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Abstract. Let m < α < p and let f : Rn → Rk be a s, p-quasicontinuous repre-
sentative of a mapping in the Triebel-Lizorkin space F sp,q. We find an optimal value
of β(n,m, p, α, s) such that for Hβ a.e. y ∈ (0, 1)n−m the Hausdorff dimension of
f((0, 1)m × {y}) is at most α. We construct examples to show that the value of β
is optimal and we show that it does not increase once p goes below the critical case
p < α.

1. Introduction

It is well-known that each Sobolev function satisfies the ACL condition, i.e., the
function is absolutely continuous when restricted to almost all lines parallel to coor-
dinate axes. It follows that images of Hn−1 almost all segments are rectifiable curves
and thus have Hausdorff dimension at most one. More generally we can ask how of-
ten it can happen that the images of m-dimensional subspaces have bigger Hausdorff
dimension.

These questions were studied for quasiconformal mapping by Gehring and Väisälä
[7] and for supercritical Sobolev mappings (i.e. f ∈ W 1,p, p > n) by Kaufmann [11].
Let Ω ⊂ Rn be a domain, p > n and let f ∈ W 1,p(Ω,Rk) be continuous. It was shown

by Kaufmann that images of m-dimensional subspaces have zero H
pm

p−n+m measure.
Let us point out that naive application of (1− n

p
) Hölder continuity would give a worse

exponent pm
p−n . He also gave a probabilistic construction to show that the value pm

p−n+m

is optimal. The generalization of this result to metric spaces setting that include for
example Heisenberg group is by Balogh, Tyson and Wildrick [2].

Recently it was shown in a nice paper of Balogh, Monti and Tyson [3] that for
any p > n and m < α < pm

p−n+m
it is true that the image of Hβ a.e. m-dimensional

subspace has dimension at most α where β = n − m − (1 − m
α

)p. By a similar
construction as Kaufmann they also showed that this value of β is optimal for all
p > n. Moreover, using finer arguments it is possible to show a similar results also
for p < n as was done by Hencl and Honźık [10].

In this paper we show that similar result holds also for higher order Sobolev spaces
or more generally for Triebel-Lizorkin spaces F s

p,q (see Preliminaries for the definition).

Let us just recall that for k ∈ N and p ∈ (1,∞) we have F k
p,2 = W k,p. It seems possible

that similar result holds also for Besov spaces but we have not pursued this direction.
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The only result for fractional Sobolev spaces in this direction that we are aware of is
the estimate of the dimension of a graph of a function by Carvalho [5] and Carvalho
and Caetano [6]. Our main result in the positive direction is the following.

Theorem 1.1. Let n, k ∈ N and m ∈ {1, . . . , n − 1}. Let m < α < p and for
sp > n−m we moreover assume α < pm

sp−n+m
. Set

β = β(α, p, s) := n−m−
(
s− m

α

)
p .

Suppose that f ∈ F s
p,q(Rn,Rk) is a s, p-quasicontinuous representative. If we denote

E =
{
y ∈ (0, 1)n−m : dimH

(
f((0, 1)m × {y})

)
≥ α

}
,

then dimH(E) ≤ β.
Moreover, in the case sp > n −m and pm

sp−n+m
< α < p (i.e. β < 0) there is no

y ∈ (0, 1)n−m such that dimH
(
f((0, 1)m × {y})

)
≥ α.

Let us note that sharp results for fractional order spaces F s
p,q cannot be obtained

from the results for W k,p spaces simply by the Sobolev embedding theorem.
Since the important things occur on a set of measure zero we need to have a good

representative of our function. In the theorem, we choose the s, p-quasicontinuous
representative, but in fact the only thing that we will need is that the value of the
representative of f is equal to the limit of integral averages whenever such limit exists.

Analogously to the counterexamples in [11] and [3] we can show that the value of
β from the previous theorem is optimal at least for Minkowski dimension if α < p.
For simplicity we give the counterexamples only for q = 2 but in view of imbeddings
(2.3) it would be possible to adjust the construction for other q as well.

Theorem 1.2. Let s > 0, 1 < p < ∞ and let α satisfy m < α ≤ pm
sp−n+m

for

sp > n−m and m < α for sp ≤ n−m, and define

β = β(α, p, s) = (n−m)−
(
s− m

α

)
p .

Let E ⊂ (0, 1)n−m be any Borel set for which

lim sup
r→0+

rβN(E, r) <∞ .

Then, for any integer k > α, there is a continuous map f ∈ F s
p,2(Rn,Rk) so that

f(Rm × {a}) has Hausdorff dimension at least α, for Hβ-almost every a ∈ E.

It was shown in [10] that the condition α < p is natural and that better counterex-
ample exists for W 1,p spaces if p < α. We show below the neccessity of the condition
α < p also for Triebel-Lizorkin spaces and our counterxample shows that the optimal
value of β does not improve once we go below p < α. This degeneracy seems to
be connected with the fact that s, p-quasicontinuous representatives of the function
f ∈ F s

p,q are well-defined and have Lebesgue points up to a set of dimension n − sp
(see Theorem 2.1 below) and for p < α we have β(α, p, s) < n− sp.

Theorem 1.3. Let s > 0, 1 < p <∞, sp < n, m < p < α and let

β̃ < n− sp = β(p, p, s) .
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Let E ⊂ (0, 1)n−m be any Borel set for which

lim sup
r→0+

rβ̃N(E, r) <∞ .

Then, for any integer k > α, there is a continuous map f ∈ F s
p,2(Rn,Rk) so that

f(Rm × {a}) has Hausdorff dimension at least α, for Hβ̃-almost every a ∈ E.

