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Abstract. We define the packing integral (a kind of non-absolutely conver-

gent integral) with respect to distributions of arbitrary order. Then we show
that singular integrals can be interpreted as packing integrals with respect to

generating distributions. This allows us to consider singular integrals beyond

L1.

1. Introduction

This paper is a part of the program to study new nonabsolutely integrals with
respect to distributions and distribution-like objects. These integrals are basically
of Henstock–Kurzweil type [7], [9]. We study the so called packing integral [8],
which coincides with the UC integral introduced in [10]. The packing integral with
respect to the so-called metric distributions fits well in the setting of metric spaces.

As shown in [10], the one-dimensional packing integral contains the Denjoy-
Perron integral [5], [11]. For an exposition of the Denjoy-Perron integral see [12].
Let us recall that the Denjoy-Perron integral, also called the restricted Denjoy
integral, coincides with the Henstock-Kurzweil integral and with the MC-integral
introduced in [2].

We postpone the definition of the packing integral to Section 3. Roughly speak-
ing, to test that a distribution F is an indefinite packing integral of a function f
with respect to G, we estimate how far is 〈F , ϕ〉 from f(x)〈G, ϕ〉 if ϕ is supported
in a small ball around x and ‖ϕ‖ ≤ 1. Diverse variations of the concept arise de-
pending on the choice of the norm ‖ · ‖. In [10], [8], we have considered a specific
first order norm. In this paper we introduce the packing integrals adapted to higher
order distributions, this means that we consider seminorms of higher order to mea-
sure test functions. For this goal we need a more subtle partition of unity than in
[10]. The main result is then that this integral makes a sense, this means that it
is unique, see Theorem 5.1. Concerning the existence, the higher order seminorms
we consider, the wider is the class of integrable functions, and this contains all
Lebesgue integrable functions already for the order 0, Theorem 6.1.

In Section 7 we use packing integrals to give an alternative sense to certain
singular integrals. Indeed, if T z is the distribution which associates the singular
integral with a test function, the integral with respect to T z serves as the general
singular integral.
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2. Preliminaries

The ball with center at x and radius r is denoted by B(x, r), especially B =
B(0, 1). We write |E| for the Lebesgue measure of a set E.

We use the barred integral symbol for integral averages, this means

−
∫
E

f dµ =
1

µ(E)

∫
E

f dµ.

The principal value integral of a function g over a set E ⊂ Rn is defined as

(p.v.)

∫
E

g(y) dy = lim
ε→0

∫
E\B(0,ε)

g(y) dy.

We say that the principal value integral of g converges if the limit exists and is
finite.

The total differential of the k-th order consists of all k-th order partial derivatives,
we denote it by Dk.

If Ω ⊂ Rn is an open set, D(Ω) is the class of all infinitely differentiable func-
tions supported in Ω (so-called “test functions”). Then D′(Ω) is the family of all
distributions on Ω. The action of a distribution T on a test function ϕ is denoted
by 〈T , ϕ〉.

We use the symbol C for a generic constant which can change at each occurence.

3. The definitions of integral

3.1. Packing integral. We follow the ideas from [10] and [8], but we consider
general seminorms of arbitrary order. Denote B = B(0, 1). Let Ω ⊂ Rn be a
bounded open set. Let P be a system of continuous seminorms on D(B). We
assume that for each finite subsystem P ′ of P there exists p ∈P which majorizes
every p′ ∈P ′. For p ∈P, x ∈ Ω and r > 0 with B(x, r) ⊂ Ω we write

κx,r(y) = x+ ry, y ∈ B,
px,r(ϕ) = p(ϕ ◦ κx,r), ϕ ∈ D(B(x, r)),

p∗x,r(T ) = sup
{
〈T , ϕ〉 : ϕ ∈ D(B(x, r)), px,r(ϕ) ≤ 1

}
, T ∈ D′(Ω).

