The dyadic multiple martingales represent a tensored version of the above object.
We stress that the multiple martingales are not martingales and in fact they lack
many of the key properties of the classical martingales. Let us have a function g on
the cube [0, 1]n. For dyadic intervals I1, . . . , In we define the function

hI1,...,In(x1, . . . , xn) = hI1(x1) · · ·hIn(xn).

Using these tensored Haar functions, one can define the multiple versions of operators
E, D and S. In particular, we have

Dk1,...,kng =
∑
Ii∈Dki

〈hI1,...,In , g〉hI1,...,In ,

Ek1,...,kn =
∑

−1≤m1≤k1,...,−1≤mn≤kn

Dm1,...,mn
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and

Sf(x) = Sn+1f(x) =

( ∑
k1,...,kn

(Dk1,...,knf(x))2

)1/2

.

If we fix n−1 indices and n−1 variables, then the expectations Ek1,...,kng(x1, . . . , xn)
form a dyadic martingale, for example

Ẽj(y) = Ek1,...,kn−1,jg(x1, . . . , xn−1, y)

is a sequence of expectations of one dimensional dyadic martingale.
We use some fine results detailing the relationship of the square functions and

maximal operators. In the case of the dyadic martingale, the sharp good lambda
inequality

(3) |{f ∗ > 2λ, Sf < ελ}| ≤ Ce−c/ε
2 |{f ∗ > λ}

was proved by Chang, Wilson and Wolff [2]. In the case of double dyadic martingale,
similar inequality was proved by Pipher [8]. The argument of Pipher extends to the
higher dimensions as well by induction. Before we demonstrate this fact, we need to
define intermediate square functions. We put for m = 2, . . . , n+ 1

Smf =

 ∑
k1,...,km−1

( ∑
km,...,kn

Dk1,...,knf(x)

)2
1/2

.

and

S∗mf = sup
r

 ∑
k1,...,km−1

 ∑
km<r,km+1,...,kn

Dk1,...,knf(x)

21/2

.

We also define the following maximal function (replacing S∗1)

M1f(x) = sup
r
|

∑
m1≤r,...,mn

Dm1,...,mnf(x)|.

Standard arguments show that all the above operators are Lp bounded for 1 < p <∞.
In the case m = 1, n = 2 the good lambda inequality is proved by Pipher in [8]

(fourth formula on page 76), but as the inequality is not stated exactly in the form we
need it and we need a higher dimensional version, we feel that we need to reproduce
the proof here. The starting point of the proof is the following lemma, proved in the
paper [8] as Lemma 2.2 (here djq is a difference of a dyadic martingale):

Lemma 1. Suppose Xj
N =

∑N
q=0 d

j
q, j = 1, . . . ,M is a sequence of dyadic martingales

and set

SXj
N =

(
N∑
q=0

(djq)
2

)1/2

,
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the square function of Xj
N . Then∫

exp

√√√√1 +
M∑
j=1

(Xj
N)2 −

M∑
j=1

(SXj
N)2

 dx ≤ e.

The following lemma is the higher dimensional analogue of the Pipher good lambda
inequality.

Lemma 2. Let f ∈ L1([0, 1]n). Let us fix N and denote g = EN,...,Nf. Then we have
for 0 < ε < 1/2 and 1 < m ≤ n and x1, . . . , xm−1, xm+1, . . . , xn

|{xm : S∗mg(x1, . . . , xn) > 2λ;Sm+1g(x1, . . . , xn) < ελ}|

≤ Ce−c/ε
2 |{xm : S∗mg(x1, . . . , xn) > λ}|.

Moreover we have

|{x1 : M1g(x1, . . . , xn) > 2λ;S2g(x1, . . . , xn) < ελ}|

≤ Ce−c/ε
2|{x1 : M1g(x1, . . . , xn) > λ}|.

The constants C and c are independent of f,N, λ and ε.

Proof. The second inequality follows directly from the inequality of Chang, Wilson
and Wolff (3), since for x2, . . . , xn fixed

M1g(x1, . . . , xn)

represents the dyadic martingale maximal function of the function

g1(x1) = g(x1, . . . , xn)

and

S2g(x1, . . . , xn)

represents its martingale square function Sg1(x1).
To prove the first inequality, we use the same argument as J. Pipher [8] in the

proof of Corollary 2.2a. We fix the m and x1, . . . , xm−1, xm+1, . . . , xn and denote

d(j1,...,jm−1)
q (xm) =

∑
km+1,...,kn

Dj1,...,jm−1,q,km+1...,kng(x1, . . . , xn).