The proof of Theorem 1.1 follows the same principle as the proof in [10] but in
addition to the estimate of the oscillation on the small ball, which we used previ-
ously, we also need to control the oscilation over larger balls. This is essential in the
case s > 1. We provide these estimates in Lemma 3.1. In the construction of the
counterexamples we use the approach developed in [11] and [3] together with the fact
that F s

p,2 spaces can be obtained by interpolation of Sobolev spaces W k,p. For the
convenience of the reader we include all details.

2. Preliminaries

We use the notation N(E, r) for the smallest number of balls of radius r > 0 that
cover the set E ⊂ Rd. For t > 0 we denote the integer part of t as [t]. By Q(z, r) we
denote the cube centered at z ∈ Rd with radius r > 0.

We use the usual convention that C denotes a generic positive constant whose value
may change from line to line.

By f ∗ g we denote the convolution

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy .

The Fourier transform of a function f is denoted as f̂ and the inverse Fourier transform
is denoted as F−1(f).

2.1. Fractional Sobolev spaces. Let us recall the Fourier analytic definition of
function spaces. We fix a smooth function φ with φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0

for ξ ≥ 2. We then find a function ψ such that ψ̂(ξ) = φ(ξ) − φ(2ξ). We define the
operator

∆jf = F−1(f̂(ξ)ψ̂(2−jξ)) = f ∗ ψ2−j ,

where ψ2−j(x) = 2jnψ(2jx). This scaling is L1 homogeneous. Since ψ is a Schwartz
function we know that for every M > 0 there is Cm > 0 such that |ψ(x)| ≤ CM(1 +
|x|)−M . Thus for k > 0

(2.1) sup
x∈B(0,2−j+k)\B(0,2−j+k−1)

|ψ2−j(x)| ≤ CM2jn2−Mk.

Analogous estimate holds for the derivatives and we obtain for example

(2.2) sup
x∈B(0,2−j+k)\B(0,2−j+k−1)

|∇2ψ2−j(x)| ≤ CM22j2jn2−Mk.

The function spaces of interest to us are the Triebel-Lizorkin spaces F s
p,q where

‖f‖F s,qp =
∥∥∥( ∞∑

j=−∞

(2sj|∆jf |)q
) 1
q
∥∥∥
p
.
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The norm on domains is defined via restriction. For an introduction to fractional
Sobolev spaces, see e.g. [13] and [8, Chapter 6.5.].

The results we prove are independent on the index q. This is due to the fact that
the following imbeddings are valid:

(2.3) F s
p,q ↪→ F s

p,q+r and F s+ε
p,q+r ↪→ F s

p,q

for r, ε > 0, see e.g. [9, Proposition 7.2], and we do not pursue the endpoint estimates.
We still give the full proofof positive results, because replacing the index q by any
single value gives no simplification. We will need that F s

p,q functions have Lebesgue
points up to a small set. This result follows from [1, Theorem 6.2.1 and Theorem
5.1.13] for the case q = 2 and extends for other values of q by (2.3).

Theorem 2.1. Let 1 < p, q < ∞ and 0 < sp < n. Let f ∈ F s
p,q(Rn) be a s, p-

quasicontinuous representative and set

Es,p = {x ∈ Rn : x is not a Lebesgue point of f} .

Then dimH(Es,p) ≤ n− sp.

2.2. Interpolation of fractional Sobolev spaces. We will need that Triebel-
Lizorkin spaces F s

p,2 can be obtained by interpolation of the usual Sobolev spaces

(see [4, Theorem 6.4.5, (7)]). Recall that F k
p,2 = W k,p for k ∈ N0. We use the

notation W 0,p for the usual Lp spaces.

Theorem 2.2. Let 1 < p < ∞, k ∈ N, and k − 1 ≤ s ≤ k. Let θ ∈ [0, 1] satisfy
s = θ(k − 1) + (1− θ)k. Then for every f ∈ C∞c ((0, 1)n) we have

‖f‖F sp,2 ≤ C‖f‖θWk−1,p‖f‖1−θWk,p .

In the construction of the counterexamples we will need the estimate of the norms
of some simple functions.

Lemma 2.3. Let p ∈ (1,∞) and s ≥ 0. Let us fix f0 ∈ C∞c (Rn) such that

f0 = 1 on Q0 = (0, 1)n and supp f0 ⊂ 2Q0 .

A) Let r ≥ 1. The norm of the function fr(x) = f0(rx) can be estimated by

(2.4) ‖fr‖F sp,2 ≤ Crs−
n
p .

B) Let us fix N disjoint cubes Qi ⊂ (0, 1)n of side length r. Let f̃i denote the translates

of fr such that f̃i ≡ 1 on Qi and supp f̃i ⊂ 2Qi and choose vectors ξi in the unit ball
of Rk, k ∈ N. Then for the function f : (0, 1)n → Rk defined as

f(x) =
N∑
i=1

f̃i(x)ξi we have ‖f‖F sp,2 ≤ CN
1
p‖fr‖F sp,2 ≤ CN

1
p rs−

n
p .

Proof. As f0 is smooth it is easy to see that fr ∈ F s
p,2 and f ∈ F s

p,2. Let us first prove
the estimate A) in the case s ∈ N ∪ {0}. By the substitution y = rx and

‖∇sf0‖Lp = C0 we obtain ‖∇sfr‖Lp = C0r
s−n

p ,
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where r−
n
p comes from the Jacobian and rs comes from the derivative of the composi-

tion applied s-times. As r ≥ 1 the estimate (2.4) follows for s ∈ N∪ {0}. For general
s we can apply Theorem 2.2 and previous estimate to obtain

‖fr‖F sp,2 ≤ C(C0r
k−1−n

p )θ(C0r
k−n

p )(1−θ) ≤ Crs−
n
p .

