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Abstract. The class of H(N)-sets forms an important subclass of the class of sets of
uniqueness for trigonometric series. We investigate the size of this class which is reflected
by the family of measures (called polar) annihilating all sets from this class. The main
aim of this paper is to answer in the negative a question stated by Lyons, whether the
polars of the classes of H(N)-sets are the same. To prove our result we also present a new
description of H(N)-sets.

1. Introduction

Let M be a collection of closed subsets of [0, 1] and M([0, 1]) be the set of all Radon
measures on the interval [0, 1]. Then the polar M⊥ ⊂M([0, 1]) is defined by

M⊥ = {ν ∈M([0, 1]); ∀B ∈M : ν(B) = 0}.
We say that µ ∈ M([0, 1]) is Rajchman if lim|n|→∞ µ̂(n) = 0. The family of all Rajchman
measures is denoted by R. Let us recall that closed sets of extended uniqueness (U0 sets)
are those closed sets which are annihilated by every Rajchman measure. Thus by definition
we have that R ⊂ U⊥0 .

Rajchman investigated classes A with the property A⊥ = R. He introduced in [9] an
important subclass of U sets, so called H-sets (or H(1)-sets) (see the next section or [4]
for the definitions of U and H(1)) and investigated whether H⊥ = R. Lyons in [5] showed
that R = U⊥0 . On the other hand Kaufman proved that U⊥ 6= U⊥0 = R ([3]). Thus U0 can
be considered much larger than U in the sense of polars. More generally, one can consider
two families of closed sets A ⊂ B and may ask whether B⊥ ( A⊥. If this is the case then
B can be considered much larger than A.

Rajchman conjectured that every set of uniqueness is a countable union of H-sets. This
was disproved by Pyatetskii-Shapiro in [7] (see also [8]), where he also introduced the
classes of H(N)-sets. Further he showed H(N) ⊂ H(N+1) ⊂ U ⊂ U0 and he stated that
there is an H(N+1)-set which cannot be written as a countable union of H(N)-sets. Lyons

in [6] showed that R (
(⋃

N∈NH
(N)
)⊥

. Thus, classes H(N) are “small” in U0 in the sense

given above. Lyons in [6] posed a question whether (H(N+1))⊥ = (H(N))⊥. The aim of this
paper is to prove the next theorem which answers Lyons’ question in the negative for every
N ∈ N.

Theorem 1.1. Let N ∈ N. Then (H(N+1))⊥ 6= (H(N))⊥.
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We will prove Theorem 1.1 using Theorem 2.5 on a description of H(N)-sets. This result
can be used to reprove Šleich’s result that each H(N)-set is σ-porous ([12]).

The case N = 1 in Theorem 1.1, which is much simpler, was presented without proofs
in [11].

There also arises an open question, whether
(⋃

N∈NH
(N)
)⊥ ) U⊥. Zelený and Pelant

([13]) show that there is a non σ-porous closed set of uniqueness. Thus this set is a set of
uniqueness, which cannot be written as a countable union of elements of

⋃
N∈NH

(N).

2. Proof of Theorem 1.1

Notation 2.1.

(i) We denote the Lebesgue measure on R by λ and the number of elements of a finite
set A by ]A.

(ii) The symbol 〈x〉 stands for the fractional part of x ∈ R, i.e., 〈x〉 = x − [x], where
[x] is the integer part of x. Further, for B ⊂ R we denote 〈B〉 = {〈x〉; x ∈ B}.

(iii) For N ∈ N and a ∈
(
RN
)N

, we employ the following coordinate notation a =

{aj}j∈N and aj = (a1j , . . . , a
N
j ) ∈ RN .

(iv) By an open interval J ⊂ RN we mean any product of nonempty open intervals
J i ⊂ R, i = 1, . . . , N .

(v) Let x ∈ R and r > 0. We denote the interval (x− r, x+ r) by B(x, r).

Definition 2.2. Let N ∈ N, L ∈ R, and P ⊂ R.

(i) A sequence of vectors a ∈ (RN)N is quasi-independent if for every nonzero α ∈ ZN
we have limj |(α, aj)| =∞, where (u, v) denotes the scalar product of vectors u, v ∈
RN . The set of all quasi-independent sequences of vectors from PN is denoted by
QN(P ).