Denote J = (j1, . . . , jm−1), then

XJ
N =

N∑
q=0

dJq

is a sequence of martingales on the interval 0 ≤ xm ≤ 1, as in Lemma 1.
The set {S∗mg > λ} is composed of maximal dyadic intervals I such that for xm ∈ I ∑

k1,...,km−1

( ∑
km<r,...,kn

Dk1,...,kng(x)

)2
1/2

> λ.
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The r above is then minimal, and we fix a pair I, r. Assume I ∪ {S∗mg ≥ 2λ} 6= ∅.
Then we may find maximal dyadic intervals I ′ ⊂ I such that for xm ∈ I ′ ∑

k1,...,km−1

( ∑
km<r′,...,kn

Dk1,...,kng(x)

)2
1/2

≥ 2λ.

We localize the d
(j1,...,jm−1)
q and XJ

N to the interval I ′ and apply a localized version of
the Lemma 1, we get for any α and t∫

I′
exp

[
α

 ∑
k1,...,km−1

( ∑
r<km<t,...,kn

Dk1,...,kng(x)

)2
1/2

− α2
∑

k1,...,km−1,r<km<t

 ∑
km+1,...,kn

Dk1,...,kng(x)

2]
≤ e|I ′|.

Consider the set A = I ′ ∩ {Sm+1g ≤ ελ}. We have for x ∈ A ∑
k1,...,km−1

( ∑
km=r,...,kn

Dk1,...,kng(x)

)2
1/2

≤ ελ

and therefore ∑
k1,...,km−1

( ∑
km=r,...,kn

Dk1,...,kng(x)

)2

≥ 2λ− λ− ελ.

This gives

|A|exp[−α(1− ε)λ+ α2ε2λ2] ≤ e|I ′|.
We take α = 1−ε

2ε2λ
and sum the intervals I ′ to obtain the result. �

3. Proof of the positive result

The main idea of the proof comes from the article [5], we apply the Lemma 2 in each
variable separately. In some of the estimates we replace the usual maximal function
by the strong maximal function, related to averages over rectangular parallelepipeds
with sides paralell to axes.

In order to prove our theorem, we also need to refer to the the proof of the
Marcinkiewicz theorem. We use the notation and method of the proof from [4].
We may assume that all the multipliers are supported in the positive cone {ξ : ξ1 >
0, . . . , ξn > 0}. For a set A ⊂ R we introduce the coordinate cutoff operators

∆
(j)
A f = F−1(χA(ξj)f̂).

Let us fix j ∈ Zn and take

ξ ∈ Rj = [2j1 , 2j1+1]× · · · × [2jn , 2jn+1].
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The following representation formula follows from the fundamental theorem of cal-
culus.

m(ξ) = m(2j1 , . . . , 2jn)

+
n∑
k=1

∫ ξjk

2jk
∂km(ξ1, . . . , t, . . . , ξn) dt

...

+

∫ ξj1

2j1
· · ·
∫ ξjn

2jn
∂1 · · · ∂nm(t1, . . . , tn) dt1 . . . dtn.

Using this formula, we can write Tmf as a sum of integral terms, with the leading
term being∑

j

∫ 2j1+1

2j1
· · ·
∫ 2jn+1

2jn
∂1 · · · ∂nm(t1, . . . , tn)∆

(1)

[t1,2j1+1]
. . .∆

(n)

[tn,2jn+1]
f(x) dt1 . . . dtn

Therefore in order to establish Lp control of supi≤N |Tmif(x)| we need to estimate∫ 2j1+1

2j1
· · ·
∫ 2jn+1

2jn
sup
i≤N
|∂1 · · · ∂nm(t1, . . . , tn)∆

(1)

[t1,2j1+1]
. . .∆

(n)

[tn,2jn+1]
f(x)| dt1 . . . dtn

≤
∫ 2

1

· · ·
∫ 2

1

A sup
i≤N
|
∑
j∈Zn

ai,j(t)∆
(1)

[2j1 t1,2j1+1]
. . .∆

(n)

[2jn tn,2jn+1]
f(x)| dt1 . . . dtn,

where for each t ∈ [1, 2] we have ‖ai,j(t)‖∞ ≤ 1.
In the light of these considerations we see that the proof of the theorem reduces to

the obtaining the bound

(4) ‖ sup
i≤N
|T̃if |(x)‖p ≤ C(log(N + 2))n/2‖f‖p,

where
T̃if(x) =

∑
j∈Z

ai,j∆
(1)

[2j1 t1,2j1+1]
. . .∆

(n)

[2jn tn,2jn+1]
f(x),

each tl ∈ [1, 2] and ai,j is a sequence in l∞ with norm 1. We note that the Lp

boundedness of the operator T̃i may be deduced from the boundedness of the square
function

S̃f(x) =

(∑
j∈Z

|∆(1)

[2j1 t1,2j1+1]
. . .∆

(n)

[2jn tn,2jn+1]
f(x)|2

)1/2

.