Now let us prove B) for s ∈ N∪ {0}. The cubes Qi are pairwise disjoint and hence
2Qi have bounded overlap by 2n. Thus∣∣ N∑

i=1

fi(x)ξi
∣∣p ≤ C

N∑
i=1

|fi(x)ξi|p ≤ C

N∑
i=1

|fi(x)|p

and the similar estimate holds for the derivatives. It follows that

‖f‖pF sp,2 ≤ C

N∑
i=1

‖fi‖pF sp,2 ≤ CNrsp−n .

For general s we can apply Theorem 2.2 and previous estimate to obtain

‖f‖F sp,2 ≤ C(CN
1
p rk−1−n

p )θ(CN
1
p rk−

n
p )(1−θ) ≤ CN

1
p rs−

n
p .

�

2.3. Probabilistic lemma. In order to prove Theorem 1.2 and Theorem 1.3 we will
use a probabilistic approach and we will need the following lemma (see [3, Lemma
4.3] for the proof).

Lemma 2.4. Let {Xi}∞i=1 be a countable sequence of independent random variables,
identically distributed according to the uniform distribution on the unit ball B in Rk.
Let c = {ci} ∈ `∞ and finally let 0 < α′ < k + 1. Then there is a constant C which
depends only on k and α′ so that

Eξ

(∣∣∣ ∞∑
i=1

ciXi

∣∣∣−α′) ≤ Cρ(c)−α
′

where ρ(c) denotes the second largest value, i.e.

ρ(c) =

{
‖c‖∞ if ‖c‖∞ = supi∈N |ci| is not attained,

supi 6=i0 |ci| if the supremum is attained at i0.

2.4. Hausdorff and capacitary dimension. Let α > 0 and ε > 0. We use the
usual Hausdorff measure of a set E ⊂ Rd, i.e.

Hα
ε (E) = inf

{ ∞∑
i=1

diamαAi : E ⊂
∞⋃
i=1

Ai, diamAi < ε
}

and Hα(E) = lim
ε→0+

Hα
ε (E) .

The Hausdorff dimension of a set E is

dimH(E) = sup{α > 0 : Hα(E) =∞} = inf{α > 0 : Hα(E) = 0} .
For α > 0 and A ⊂ Rk, denote by

Iα(µ) :=

∫
A

∫
A

|x− y|−α dµ(x) dµ(y)
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the α-energy of a nonzero finite Radon measure µ with compact support in A. The
capacitary dimension of a set A is defined as

dimc(A) = sup{α > 0 : ∃µ with Iα(µ) <∞} .

We will use the well-known fact (see [12, Theorem 8.9]) that the Hausdorff dimension
is equal to the capacitary dimension.

3. Positive result

It is well-known that for sp > n the mappings in F s
p,q are Hölder continuous, i.e.

for every a, b ∈ B(0, R0) we have

|f(a)− f(b)| ≤ CR
s−n

p

0 ‖f‖F sp,q(Rn) .

However the similar inequality holds also in the case sp < n for some different ball of
radius R if we add the correction term R/R0 to some power (see [10, Lemma 3.1] for
similar result for W 1,p, p < n).

Lemma 3.1. Suppose that a and b are Lebesgue points of f in F s,q
p (Rn), 1 ≤ p, q <∞

and s > 0. Let 0 < γ < p/2 and denote R0 = |a− b|. Then there are z ∈ {a, b} and
either 0 < R ≤ R0 such that

(3.1)

∫
B(z,R)

( ∞∑
j=−∞

(2sj|∆jf(x)|)q
)p/q

dx ≥ Cγ|f(a)− f(b)|pRn−sp(R/R0)
γ

or R0 ≤ R such that

(3.2)

∫
B(z,R)

( ∞∑
j=−∞

(2sj|∆jf(x)|)q
)p/q

dx ≥ Cγ|f(a)− f(b)|pRn−sp(R/R0)
p−γ.

where the positive constant Cγ depends only on γ, p, s and dimension n.

Proof. Suppose 2−k ≤ |a − b| < 2−k+1 for some k ∈ Z. Since the points a and b are
Lebesgue points, we get∑

j∈Z

∆jf(a) = f(a) and
∑
j∈Z

∆jf(b) = f(b) .

It follows that by choosing sufficiently small constant C ≈ (
∑∞

i=1 2−iγ)
−1

, we get

|∆jf(a)−∆jf(b)| ≥ C2−|k−j|γ/p|f(a)− f(b)| for some j ∈ Z .

Let us first suppose that j ≥ k. Without loss of generality we may assume that

(3.3) |∆jf(a)| ≥ C2(k−j)γ/p|f(a)− f(b)| .

Now, let us use the formula

(3.4) ∆jf = (∆j−1 + ∆j + ∆j+1)∆jf = ∆jf ∗
1∑

i=−1

ψ2−j+i .
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This standard identity holds because
∑1

i=−1 ψ̂2−j+i(ξ) = 1 for all ξ ∈ suppψ̂2−j . We
have

(3.5)

|∆jf(a)| ≤ C

∫
B(a,2−j)

1∑
i=−1

|ψ2−j+i(y)| |∆jf(a− y)| dy

+
∞∑
l=1

∫
B(a,2−j+l)\B(a,2−j+l−1)

1∑
i=−1

|ψ2−j+i(y)| |∆jf(a− y)| dy.

Now, to handle the first term of the sum we apply the Hölder inequality and (2.1)
and we obtain
(3.6)∫
B(a,2−j)

1∑
i=−1

|ψ2−j+i(y)| |∆jf(a−y)| dy ≤
(∫

B(a,2−j)

|∆jf(a− y)|p dy
) 1

p

2nj|B(a, 2−j)|
1
p′ ,

while the terms inside the sum are estimated as

(3.7)

∫
B(a,2−j+l)\B(a,2−j+l−1)

1∑
i=−1

|ψ2−j+i(y)| |∆jf(a− y)| dy

≤ CM

(∫
B(a,2−j+l)\B(a,2−j+l−1)

|∆jf(a− y)|p dy
) 1
p
2nj−Ml|B(a, 2−j+l)|

1
p′ .