Here we identify D(B(x, r)) with {ϕ ∈ D(Ω): sptϕ ⊂ B(x, r)}. Let F be a dis-
tribution on Ω and H : Ω → D′(Ω) be a distribution-valued function. A func-
tion δ : Ω → (0,∞) is termed a gauge. A finite system (B(xi, ri)

m
i=1 of balls is

called a packing in Ω if the balls B(xi, ri) are pairwise disjoint and contained in
Ω, i = 1, . . . ,m. (The number m of balls is finite but not limited.) We say that
the packing is δ-fine if ri < δ(xi), i = 1, . . . ,m. We say that F is an indefinite P-
packing integral, of H if there exist τ ∈ (0, 1) and p ∈P such that for each ε > 0
there exists a gauge δ : Ω → (0,∞) such that for each δ-fine packing (B(xi, ri)

m
i=1

in Ω we have
m∑
i=1

p∗xi,τri(F −H (xi)) < ε.

We denote the indefinite integral of H by
∫

dH . If H has the form H (x) =
f(x)G, where f is a function on Ω and G is a distribution independent of x, we call
the process as integration of f with respect to G; the resulting integral is denoted
by
∫
f dG.
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Remark 3.1. 1. It is easy to observe that the class of all distribution valued
functions on Ω is a linear space and the operator of indefinite integration is linear.

2. If µ is a Radon measure on Rn and f ∈ L1(µ), the task to integrate f with
respect to µ corresponds to integration of the distribution valued function

〈H (x), ϕ〉 =

∫
Rn

f(x)ϕ(y) dµ(y),

whereas the resulting indefinite integral should be

〈F , ϕ〉 =

∫
Rn

f(y)ϕ(y) dµ(y).

3.2. Definite integral. There is a variety of “definite integrals” associated with
our indefinite integral. Once found an indefinite integral F , we need to “evaluate”
〈F , 1〉. Since ϕ = 1 is not a legitimate test function, it leads us to choose one of
the many possibilities how to define the limit process ϕ→ 1.

Thus, a definition of a definite integral is a two step process: we combine a version
of indefinite integral with a kind of the limit process. Apparently, the first step is
the one which is more difficult. Therefore, in this paper, we focus our attention to
this first step and we do not study the definite integrals.

We include only one example for illustration. We can say that a number I ∈ R
is a definite integral of H : Rn → D′(Rn) if there exists an indefinite integral F
of H and for each sequence (ϕj)j of test functions such that sptϕj ⊂ B(0, j) and
ϕj(0) = 1 we have

(p0,j(ϕj))j is bounded for each p ∈P =⇒ 〈F , ϕj〉 → I.

4. Partition of unity

In this section, we consider the concrete family of seminorms

(1) P = {p(0), p(1), p(2), . . . },

where

(2) p(k)(ϕ) = ‖Dkϕ‖∞, ϕ ∈ D(B).

It is evident that p(k) majorizes p(j) if j ≤ k.
We need a careful partition of unity corresponding to a covering.

Theorem 4.1. There exists a sequence Ck of constants with the following prop-
erty. Suppose that (Bi)

m
i=1 be a finite pairwise disjoint system of balls in Rn,

Bi = B(xi, ri), and G =
⋃
iB(xi, 5ri). Then there exists a system ωi of func-

tions on Rn such that

(a) ωi ∈ D(Rn), i = 1, . . . ,m,
(b) ωi ≥ 0, i = 1, . . . ,m,
(c) sptωi ⊂ B(xi, 10ri), i = 1, . . . ,m,
(d) χG ≤

∑
i ωi ≤ 1,

(e) p
(k)
xi,10ri

(ωi) ≤ Ck, i = 1, . . . ,m, k ∈ N.
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Proof. We may assume that r1 ≥ r2 ≥ · · · ≥ rm. Let η ∈ D(Rn) be a fixed function
such that spt η ⊂ B(0, 10) and η = 1 on B(0, 5). Set

ψi = 1− η ◦ κ−1
xi,ri ,

ρi = ψ1ψ2 · · ·ψi,
ω1 = 1− ρ1,

ωi = ρi−1 − ρi, i = 2, 3, . . . .