The estimates
‖S̃f‖p ≤ C‖f‖p

and
‖T̃if‖p ≤ C‖S̃f‖p

are proved in detail for example in [4].
We now fix t = (t1, . . . , tn) and for each j ∈ Zn introduce the notation

∆[
jf = ∆

(1)

[2j1 t1,2j1+1]
. . .∆

(n)

[2jn tn,2jn+1]
f.
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Let us recall the sharp maximal function. Let us denoteR the set of all rectangular
parallelepiped with sides paralell to coordinate axes. We denote

Msf(x) = sup
x∈R∈R

1

|R|

∫
R

|f |(y) dy.

Let us introduce operator

Gr(f) =

(∑
j∈Zn

(Ms(Ms(Ms|∆[
jf |r)))2/r

)
.

This operator is Lp bounded for p > r. This follows by repeated application of
Fefferman-Stein theorem for vector valued maximal functions (see [10]) in each coor-
dinate.

If we take dyadic cube Q with volume 1, we may adapt the dyadic multiple mar-
tingale operators to it. We need the following estimates:

Lemma 3. For any dyadic cube Q with |Q| = 1 and x ∈ Q we have for 1 < r <∞
S(T̃if)(x) ≤ CrAGr(f)(x).

Moreover, if ai,j = 0 whenever some |ji| ≤ N , then we have∣∣∣∣∫
Q

T̃if dy

∣∣∣∣ ≤ CrA2−N/rGr(f)(x).

Proof. Let us choose a Schwartz function b on R with the following properties: b(ξ) 6=
0 for ξ ∈ [1/2, 4] and b̂ is supported in {|x| ≤ 1/4}. Then, we select a function a in
C∞c such that for ξ ∈ [1, 2] we have b2(ξ)a(ξ) = 1. For ξ ∈ Rn we put

β(ξ) = b(ξ1) · · · b(ξn)

and
ψ(ξ) = a(ξ1) · · · a(ξn).

For k ∈ Zn we define operators

Bkf(ξ) = F−1(β(2−k1ξ1, . . . , 2
−knξn)f̂(ξ)))

and
Lkf(ξ) = F−1(ψ(2−k1ξ1, . . . , 2

−knξn)f̂(ξ))).

We have the following representation of the operator T̃i:

T̃if(x) =
∑
j

ai,jBj(Bj(Lj(∆
[
j(f))))(x).

Then, we get

DkT̃if(x) =
∑
j

ai,j(DkBj)(Bj(Lj(∆
[
j(f))))(x).

Clearly, we have
|BjLjf |(x) ≤Msf(x),

therefore in order to prove the Lemma, we need to obtain the following estimates

(5) |DkBj|f(x) ≤ C2−
α
r′ (MsMs|f |r(x))1/r
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and

(6) |EkBj|f(x) ≤ C2−
α̃
r′ (MsMs|f |r(x))1/r

where α = max{|k1 − j1|, . . . , |k1 − j1|} and α̃ = max{j1 − k1, . . . , j1 − k1}.
The proof of (5) is simple in the case α = max{k1 − j1, . . . , k1 − j1} = ks − js for

some s. Smoothness estimate in the variable xs gives

|DkBj|f(x) ≤ C2−αMMf(x)

and the claim follows. If on the other hand α = α̃ = max{j1−k1, . . . , j1−k1} = js−ks
for some s, the estimate (5) follows from (6), which we prove next. We write f = g+h
where

g = fχ{x : |xs−l2−ks |≤2−js for some l∈Z}.

We observe that since
∫
b̂(x)dx = 0 we get

|EkBjh(x)| = 0.

On the other hand

|EkBj|g(x) ≤ 1

|Rk(x)|

∫
Rk(x)∪{x : |xs−l2−ks |≤2−js+1 for some l∈Z}

|Msg(y)|dy

≤ C2−
α
r′ (Ms(Ms|f |)r(x))1/r,

where Rk(x) ∈ R is the dyadic parallelepiped with dimensions given by k and con-
taining x, the first inequality follows by the support properties of b and the second
follows from Hölder inequality. This finishes the proof of (5) and (6) and the lemma
is proved. �

In order finish the proof, we need to estimate the measure of the set

Ωλ = { sup
1≤i≤N

|T̃if |(x) > 2n+2λ}.

We may assume that f is compactly supported inside the positive cone and then, by
a simple scaling, that ai,j = 0 whenever some |ji| ≤ N .

We split Ωλ = Ω1
λ ∪ Ω2

λ ∪ Ω3
λ, where

Ω1
λ = { sup

1≤i≤N
|T̃if − E0T̃if |(x) > 2n+1λ,Gr(f)(x) ≤ εnλ},

Ω2
λ = {Gr(f)(x) > εnλ}

and
Ω3
λ = { sup

1≤i≤N
|E0T̃if |(x) > 2n+1λ}.