By the combination of (3.3), (3.5), (3.6) and (3.7) we obtain

2(k−j)γ/p|f(a)− f(b)| ≤

≤ CM

∞∑
l=0

(∫
B(a,2−j+l)

|∆jf(a− y)|p dy
) 1
p
2nj−Ml|B(a, 2−j+l)|

1
p′

≤ CM

∞∑
l=0

2nj−Ml2
(−j+l) n

p′
(∫

B(a,2−j+l)

|∆jf(a− y)|p dy
) 1
p

≤ 4CM sup
l0∈N0

2nj−(M−1)l02
(−j+l0) n

p′
(∫

B(a,2−j+l0 )

|∆jf(a− y)|p dy
) 1
p
,

where in the last step we used the observation that for any sequence {ul}∞l=0 we have
∞∑
l=0

2−l|ul| ≤ 2 sup
l0

|ul0 |

to reduce the sum to one element. The constant M comes from the Schwartz decay
formula (2.1) and we can choose M = 3 + n− s− γ. Therefore for some l0 we have∫
B(a,2−j+l0 )

2sjp|∆jf(a− y)|p dy ≥ C2sjp2−njp+p(n−s+2)l02
jnp−l0np

p′ 2(k−j+l0)γ|f(a)− f(b)|p,

≥ CRn−sp
( R
R0

)γ
22l0p|f(a)− f(b)|p,

because we have 2k−j+l0 ≈ R/R0 and R ≈ 2−j+l0 . The conclusion (3.1) follows easily
and (3.2) follows by k ≤ j and 0 < γ < p/2. We note that the result from this part
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would give a stronger estimate than (3.2) with a different choice of M , in particular
we may get a better power of R/R0, but we wish to keep the estimates unified.

In the case j < k, we estimate the derivative in order to gain some size over the

larger ball. For sufficiently small constant C ≈
(∑∞

i=1 2−iγ/p
)−1

we get that for some
j ∈ Z we have

|∆jf(a)−∆jf(b)| ≥ C2−|k−j|γ/p|f(a)− f(b)|.
By the mean value theorem there is a point y on the line segment (a, b) such that

(3.8) |∇∆jf(y)| ≥ C2−|k−j|γ/p2k|f(a)− f(b)|.

We differentiate the formula (3.4) and we obtain the estimate

|∇2∆jf | ≤ |∆jf | ∗
∣∣∣∇2

1∑
i=−1

ψ2−j+i

∣∣∣.
We assume that the estimate (3.2) fails for some choice of the constant Cγ and use
this assumption to prove it for some other value of Cγ. First we repeat the calculation

from (3.5), (3.6) and (3.7) with
∣∣∣∇2

∑1
i=−1 ψ2−j+i

∣∣∣ in place of
∣∣∣∑1

i=−1 ψ2−j+i

∣∣∣. This

leads to the same result with additional factor 22j which comes from (2.2). We have
for any z ∈ B(y, 2−j)

|∇2∆jf(z)| ≤ CM22j

∞∑
l=0

(∫
B(z,2−j+l)

|∆jf(z − x)|p dx
) 1
p
2nj−Ml|B(z, 2−j+l)|

1
p′ .

We assumed that the opposite of (3.2) holds for any choice or R ≥ R0. We use this
opposite inequality for R = 2−j+l0 to estimate the j-th term of the sum and we get

|∇2∆jf(z)| ≤ CM22j sup
l0

(∫
B(z,2−j+l0 )

|∆jf(z − y)|p dy
) 1
p
2nj−(M−1)l0 |B(z, 2−j+l0)|

1
p′

≤ C22j|f(a)− f(b)|2−sj sup
l0

2(−j+l0)n−sp
p 2(−j+l0+k) p−γ

p 2nj−(M−1)l02
(l0−j) np′ .

and so for large value of M the we get

(3.9) sup
x∈B(a,2−j)

|∇2∆jf(x)| ≤ C2j+k2−|k−j|
γ
p |f(a)− f(b)|.

For every x̃ ∈ B(y, c2−j) we use mean value theorem together with (3.9) and (3.8) to
obtain

|∇∆jf(y)−∇∆jf(x̃)| ≤ c2−j sup
x∈B(a,2−j)

|∇2∆jf(x)|

≤ cC2k2−|k−j|
γ
p |f(a)− f(b)| ≤ cC|∇∆jf(y)| .

We see that there is an independent constant 0 < c < 1 such that

(3.10) sup
x∈B(y,c2−j)

|∇∆jf(y)−∇∆jf(x)| ≥ |∇∆jf(y)|/10.
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This means that there exists a direction such that whenever we choose a line parallel
to that direction of length of at least c2−j−10 which lies inside of B(y, c2−j) on at
least one quarter of this line we have with the help of (3.8) and (3.10)

|∆jf(x)| ≥ C2k−j2−|k−j|
γ
p |f(a)− f(b)| .

Therefore there is a significant part P of B(a, c2−j) such that if x ∈ P , then we get

|∆jf(x)| ≥ C2k−j2−|k−j|
γ
p |f(a)− f(b)|

and the claim (3.2) follows from∫
B(a,c2−j)

(
2sj|∆jf(x)|

)p
dx ≥ C2−jn2sjp2(k−j)p2−(k−j)γ|f(a)− f(b)|p .