Then ψi = 0 on B(xi, 5ri), ψi = 1 on Rn \B(xi, 10ri), the properties (a),. . . ,(d) are
evidently satisfied and it remains to prove the estimate (e). We fix q ∈ {1, . . . ,m}.
We need to show that there exists a constant Ck such that

p
(k)
xq,10rq

(1− ρq) ≤
1

2
Ck.

We decompose

{1, . . . , q} =

∞⋃
j=1

Ij ,

where

Ij =
{
i ∈ {1, . . . , q} : 2j−1rq ≤ ri < 2jrq

}
.

Denote

ξj =
∏
i∈Ij

ψi, j = 1, 2, . . . .

Then there is β ∈ N such that

ρq = ξ1ξ2 . . . ξβ .

Given x ∈ Rn, let Ij(x) be the set of indices i ∈ Ij for which x ∈ B(xi, 10ri).
From the assumption that the balls B(xi, ri) are pairwise disjoint we infer that
the number of indices in Ij(x) is limited by a constant N depending only on the

dimension n. A simple scaling argument shows that there exist constants C̃0, . . . , C̃k
such that

‖Dsξj‖∞ ≤ C̃s(2jrq)−s, s = 0, . . . , k, j = 1, . . . , β.

(Here and in the sequel we do not mention dependence of constants on the dimension
and on the choice of the function η). We find a constant A = Ak > 0 such that

C̃s ≤ A−s, s = 0, . . . , k,

so that

(3) ‖Dsξj‖∞ ≤ 2−js(Arq)
−s, s = 0, . . . , k, j = 1, . . . , β.

We claim that

(4) ‖Ds(ξ1 . . . ξα)‖∞ ≤
(
1− 2−α

)s
(Arq)

−s, s = 0, . . . , k, α = 1, 2, . . . .

We prove the claim by induction. For α = 1 it has the form

‖Ds(ξ1)‖∞ ≤
(
1− 2−1

)s
(Arq)

−s, s = 0, . . . , k,
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this is just (3). Assume that j > 1 and the claim is true for α = j − 1, then by the
Leibniz rule we compute

‖Dk((ξ1 . . . ξj−1)ξj)‖∞ ≤
k∑
s=0

(
k

s

)
‖Ds((ξ1 . . . ξj−1)‖∞‖Dk−sξj‖∞

≤
k∑
s=0

(
k

s

)(
1− 2−j+1

)s
(Arq)

−s 2−j(k−s)(Arq)
s−k.

Using the binomial rule we simplify the estimate as

‖Dk(ξ1 . . . ξj)‖∞ ≤
(
(1− 2−j+1) + 2−j

)k
(Arq)

−k,

which proves (4) for α = j and s = k. Similarly we obtain the estimate of
Ds(ξ1 . . . ξj) with 0 ≤ s < k. It follows that

p
(k)
xq,10rq

(1− ρq) ≤ 10kA−k

as required. �

5. Uniqueness of the integral

In this section, let P be the family of seminorms (1), (2). where pk are defined
by (2).

Theorem 5.1. Let Ω ⊂ Rn be an open set and H : Ω→ D′(Ω) be a distribution-
valued function. Then there exists at most one indefinite P-packing integral of
H .

Proof. By linearity, it is enough to prove that 0 is the only indefinite integral of
H ≡ 0. Let F be an indefinite integral of 0 and η ∈ D(Rn). We need to show that
〈F , η〉 = 0. Since the support of η is compact, we may assume that |Ω| < ∞. Let
p ∈P and τ be as in the definition of integral. Choose ε > 0 and find a gauge δ as
in the definition of integral. With each x ∈ spt η we associate a ball B(x, rx) such
that B(x, 10rx) ⊂ Ω, rx < δ(x) and