(ii) A closed set A ⊂ [0, 1] is in H(N)(P ) if there exist a ∈ QN(P ) and an open
interval J ⊂ [0, 1]N such that for every x ∈ A and every j ∈ N we have 〈xaj〉 :=
(〈xa1j〉, . . . , 〈xaNj 〉) /∈ J . We will write just H(N) instead of H(N)(N) and H(N)∗

instead of H(N)(R \ {0}). The subsets of elements of H(N) are called H(N)-sets.

(iii) A closed set A ⊂ [0, 1] is in H
(N)∗
L if there exist a ∈ QN(R \ {0}) and an open

interval J =
∏N

i=1 J
i ⊂ [0, 1]N witnessing A ∈ H(N)∗ and satisfying∣∣∣∣∣ai+1

j λ(J i)

aij

∣∣∣∣∣ ≥ L

for every i ∈ {1, . . . , N − 1} and j ∈ N.

Remark 2.3. (i) Let N,M ∈ N, N ≤ M and L,K ∈ R, L ≤ K. Then we clearly have

H
(N)∗
K ⊂ H

(M)∗
L , H(N)∗ = H

(N)∗
0 and H(N) ⊂ H(N)∗. Further, family H(N) is hereditary, i.e.,

if A ∈ H(N), A ⊃ B and B is closed then B ∈ H(N). Similarly, families H(N)∗ and H
(N)∗
L

are also hereditary.
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(ii) Bari [1] denotes H(N)∗ as H(N)(R). We use R \ {0} instead of R to avoid dividing by
zero. It is easy to see that H(N)(R) = H(N)(R \ {0}). Thus, both of these definitions define
the same object. Note that each set from H(N)∗ is a finite union of elements of H(N) (see
[1, pp. 919–921]). Consequently, (H(N)∗)⊥ = (H(N))⊥.

(iii) Let N ∈ N. Then the collection H(N) consists of closed H(N)-sets.

The proof of the main result is based on the following two results which will be proved
in the next sections.

Lemma 2.4. Let N ∈ N. Then (H(N+1))⊥ ( (H
(N)∗
10 )⊥.

Theorem 2.5. Let N,L ∈ N. Then H
(N)∗
L = H(N)∗.

Granting these results the proof goes as follows.

Proof of Theorem 1.1. Using Lemma 2.4, Theorem 2.5, and Remark 2.3(ii) we get

(H(N+1))⊥ ( (H
(N)∗
10 )⊥ = (H(N)∗)⊥ = (H(N))⊥.

�

3. Proof of Lemma 2.4

Throughout this section N ∈ N will be fixed. We will construct a measure µ ∈ (H
(N)∗
10 )⊥\

(H(N+1))⊥.

3.1. Construction of the measure µ.

Notation 3.1. Let A be a collection of subsets of R and S ⊂ R. We denote

AS = {V ∈ A; V ⊂ S}.

Notation 3.2. We find and fix some x ∈ (NN+1)N such that for every n ∈ N and j =

1, . . . , N we have that xj+1
n

2xjn
and

x1n+1

2xN+1
n

are natural numbers bigger than n2.

For n ∈ N and j = 1, . . . , N + 1 we set the following:

Pn =
{
x ∈ [0, 1]; 〈x · xi〉 /∈ (1/2, 1)N+1, i = 1, . . . , n

}
,(3.1)

Pn,j =

{[
i− 1

2xjn
,
i

2xjn

]
⊂ [0, 1]; i ∈ N,

(
i− 1

2xjn
,
i

2xjn

)
⊂ Pn

}
,

‖Pn,j‖ = 1/(2xjn).

Remark 3.3 and Lemma 3.4 will explain some basic facts concerning collections PIn,j.

Remark 3.3. Let n ∈ N. Since xj+1
n

2xjn
and

x1n+1

2xN+1
n

are natural numbers we can easily obtain

the following three statements:

•
⋃
Pn,N+1 = Pn.

• Pn+1,j =
⋃
I∈Pn,N+1

PIn+1,j.
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• If j ∈ {1, . . . , N + 1}, i ∈ N, I ∈ Pn,N+1 and

[
i−1

2xjn+1

, i+1

2xjn+1

]
⊂ I then[

i− 1

2xjn+1

,
i

2xjn+1

]
∈ Pn+1,j or

[
i

2xjn+1

,
i+ 1

2xjn+1

]
∈ Pn+1,j.