�

Proof of Theorem 1.1. The proof of the Theorem follows the same principle as the
proof in [10]. The only difference is additional level of complexity caused by the fact
that the estimate given by the Lemma 3.1 is no longer local. There are two points
where the proof needs to be altered, first, the balls generated during the proof may
overlap significantly and second, it is not possible to limit the diameter of the balls
initially. Both of these problems are handled using the additional factor (R/R0)

p in
the estimate (3.2).

It is enough to show that dimH(E) < β̃ for each β̃ > β. Let us fix β̃ > β(α, p, s)

and assume for contradiction that dimH(E) ≥ β̃. By Theorem 2.1 we know that the
set

F = {x ∈ [0, 1]n : x is not Lebesgue point of f}
has Hausdorff dimension at most n− sp and the same holds for its projections. From
p > α we know that β̃ > β > n− ps and hence this set is negligible and

dimH(E \ P (F )) ≥ β̃ ,

where P is the projection on the last n − m variables. By [12, Lemma 3.1 and

Theorem 8.13] there is a compact set E0 ⊂ E \ P (F ) so that 0 < Hβ̃(E0) < ∞. By
Frostman’s lemma ([12, Theorem 8.9]) we can fix a measure µ supported in E0 with
total variation ‖µ‖ = M , and such that

(3.11) µ(B(a, r)) ≤ rβ̃ for any a ∈ Rn−m and r > 0 .

We can fix α̃ < α such that β̃ > β(α̃, p, s) and α̃ > m. It follows that

Hα̃
(
f((0, 1)m × {y})

)
=∞ for every y ∈ E0 .

Now let us fix a huge constant c0 > 0 and let us select ε such that

(3.12) µ(E1) >
M

2
for E1 :=

{
y ∈ E0 : Hα̃

ε (f((0, 1)m × {y})) > c0
}
.

Fix a point y ∈ E1. Let us introduce dyadic cubes on [0, 1]m. We denote D0 =
{[0, 1]m} the mother cube, and Dk = {Qi} where Qi are closed cubes with vertices in
the points 2−kZn ∩ [0, 1]m and with volume 2−km. Simple selection process, described
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in detail in [10] gives us a natural number Ky and a sequence of disjoint dyadic cubes

{Qy,i}Kyi=1 such that if we denote εi,y = diamf(Qi,y × {y}) we have

Ky∑
i=1

εα̃i,y ≥
c0
4
.

We now fix a constant γ > 0, precise value to be specified later. We fix Cγ ≈∑∞
i=0 2−γi and select k such that∑

{i=1,...,Ky : Qi,y∈Dk}

εα̃i,y ≥ C−1
γ 2−γk

c0
4
.

For each Qy,i ∈ Dk we may find ay,i, by,i ∈ Qy,i, where the diam in εy,i is almost
attained. Now we apply Lemma 3.1 for each Qy,i ∈ Dk and denote the sequence of
resulting n-dimensional balls Bj. We categorize the balls according to their diameters
and denote

Bl = {Bj : 2−l ≤ diam(Bj) ≤ 2−l+1}.
For each of these balls we denote the generating cube Qj,y and the appropriate εj,y.
We select l such that ∑

{j:Bj∈Bl}

εα̃j,y ≥ C−2
γ 2−γ(k+|k−l|)

c0
8
.

Now, we either have l ≥ k, in which case the balls are essentially disjoint and we may
use (3.1) to get

(3.13)

∫
[0,1]m×B(y,2−l)

( ∞∑
κ=−∞

(2sκ|∆κf(x)|)q
) p
q
dx ≥ Cγ

∑
{j:Bj∈Bl}

εpj,y2
−l(n−sp)2−|k−l|γ.

If l < k, the balls have overlap at most of the order 2m(k−l), so we use (3.2)
(3.14)∫

[0,1]m×B(y,2−l)

( ∞∑
κ=−∞

(2sκ|∆κf(x)|)q
) p
q
dx ≥ Cγ

∑
{j:Bj∈Bl}

εpj,y2
−l(n−sp)2−m(k−l)2p(k−l)2−|k−l|γ.

Since p > α, we use the Hölder inequality

(3.15)
∑

{j:Bj∈Bl}

εα̃j,y ≤
( ∑
{j:Bj∈Bl}

εpj,y

) α̃
p (
C2km

)1− α̃
p .

For l ≥ k we combine this with (3.13) and with the help of p > α > α̃ we get
(3.16)∫

[0,1]m×B(y,2−l)

( ∞∑
κ=−∞

(2sκ|∆κf(x)|)q
) p
q
dx ≥ Cγ

( ∑
{j:Bj∈Bl}

εα̃j,y

) p
α̃
2−l(n−sp)2mk(1−

p
α̃

)2−3lγ

≥ Cγ

( ∑
{j:Bj∈Bl}

εα̃j,y

) p
α̃
2−l(n−sp)2ml(1−

p
α̃

)2−3lγ.
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The same inequality in fact holds also for l < k. In this case we use (3.14) to estimate
the left hand side by

Cγ

( ∑
{j:Bj∈Bl}

εα̃j,y

) p
α̃
2−l(n−sp)2−m(k−l)2p(k−l)2mk(1−

p
α̃

)2−|k−l|γ ≥

≥ Cγ

( ∑
{j:Bj∈Bl}

εα̃j,y

) p
α̃
2−l(n−sp)2ml(1−

p
α̃

)2−3lγ

where in the last step we use l < k and p−m + m(1− p
α̃

) > 0 (by α̃ > m) and this

neglected factor also allows to pass from 2−|k−l|γ to 2−3lγ for small enough γ.
For each y, we have a centered ball in the space [0, 1]n−m of diameter 2−ly . We

use Besicovitch theorem to select a disjoint collections B(yν , 2
−lν ) from these. Us-

ing (3.12) we obtain that for one of these subcollections we have µ(∪B(yν , 2
−lν )) ≥

C(n)M where the constant involves the constant from the Besicovitch theorem. Fi-
nally, we pass to a subcollection B(yν , 2

−l), where l is fixed and for some C ≈
C(n)(

∑∞
l=0 2−γl)−1 we have

µ(
⋃

B(yν , 2
−l)) ≥ CM2−γl.