We have
Ω1
λ ⊂

⋃
i

Ω1
λ,i

where
Ω1
λ,i = {|T̃if − E0T̃if |(x) > 2n+1λ, ST̃if(x) ≤ εnλ}.

Finally, we observe that we may choose j = (j1, . . . , jn) such that for each i

(7) ‖T̃if − EjT̃if‖p ≤
‖f‖p
N

.



MAXIMAL MARCINKIEWICZ MULTIPLIERS 9

We may therefore write Ω1
λ,i ⊂ Γλ,i ∪ Γ′λ,i where

Γ′λ,i = {|T̃if − EjT̃if |(x) > 2nλ}
and

Γλ,i ⊂ {|EjT̃if − E0T̃if |(x) > 2nλ, S1EjT̃if ≤ 2n−1ελ}

∪
n−1⋃
ν=1

{|SνEjT̃if |(x) > 2n−νενλ, Sν+1EjT̃if ≤ 2n−1εν+1λ}.

We apply the Lemma 2 and obtain

|Γλ,i| ≤ Ce−c/ε
2

(|{|M1(EjT̃if − E0T̃if)|(x) > 2n−1λ}|

+
∑
|{|S∗νEjT̃if |(x) > 2n−ν−1ενλ}|).

We set ε = C/ log1/2(N + 2), collect all the previous estimates and integrate them
with respect to λp−1.

This yields

‖ sup
1≤i≤N

|T̃if |‖pp ≤ Cn,p

∫
λp−1(Ω2

λ + Ω3
λ +

∑
i

|Γλ,i|+ |Γ′λ,i|)dλ

≤ Cn,p(logn/2(N + 2)‖Gr(f)‖p +
∑
i

‖E0T̃if‖p

+
1

N

∑
i

‖M1(EjT̃if − E0T̃if)‖p

+
logn/2(N + 2)

N

∑
i

∑
ν

‖S∗νEjT̃if‖p

+
∑
i

‖T̃if − EjT̃if‖).

Here we observe, that the first, third and fifth term is bounded from the boundedness
of the operators in question, the second is boudned by Lemma 3 and the fourth is
bounded by (7). Together this finishes the proof of the first part of the theorem.

4. Example

Here we construct the sequence from the second part of the theorem. The example
is very similar to the one from [3], the key difference is the observation that the
tensored products have less freedom of oscilations than one dimensional sequences.

Let us take a smooth function φ0(x) such that φ(x) = 1 for x ∈ [5/4, 7/4] and
φ(x) = 0 for x ∈ R \ (1, 2) and a smooth nonzero function ψ0 supported in [5/4, 7/4].
For ξ ∈ Rn we then define

ψ(ξ) = ψ0(ξ1) . . . ψ0(ξn).

Suppose (20n)n(K+1) ≥ N > (20n)nK . For x ∈ Rn we define

g(x) =
∑

j1,...,jn∈{1,...,K}

e2πi(2
j1 ,...,2jn )·x(F−1ψ)(x).
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A square function argument shows that ‖g‖p ≈ Kn/2.

We take {ω1, . . . , ω20n} = 20n
√

1 to be the set of the complex roots of 1. Let us take
a sequence a ∈ {1, . . . , 20n}K . We define for η ∈ R

m̃a(η) =
K∑
i=1

ωa(i)φ(η − 2i).

For sequence b = (a1, . . . , an) and ξ ∈ Rn we define

mb(ξ) = m̃a1(ξ1) · · · m̃an(ξn).

Now we define
Mf(x) = sup

b
|F−1(mbf̂)|(x).

Now let us fix x ∈ Rn and select sequence b = (a1, . . . , an) such that

|ωa(j)e2πi2
jxj − 1| ≤ 2π/10n.

It is easy to check that

|F−1(mbĝ)|(x) ≥ |<F−1(mbĝ)(x)| ≥ CKn|<F−1(ψ)(x)|.
Therefore

‖Mg‖p ≥ CKn/2‖g‖p.
and we are finished.

5. Maximal hyperbolic Bochner–Riesz

One motivation for the study of the maximal Marcinkiewicz multipliers was the
open problem of the boundedness of the maximal hyperbolic Bochner–Riesz operator

Mf(x) = sup
k
|(F)−1(mλ(2

k·)f̂)|(x),

where
mλ(ξ1, ξ2) = (1− |ξ1ξ2|)λ+.

While the boundedness of the operator (F)−1(mλf̂) was settled by El-Cohen [6] and
Carbery [1], the boundedness of the maximal operator remains open for any λ. Our
result gives logarithmic growth with respect to the number of the dilations in case
λ > 1, but the full solution remains elusive ( see also [9].)
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