Lemma 3.4.

(i) If V ∈ Pn,j, then ‖Pn,j‖ = λ(V ).
(ii) Let k ≥ n and i, j ≤ N + 1 such that k > n or j ≥ i. Let I, J ∈ Pn,i. Then we have

]PIk,j = ]PJk,j.
(iii) Let n > 1, I ∈ Pn−1,N+1 and 1 ≤ j ≤ i ≤ N + 1. Then we have

]PIn,i ≤ 2
∑

R∈PIn,j

]PRn,i.

(iv) Let n1, n2, n3 ∈ N, n1 < n2 ≤ n3, j1, j2, j3 ∈ {1, . . . , N + 1} and I ∈ Pn1,j1 be such
that n2 < n3 or j2 ≤ j3. Then we have

]PIn3,j3
≤ 2

∑
R∈PIn2,j2

]PRn3,j3
.

(v) Let n ∈ N and 1 ≤ j ≤ N . Then ‖Pn,j‖ ≥ n2‖Pn,j+1‖.

Proof. (i) Let V ∈ Pn,j. Then there exists i ∈ N such that V =
[
i−1
2xjn

, i

2xjn

]
. Thus, λ(V ) =

1/(2xjn) = ‖Pn,j‖.
(ii) Let x = min(I) and y = min(J). It is easy to verify that PJk,j = PIk,j + y − x.
(iii) By Remark 3.3 we can easily obtain

]PIn,i ≤ 2xinλ(I) ≤ 2
∑

R∈PIn,j

]PRn,i.

(iv) Assume n2 < n3, Then we have

]PIn3,j3
=

∑
V ∈PIn2−1,N+1

∑
W∈PVn2,N+1

]PWn3,j3
,

∑
R∈PIn2,j2

]PRn3,j3
=

∑
V ∈PIn2−1,N+1

∑
R∈PVn2,j2

∑
W∈PRn2,N+1

]PWn3,j3
.

Using (ii) and (iii) we obtain the desired inequality.
Assume n2 = n3 and j2 ≤ j3. Then we have

]PIn3,j3
=

∑
V ∈PIn2−1,N+1

]PVn3,j3
,

∑
R∈PIn2,j2

]PRn3,j3
=

∑
V ∈PIn2−1,N+1

∑
R∈PVn2,j2

]PRn3,j3
.
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Using (ii) and (iii) we obtain the desired inequality.

(v) Clearly, ‖Pn,j‖ = xj+1
n

xjn
‖Pn,j+1‖ ≥ 2n2‖Pn,j+1‖. �

Notation 3.5. Let V ⊂ [0, 1] and x ∈ R \ {0}. We set

T (x, V ) =

{
1

x
(V + n); n ∈ Z

}
.

Lemma 3.6. Let W,S ⊂ [0, 1] be intervals, x ∈ R\{0} and λ(S) ≥ 4
|x| . Then λ

(⋃
T (x,W )S

)
≥

1
2
λ(S)λ(W ).

Proof. Clearly, ] T (x,W )S ≥ λ(S) · |x| − 2. Thus,

λ
(⋃
T (x,W )S

)
=
λ(W )

|x|
· ] T (x,W )S ≥ λ(S)λ(W )− 2λ(W )

|x|
.

Since λ(S) ≥ 4
|x| we have

λ(S)λ(W )− 2λ(W )

|x|
≥ 1

2
λ(S)λ(W ).

�

Lemma 3.7. Let n, s, j ∈ N, n > 1, s, j ≤ N + 1, I ∈ Pn−1,s and let S ⊂ I be an interval
with λ(S) ≥ 8‖Pn,j‖. Then λ

(⋃
PSn,j

)
≥ 1

4
λ(S).

Proof. It is easy to verify that I =
⋃
PIn−1,N+1 and PVn,j ⊃ T (xjn, [0, 1/2])V for every

V ∈ PIn−1,N+1. So PIn,j ⊃ T (xjn, [0, 1/2])I . Thus PSn,j ⊃ T (xjn, [0, 1/2])S. Thus

λ
(⋃
PSn,j

)
≥ λ

(⋃
T (xjn, [0, 1/2])S

)
.