By (3.11) we conclude that the size of the index set N = {ν}, which indexes this

subcollection is at least 2β̃lCM2−γl. Using (3.16) we then write

‖f‖pF sp,q ≥
∑
ν∈N

∫
[0,1]m×B(yν ,2−l)

( ∞∑
κ=−∞

(2sκ|∆κf(x)|)q
) p
q
dx

≥ 2β̃lCM2−γl2−l(n−sp)2−3lγ2lm(1− p
α̃

)
( ∑
{j:Bj∈Bl}

εα̃j,y

) p
α̃

≥ CM2β̃l2−4γl2−l(n−sp)2lm(1− p
α̃

)c
p
α̃
0 .

Since β̃ > β(α̃, p, s) = n − m −
(
s− m

α̃

)
p, we see that if γ is small, the expression

above is bounded from below by a multiple of c
p
α̃
0 . Moreover, the constant c0 may be

chosen arbitrarily large, leading to a contradiction with the finiteness of the norm of
f .

The case sp > n − m and pm
sp−n+m

< α < p can be treated analogously. These

inequalities imply sp > n and hence we can choose a continuous representative of f .
We choose α > α̃ > pm

sp−n+m
and for contrary we assume that there is y with

Hα̃
(
f((0, 1)m × {y})

)
=∞ .

We again have inequality (3.16) and by m(1− p
α̃

)− (n− sp) > 0 the right hand side

is bigger than a constant multiple of c
p
α̃
0 which again leads to a contradiction. �

4. Counterexamples

First we prove Theorem 1.3. We use the approach that was developed in [3, The-
orem 1.4] and [11, Theorem 3]. In the proof we need a measure on the image of
m-dimensional hyperplanes (pushforward of the m-dimensional Hausdorff measure)



12 STANISLAV HENCL AND PETR HONZÍK

and then we use the definition of capacitary dimension which equals the Hausdorff
dimension. For the convenience of the reader we include all details.

Proof of Theorem 1.2. Note that the inequality α ≤ pm
sp−n+m

for sp > n −m implies

that β > 0 while β > 0 always holds for sp ≤ n−m.
Let us denote the orthogonal splitting of Rn by

V = Rm × {0}n−m and V ⊥ = {0}m × Rn−m

and for a ∈ Rn we denote Va = V + a. We assume that our set E satisfies

(4.1) N(E, r) ≤ Cr−β .

We will construct a map f ∈ F s
p,2(Rn,Rk) that satisfies

(4.2) Hα′
(
fξ(Va ∩ [0, 1]n)

)
=∞

for Hβ almost every a ∈ E and almost surely in ξ, for each α′ < α.
Let us introduce the sets that will serve as a set of indices in our construction.

Denote W = {1, . . . , 2n} and let W j be the set of (ordered) j-tuples of elements of
W and let

W ∗ =
⋃
j≥0

W j .

We say that w = (w1, . . . , wk) is a subword of v = (v1, . . . , vj) if j ≥ k and vi = wi
for i = 1, . . . , k. The length of a word w ∈ W j is equal to j and we denote it as |w|.
We use the set W ∗ to index the cubes in the standard dyadic decomposition

D = {Qw}w∈W ∗

of Q = [0, 1]n. It follows that the side length of Qw is equal to 2−j if w ∈ W j and
that Qv ⊂ Qw if w is a subword of v. We project these cubes into the subspaces V
and V ⊥ and we denote

QV ⊥

w = PV ⊥(Qw) and QV
w = PV (Qw)

where PV and PV ⊥ are the corresponding projections. Analogously to the definition
of W j we can define a system of 2jm dyadic cubes in [0, 1]m and we denote this system
as W̃ j. To simplify the notation we write

W j(E) = {w ∈ W j : QV ⊥

w ∩ E 6= ∅} .

Let us fix f0 ∈ C∞c (Rn) such that f0 = 1 on Q0 = (0, 1)n and supp f0 ⊂ 2Q0. For
each w ∈ W ∗, let ψw ∈ C∞0 (Rn) be a function defined as a proper translate of f2|w|

from Lemma 2.3. That is ψw is supported in the cube 2Qw of side length 22−w and

(i) 0 ≤ ψw ≤ 1,

(ii) ψw ≡ 1 on Qw,

(iii) ψw ≡ 0 on the complement of 2Qw,

(iv) ‖ψw‖F sp,2 ≤ C(2|w|)s−
n
p .
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Let ξ = {ξw}w∈W ∗ be a countable sequence of elements from the unit ball in Rk. For
each j ≥ 1 we define

fξ,j =
∑

w∈W j(E)

1

j2
2−

mj
α ψw(a, x)ξw, for x ∈ V, a ∈ V ⊥

and finally we set

fξ =
∞∑
j=1

fξ,j .

Since

‖fξ,j‖L∞ ≤ C
1

j2
2−

mj
α

it is easy to see that fξ is continuous.
We have 2jm × 2j(n−m) cubes Qw for w ∈ W j and we have to estimate the number

of such a cubes whose projection intersects E. By (4.1) we know that we can cover
E by C2jβ balls of radius 2−(j+1) and each of these balls can be covered by at most
2n−m dyadic cubes of side length 2−j. It follows that the number of cubes Qw for
w ∈ W j(E) can be estimated from above by

N = C2jm × 2jβ .