(5) p∗x,10rx(F) ≤ Cp∗x,τrx(F) + εrnx

(such rx exists, see [8]). Using Vitali covering technique and compactness of spt η,
we select a finite pairwise disjoint system (Bi)

m
i=1, Bi = B(xi, ri), such that ri = rxi

(i = 1, . . . ,m), and B(xi, 5ri) cover spt η. If (ωi)
m
i=1 is a partition of unity as in

Theorem 4.1 we obtain

|〈F , η〉| =
∣∣∣ m∑
i=1

〈F , ηωi〉
∣∣∣ ≤ sup

i=1,...,m
pxi,10ri(ηωi)

m∑
i=1

p∗xi,10ri(F).

Now by (5) we have
m∑
i=1

p∗xi,10ri(F) ≤ C
m∑
i=1

(
p∗xi,τri(F) + εrni

)
≤ Cε(1 + |Ω|).

By the property (e) in Theorem 4.1 and the special choice of p = p(k), there exists
a constant C(k, η) such that for each i = 1, . . . ,m we have

pxi,10ri(ηωi) ≤ C(k, η)pxi,10ri(ωi) ≤ CkC(k, η).

It follows that 〈F , η〉 = 0. �
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6. Absolutely convergent integration

We consider the distribution

〈G, ϕ〉 =

∫
Ω

ϕ(y) dµ(y).

Recall that a.e. point x ∈ Rn is a Lebesgue point for f ∈ L1(Ω, µ), this means

lim
r→0+

−
∫
B(x,r)

|f(y)− f(x)| dµ(y) = 0,

see [6, 1.7].

Theorem 6.1. Suppose that P contains a seminorm p with p ≥ p(0). Let Ω ⊂
Rn be an open set, µ be a Radon measure on Ω and f ∈ L1

loc(Ω, µ). Then the
distribution

〈F , ϕ〉 =

∫
Ω

fϕ dy, ϕ ∈ D(Ω)

is an indefinite P-packing integral of f with respect to G with τ = 1.

Proof. Given ε > 0, we define a gauge δ according to the following rules: Let L be
the set of all µ-Lebesgue points for f and Ek = {x ∈ Ω \ L : |f(x)| ≤ k}.

Let (Uk)k be a sequence of open sets of finite µ-measure such that µ(Uk) > 0 and
Ω =

⋃
k Uk. Let V be a open set containing the µ-null set Ω \ L with the property

that ∫
V

|f(y)| dµ(y) < ε

and Wk be open sets containing Ek such that µ(Wk) < ε
k2k , k = 1, 2, . . . .

If x ∈ L ∩ Uk, we choose δ(x) > 0 such that B(x, δ(x)) ⊂ Uk and

0 < r < δ =⇒ −
∫
B(x,r)

|f(y)− f(x)| dµ(y) ≤ ε

2kµ(Uk)
.

Then, if 0 < r < δ(x) and ϕ ∈ D(Ω) with sptϕ ∈ B(x, r) and p(0)(ϕ) ≤ 1, we have

|〈F − f(x)G, ϕ〉| =
∣∣∣∫
B(x,r)

(f(y)− f(x))ϕ(y) dµ(y)
∣∣∣ ≤ εµ(B(x, r))

2kµ(Uk)
.

If x ∈ Ek, we choose δ(x) > 0 such that B(x, δ(x)) ⊂ V ∩ Wk. Then, if
0 < r < δ(x) and ϕ ∈ D(Ω) with sptϕ ∈ B(x, r) and p(0)(ϕ) ≤ 1, we have

|〈F − f(x)G, ϕ〉| =
∣∣∣∫
B(x,r)

(f(y)− f(x))ϕ(y) dµ(y)
∣∣∣

≤ ε
∫
B(x,r)

|f(y)| dµ(y) + kµ(B(x, r)).

Now, it is clear to observe that for each δ-fine packing (B(xi, ri))i of Ω we have∑
i

p∗xi,ri(F − f(x)G) ≤
∫
V

|f(y)| dµ(y) +

∞∑
k=1

εµ(Uk)

2kµ(Uk)
+

∞∑
k=1

k|Wk| ≤ 3ε.