We know that λ(S) ≥ 8‖Pn,j‖ = 4

xjn
. Thus, we can use Lemma 3.6 and obtain

λ
(⋃
T (xjn, [0, 1/2])S

)
≥ 1

4
λ(S).

�

Construction 3.8. For I =
[

i−1
2xN+1
n

, i

2xN+1
n

]
, where n ∈ N and i ∈ {1, . . . , 2xN+1

n }, we

define

µ (I) =

{
1

]Pn,N+1
, whenever I ∈ Pn,N+1,

0, whenever I /∈ Pn,N+1.
(3.2)

Now we use the standard mass distribution principle, see e.g. [2, Proposition 1.7], to
extend µ to the desired measure.

We also set

P =
{
x ∈ [0, 1]; ∀i ∈ N : 〈x · xi〉 /∈ (1/2, 1)N+1

}
.(3.3)

We can easily obtain the following properties of the measure µ.
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Lemma 3.9. The measure µ is a continuous Radon probability measure and the support
of µ is a subset of P .

Proof. Let x ∈ [0, 1] and n ∈ N be arbitrary. Then there exists 1 ≤ i ≤ 2xN+1
n such that

x ∈ [ i−1
2xN+1
n

, i

2xN+1
n

]. By (3.2) we have

µ({x}) ≤ µ

([
i− 1

2xN+1
n

,
i

2xN+1
n

])
≤ 1

]Pn,N+1

.

Since limn→∞
1

]Pn,N+1
= 0 we have µ({x}) = 0.

By (3.2) and Remark 3.3 the support of µ is a subset of
⋃
Pn,N+1 = Pn for every n ∈ N.

By (3.1) P =
⋂
n∈N Pn. Thus the support of µ is a subset of P .

�

3.2. Verification of µ /∈ (H(N+1))⊥.

Lemma 3.10. The set P is a closed H(N+1)-set and µ(P ) = 1.

Proof. Let α = (α1, . . . , αN+1) ∈ ZN+1 be a nonzero vector. We find the largest i ≤ N + 1

such that αi 6= 0. Since limn→∞
xjn
xin

= 0 for every 1 ≤ j < i we have

lim
n→∞

|(xn, α)| = lim
n→∞

∣∣ i∑
j=1

xjnαj
∣∣ = lim

n→∞
xin
∣∣ i∑
j=1

xjnαj
xin

∣∣ = |αi| lim
n→∞

xin =∞.

Thus {xn}n∈N ∈ QN+1(N) and therefore P ∈ H(N+1). By Lemma 3.9 we have µ(P ) = 1. �

3.3. Verification of µ ∈ (H
(N)∗
10 )⊥. We fix an arbitrary X ∈ H

(N)∗
10 . We find an open

interval W =
∏N

j=1Wj ⊂ [0, 1]N and z ∈ QN(R \ {0}) witnessing X ∈ H(N)∗
10 . Thus, we

have

(3.4)

∣∣∣∣∣zj+1
i λ(Wj)

zji

∣∣∣∣∣ ≥ 10 for every i ∈ N, j ∈ {1, . . . , N − 1}.

Let 0 ≤ σ ≤ ρ ≤ N be integers. We set

Ak,σ,ρ = {x ∈ [0, 1];∃j ∈ N, σ < j ≤ ρ : 〈x · zjk〉 /∈ Wj},

Ak = {x ∈ [0, 1];∀i ≤ k : 〈x · zi〉 /∈ W} =
⋂
i≤k

Ai,0,N ,

A =
⋂
k∈N

Ak =
⋂
k∈N

Ak,0,N .

We have X ⊂ A. We want to show that µ(X) = 0, so it is sufficient to prove µ(A) = 0.
Further in this section fix a constant l ∈ N such that

(3.5) l > 100 and l > 1/λ(Wj), j = 1, . . . , N.
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Notation 3.11. Let n, k ∈ N, S, T ⊂ [0, 1] and D be a collection of subsets of [0, 1]. We
define

V(D, T ) = {V ∈ D; V ∩ T = ∅}
and if PSn,N+1 6= ∅, then we set

µSn,k = 1− ]V (Pn,N+1, Ak)
S

]PSn,N+1

and µn,k = µ
[0,1]
n,k .