The cubes Qw, w ∈ W j(E), are disjoint and the norm of the function j22
mj
α fξ,j can

be estimated by Lemma 2.3 B) and hence

‖fξ,j‖F sp,2 ≤ C
1

j2
2−

mj
α N

1
p (2j)s−

n
p ≤ C

j2
2−

mj
α 2

jm
p 2j(

β
p
−n
p
+s) =

C

j2
.

where we have used β = (n − m) − (s − m
α

)p in the last step. By summing up we

obtain that fξ ∈ F s
p,2(Rn,Rk) as

‖fξ‖F sp,2 ≤
∞∑
j=1

‖fξ,j‖F sp,2 ≤ C
∞∑
j=1

1

j2
<∞ .

In the remaining part of the proof we would like to show that for a generic choice
of ξ we obtain a map fξ with the desired property (4.2). Let us view ξ = {ξw}w∈W ∗
as a sequence of independent random variables, identically distributed according to
the uniform probability distribution on the unit ball B in Rk. Since Hausdorff and
capacitary dimension coincide (see Preliminaries) it is now enough to show that for
each α′ < α we can find a measure µ on fξ([0, 1]m × {a}) with finite α′-energy.

For each a ∈ E consider the measure (fξ)#(Hm|[0,1]m×{a}), i.e. the pushforward of
the Hm-measure on [0, 1]m × {a} via the map fξ. Let us denote Hm

a = Hm|[0,1]m×{a}.
We claim that the expectation

(4.3) Eξ

(∫
E

Iα′
(
(fξ)#(Hm

a )
)
dHβ(a)

)
is finite for each α′ < α. It follows that almost surely with respect to ξ we obtain
that

Iα′
(
(fξ)#(Hm

a )
)

is finite for Hβ a.e. a ∈ E
and our conclusion follows once we prove the claim (4.3).
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Using Fubini theorem we may transform the integral from (4.3) to∫
[0,1]m

∫
[0,1]m

∫
E

Eξ

(
|fξ(a, x)− fξ(a, y)|−α′

)
dHβ(a) dHm

a (x) dHm
a (y) .

We write

(4.4) fξ(a, x)− fξ(a, y) =
∑

w∈W ∗(E)

cw(a, x, y)ξw

where the coefficients are given by

(4.5) cw(a, x, y) =
1

|w|2
2−

m|w|
α

(
ψw(a, x)− ψw(a, y)

)
.

Let us fix a ∈ E and y ∈ [0, 1]m × {a}. The sequence of the coefficients c clearly
belongs to `∞ and thus we may use Lemma 2.4 and our task is reduced to the proof
of ∫

[0,1]m
ρ(c(a, x, y))−α

′
dHm

a (x) ≤ C <∞ .

where the constant C is independent of a and y. For x ∈ [0, 1]m×{a} let us denote by
j(x) the largest integer such that both x and y lie in the same Qw 3 x, y for w ∈ W j(x).
It follows that they lie in different Qu1 3 x and Qu2 3 y for u1, u2 ∈ W j(x)+1. It follows
that most terms in (4.4) and (4.5) cancel and the first nonzero term corresponds to
j(x) + 1. Since ψw(a, x) = 1 on Qu1 and ψw(a, x) = 0 on the complement of 2Qu2

it is easy to see that the supremum norm of the difference of these two functions is
1. We can do similar observation for the term j(x) + 2 which must be again nonzero
and hence we obtain

‖c(a, x, y)‖∞ =
1

(j(x) + 1)2
2−

m(j(x)+1)
α and ρ(c(a, x, y)) =

1

(j(x) + 2)2
2−

m(j(x)+2)
α .

From the construction of W j we know that for each j = j(x) we have a fixed cube
Qu2 3 y and we can find at most 2m − 1 cubes Qu1 such that x ∈ Qu1 and hence

Hm
a

(
{x ∈ [0, 1]m × {a} : j(x) = j}

)
= (2m − 1)Hm

a

(
Qu2

)
= (2m − 1)2−m(j+1) .

Now we can estimate∫
[0,1]m

ρ(c(a, x, y))−α
′
dHm

a (x) ≤
∞∑
j=0

(2m − 1)2−m(j+1) 1

(j + 2)2
2m(j+2)α

′
α .

Since α′ < α it is easy to see that the series converges which finishes our proof. �

Now we proceed to the proof of Theorem 1.3. In contrast with the previous con-
struction (or the construction from [3]) we do not put some basic function into each
subcube that intersects our set but only into some of them. Instead of the push-
forward of the m-dimensional Hausdorff measure we need to use the pushforward of
the natural measure on the Cantor type set that is created as the intersection of the
subcubes from our construction.



DIMENSION OF IMAGES OF SUBSPACES UNDER TRIEBEL-LIZORKIN MAPPINGS 15

Proof of Theorem 1.3. We use the notation V, V ⊥, W j, W̃ j and so on introduced in
the previous proof.

In W j we have 2jn = 2jm × 2j(n−m) cubes and we would like to define W j
G ⊂ W j

with 2[
√
j]m × 2j(n−m) cubes Qw for w ∈ W j

G. We first choose 2[
√
j]m cubes from W̃ j

and then we choose all cubes Qw, w ∈ W j, such that QV
w lies in this system W̃ j. Our

only requirements for the position of these cubes are that

a) for each w ∈ W j
G there is v ∈ W j−1

G such that Qw ⊂ Qv,

b) for each w ∈ W j
G there are at most 2m pairwise essentially disjoint cubes

Qui ∈ W
j+1
G such that Qui ⊂ Qw ,

c) number of different cubes in {QV ⊥ , w ∈ W j
G} is 2j(n−m) .

The construction of this system of cubes is given with details in [10].
To simplify the notation we write

W j
G(E) = {w ∈ W j

G : QV ⊥

w ∩ E 6= ∅} .