�
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7. Singular integral

We demonstrate the power of the integral we just defined on the classical example
of the singular integral with Calderón–Zygmund kernel. We do not pursue the
maximal possible generality, and therefore we settle for the smooth homegeneous
kernel while noting that many other cases may be handled in analogous fashion.
Let us take a C1 function Φ defined on the unit sphere Sn−1 of mean value 0 with
respect to the surface measure.

We consider the kernel

K(x) = |x|−nΦ
( x
|x|

)
.

We imagine the singular integral operator T as the convolution Tf = K ∗ f .
However, this convolution usually does not make sense as Lebesgue integral. We
write

(6)

T xε f =

∫
Bc(0,ε)

f(x− y)K(y) dy,

T xf = (p.v.)

∫
Rn

f(x− y)K(y) dy = lim
ε→0

T xε f.

The definition
Tf : x 7→ T xf

gives a sense to the singular integral at least if f ∈ D(Rn). In this case the principal
value integral converges for each x ∈ Rn. The operator is then shown to be apriori
Lp bounded for 1 < p < ∞ and of the weak type 1 − 1. This boundedness allows
to extend the operator T to all Lp functions. The extension, however, does not
guarantee the convergence of the principal value. To avoid a misunderstanding, we
use the symbol T xf exclusively for the principal value integral (6).

The standard method to prove the convergence of the principal value is to con-
sider the maximal singular operator

T ∗f(x) = sup
ε>0
|T xε f |.

This operator is well defined for any function f in L1 and is of the weak type 1− 1.
From this fact it is then possible to obtain the convergence of the principal value
T xf almost everywhere by a simple argument. The seminal papers in the theory
are [3] and [4], for overview see [13].

The principal value integral acts a distribution

〈T x, ϕ〉 = T xϕ.

Moreover, given f ∈ L1(Rn) and x ∈ Rn such that the singular integral T xf exists,
we define the distribution Fx as

〈Fx, ϕ〉 = T x(fϕ).

This definition is correct according to the following lemma.

Lemma 7.1. Let f ∈ L1(Rn), x ∈ Rn and r > 0. Suppose that the principal
value integral T xf converges and that x is a Lebesgue point for f . Let ϕ ∈ D(Rn),
sptϕ ⊂ B(x, r). Then T x(fϕ) exists and

(7)
|T x(fϕ)− f(x)T xϕ| ≤ Cr‖∇ϕ‖∞ sup

0<ρ≤r
−
∫
B(x,ρ)

|f(y)− f(x)| dy

+ C‖ϕ‖∞|T xf − T xr f |.
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Proof. We start from the estimate

(8)

∫
B(x,r)

|y − x|1−n|f(y)−f(x)| dy ≤ (n−1)

∫ r

0

(
ρ−n

∫
B(x,ρ)

|f(y)−f(x)| dy
)
dρ

+ r1−n
∫
B(x,r)

|f(y)−f(x)| dy ≤ Cr sup
0<ρ≤r

−
∫
B(x,ρ)

|f(y)−f(x)| dy,

see [1, Lemma 3.1.1]. The right part of (8) is finite as x is a Lebesgue point for f .
Hence

(9)

∫
Rn

|x− y|1−n|f(y)| dy ≤ |f(x)|
∫
B(x,r)

|x− y|1−n dy

+ Cr sup
0<ρ≤r

−
∫
B(x,ρ)

|f(y)− f(x)| dy + r1−n
∫
Rn

|f(y)| dy.

Since

(10) |K(x− y)(ϕ(y)−ϕ(x))| ≤ C‖∇ϕ‖∞|y−x| |K(x− y)| ≤ C‖∇ϕ‖∞|x− y|1−n,
the integral T x((ϕ − ϕ(x))f) has a sense even as the Lebesgue integral. Thus,
f 7→ T x(ϕf) is a sum of distributions ϕ 7→ T x((ϕ− ϕ(x))f) and ϕ 7→ ϕ(x)T xf .