The cubes from W j
G naturally form a Cantor type set in Rm

(4.6) G :=
∞⋂
j=1

⋃
w∈W j

G

QV
w .

Let us fix f0 ∈ C∞c (Rn) such that f0 = 1 on Q0 = (0, 1)n and supp f0 ⊂ 2Q0. For
each w ∈ W ∗, let ψw ∈ C∞0 (Rn) be a function defined as in the previous proof. Set
W ∗
G =

⋃
j≥0W

j
G. Let ξ = {ξw}w∈W ∗G be a countable sequence of elements from the

unit ball in Rk. For each j ≥ 1 we define

fξ,j =
∑

w∈W j
G(E)

2−
m[
√
j]

α ψw(a, x)ξw, for x ∈ V, a ∈ V ⊥

and again we set

fξ =
∞∑
j=1

fξ,j .

By

‖fξ,j‖L∞ ≤ C2−
m[
√
j]

α

it is easy that fξ is continuous.

We have 2[
√
j]m×2j(n−m) cubes Qw for w ∈ W j

G and we have to estimate the number

of such a cubes whose projection intersects E. From the construction of W j
G c) we

know that the number of cubes projected to V ⊥ is 2j(n−m), that is all dyadic cubes

are available for our covering. By (4.1) we know that we can cover E by C2jβ̃ balls
of radius 2−(j+1) and each of these balls can be covered by at most 2n−m dyadic cubes
of side length 2−j. It follows that the number of cubes Qw for w ∈ W j

G(E) can be
estimated from above by

N = C2[
√
j]m × 2jβ̃ .
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The cubes Qw, w ∈ W j
G(E), are disjoint and the norm of the function 2

m[
√
j]

α fξ,j can
be estimated by Lemma 2.3 B) and hence

‖fξ,j‖F sp,2 ≤ C2−
m[
√
j]

α N
1
p (2j)s−

n
p ≤ C2−

m[
√
j]

α 2
[
√
j]m
p 2j(

β̃
p
−n
p
+s) .

Since β̃ < n− sp it is easy to see that fξ ∈ F s
p,2(Rn,Rk) by

‖fξ‖F sp,2 ≤
∑
j

‖fξ,j‖F sp,2 ≤ C
∑
j

2j
(β̃−n+sp)

p 2−[
√
j]m( p

α
−1) 1

p <∞ .

In the remaining part of the proof we would like to show that for a generic choice of
ξ we obtain a map fξ with the desired property (4.2). Let us view ξ = {ξw}w∈W ∗G as
a sequence of independent random variables, identically distributed according to the
uniform probability distribution on the unit ball B in Rk. Instead of the conclusion
(4.2) we will even show that

(4.7) Hα′
(
fξ(Ga ∩ [0, 1]n)

)
=∞

where Ga is a Cantor type set in Va constructed as in (4.6). It is now enough to show
that for each α′ < α we can find a measure µ on fξ(Ga ∩ [0, 1]n) with finite α′-energy.

On the Cantor type set Ga there is a natural measure HGa such that

(4.8) HGa(Qw) =
1

#W j
G

= 2−m[
√
j] for each w ∈ W j

G .

The existence of such a measure was sketched in [10].
For each a ∈ E consider the measure (fξ)#(HGa), i.e. the pushforward of the
HGa-measure on Ga via the map fξ. This measure is nonzero, because the set Ga is
nonempty. We claim that the expectation

(4.9) Eξ

(∫
E

Iα′
(
(fξ)#(HGa)

)
dHβ̃(a)

)
is finite for each α′ < α. It follows that almost surely with respect to ξ we obtain
that

Iα′
(
(fξ)#(HGa)

)
is finite for Hβ̃ a.e. a ∈ E

and our conclusion follows once we prove the claim (4.9).
Using Fubini theorem we may transform the integral from (4.9) to∫

[0,1]m

∫
[0,1]m

∫
E

Eξ

(
|fξ(a, x)− fξ(a, y)|−α′

)
dHβ̃(a) dHGa(x) dHGa(y) .

We write

(4.10) fξ(a, x)− fξ(a, y) =
∑

w∈W ∗G(E)

cw(a, x, y)ξw

where the coefficients are given by

(4.11) cw(a, x, y) = 2−
m[
√
|w|]
α

(
ψw(a, x)− ψw(a, y)

)
.
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Let us fix a ∈ E and y ∈ Ga. The sequence of the coefficients c clearly belongs to
`∞ and thus we may use Lemma 2.4 and our task is reduced to the proof of∫

[0,1]m
ρ(c(a, x, y))−α

′
dHGa(x) ≤ C <∞ .

where the constant C is independent of a and y. For x ∈ Ga let us denote by j(x)

the largest integer such that both x and y lie in the same Qw 3 x, y for w ∈ W j(x)
G .

Similarly to the previous proof we have

‖c(a, x, y)‖∞ = 2−
m[
√
j(x)+1]

α and ρ(c(a, x, y)) = 2−
m[
√
j(x)+2]

α .

From the construction of W j
G part b) we know that for each j = j(x) we have a fixed

cube Qu2 3 y and we can find at most 2m− 1 cubes Qu1 such that x ∈ Qu1 and hence

HGa

(
{x ∈ Ga : j(x) = j}

)
= (2m − 1)HGa

(
Qu2

)
= (2m − 1)2−m[

√
j+1] .

Now we can estimate∫
[0,1]m

ρ(c(a, x, y))−α
′
dHGa(x) ≤

∞∑
j=0

(2m − 1)2−m[
√
j+1]2m[

√
j+2]α

′
α .

Since α′ < α it is easy to see that the series converges which finishes our proof. �
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