Let χB be the characteristic function of B = B(x, r). Then

(11)
T x(fϕ)− f(x)T xϕ = T x((f − f(x))ϕχB)

= T x((f − f(x))(ϕ− ϕ(x))χB) + ϕ(x)T x((f − f(x))χB).

By (10), the integral T x((f−f(x))(ϕ−ϕ(x))χB) converges as the Lebesgue integral
and

(12) |T x((f − f(x))(ϕ− ϕ(x))χB)| ≤ Cr‖∇ϕ‖∞ sup
0<ρ≤r

−
∫
B(x,ρ)

|f(y)− f(x)| dy.

For the second term in (11) we first observe that T xχB = 0 by definition of the
kernel (the mean value requirement on Φ). Hence

(13) T x((f − f(x))χB) = T x(fχB) = T xf − T x(fχBc) = T xf − T xr f.
From (11), (12) and (13) we obtain the required estimate (7). �

Theorem 7.2. Let P be a system of seminorms on D(B) containing a seminorm
p with p ≥ p(1) (see (1) for the notation). Let f ∈ L1. Then for almost every
z ∈ Rn, the distribution Fz is the indefinite P-packing integral of f with respect
to T z with τ = 1.

Proof. We choose z such that z is a Lebesgue point for f and the principal value
integral T zf converges. Given ε > 0, by Theorem 6.1 there exists a gauge δ :
Rn \ {z} → (0,∞) such that for each δ-fine packing (B(xi, ri))

m
i=1 in Rn \ {z} we

have
m∑
i=1

p∗xi,ri(F
z − f(xi)T z) < ε.

Moreover, we may assume that δ(x) < |x− z| for each x ∈ Rn \{z}. We define δ(z)
such that

sup
0<r≤δ(z)

−
∫
B(x,r)

|f(y)− f(x)| dy < ε

and
sup

0<r≤δ
|T zr f − T zf | < ε.
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Consider a δ-fine packing (B(xi, ri))
m
i=1 in Rn. Then at most one of the balls

B(xi, ri) contains z and in this case this is a ball B(z, r) with r < δ(z). For such a
ball B(z, r) and ϕ ∈ D(Rn) with sptϕ ⊂ B(z, r) we have

〈Fz − f(z)T z, ϕ〉 ≤ Cεr‖∇ϕ‖∞ + Cε‖ϕ‖∞
by the definition of δ(z) and Lemma 7.1. Since

‖ϕ‖∞ + r‖∇ϕ‖∞ ≤ Cpz,r(ϕ),

we have

p∗z,r(Fz − f(z)T z) ≤ Cε.
Hence for any δ-fine packing as above we obtain

m∑
i=1

p∗xi,ri(F
z − f(xi)T z) < (1 + C)ε.

�

Remark 7.3. We have just proved that the singular integral defined by z 7→ Fz
makes sense for all L1 functions. However, it is clear that there is much more than
L1 functions which are integrable in this sense. For example, if

f(x) =
sin 1

x2

x

and the singular kernel is just 1/x, then the integral Fz has sense for z 6= 0, and
thus for a.e. z ∈ R. Indeed, the integrand

sin 1
(z−x)2

x(z − x)

has two singularities; the singularity at x = 0 can be handled via Theorem 7.2,
whereas the singularity at x = z does not bother for non-absolutely convergent
integrals of Denjoy-Perron type and their generalizations.
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[8] K. Kuncová and J. Malý. Non-absolutely convergent integrals in metric spaces. Preprint
MATH-KMA-2012/407. Charles University in Prague. Available online

http://www.karlin.mff.cuni.cz/kma-preprints/, 2012.

[9] J. Kurzweil. Generalized ordinary differential equations and continuous dependence on a
parameter. Czechoslovak Math. J., 7 (82):418–449, 1957.



10 PETR HONZÍK AND JAN MALÝ
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