Lemma 3.12.

(i) Let n, k ∈ N. Then µ(A) ≤ µn,k.
(ii) If n, s, k ∈ N and n ≥ s then µn,k ≤ sup{µVn,k; V ∈ Ps,N+1} · µs,k.

Proof. (i) We have

(3.6) A ∩ P ⊂ Ak ∩ P ⊂ Ak ∩ Pn ⊂
⋃

(Pn,N+1 \ V (Pn,N+1, Ak)).

Using Lemma 3.9, (3.6) and (3.2) we can conclude

µ(A) = µ(A ∩ P ) ≤ µ
(⋃

(Pn,N+1 \ V (Pn,N+1, Ak)
)

=
∑

J∈(Pn,N+1\V(Pn,N+1,Ak))

µ(J) =
](Pn,N+1 \ V (Pn,N+1, Ak))

]Pn,N+1

= µn,k.

(ii) It is easy to verify that

µn,k = 1− ]V (Pn,N+1, Ak)

]Pn,N+1

= 1−
∑

V ∈Ps,N+1

]V (Pn,N+1, Ak)
V

]Ps,N+1 · ]PVn,N+1

=
1

]Ps,N+1

∑
V ∈Ps,N+1

1− ]V (Pn,N+1, Ak)
V

]PVn,N+1

=

∑
V ∈Ps,N+1

µVn,k

]Ps,N+1

=

∑
V ∈Ps,N+1\V(Ps,N+1,Ak) µ

V
n,k

]Ps,N+1

,

where the last equality follows from the fact that µVn,k = 0 for all V ∈ V (Ps,N+1, Ak). Thus,
we have

µn,k ≤ sup{µVn,k; V ∈ Ps,N+1} ·
](Ps,N+1 \ V (Ps,N+1, Ak))

]Ps,N+1

= sup{µVn,k; V ∈ Ps,N+1} · µs,k.
�

Let us assume that k ∈ N is fixed in the following definition, Lemma 3.14, Lemma 3.15
and Lemma 3.16.
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Definition 3.13. Let S ⊂ [0, 1] be an interval and j ∈ {0, . . . , N − 1}. We inductively
define

Kj,j+1(S) = T (zj+1
k ,Wj+1)

S,

Kj,t(S) =
⋃

L∈Kj,t−1(S)

T (ztk,Wt)
L, t = j + 2, . . . , N.

Lemma 3.14. We can easily obtain the following five properties.

(i) For every Z ∈ Kj,t(S) we have λ(Z) = λ(Wt)
|ztk|
≥ 1

l|ztk|
.

(ii) Let K,L ⊂ [0, 1] and K ∩ L = ∅. Then Kj,t(K) ∩ Kj,t(L) = ∅.
(iii) Let K,L ∈ Kj,t(S). Then K = L or K ∩ L = ∅.
(iv)

⋃
Kj,t(S) ∩ Ak,j,t = ∅.

Proof. Statements (i)–(iii) are easy to verify.
(iv) It is straightforward to verify that⋃

Kj,t(S) ⊂
t⋂

i=j+1

⋃
T (zik,Wi)

S,

Ak,j,t =
t⋃

i=j+1

([0, 1] \
⋃
T (zik,Wi)

R).

Since T (zik,Wi)
S ⊂ T (zik,Wi)

R for every 1 ≤ i ≤ N we have

t⋂
i=j+1

⋃
T (zik,Wi)

S ∩
t⋃

i=j+1

([0, 1] \
⋃
T (zik,Wi)

R) = ∅.

So, we are done. �

Lemma 3.15. Let 0 ≤ j < t ≤ N and S ⊂ [0, 1] be an interval with λ(S) ≥ 4/|zj+1
k |.

Then λ (
⋃
Kj,t(S)) ≥ λ(S) · (2l)j−t.

Proof. We will prove this lemma by induction. First, we assume that t = j + 1. Then
Kj,t(S) = T (ztk,Wt)

S and λ(S) ≥ 4/|ztk|. By Lemma 3.6 and (3.5) we have

λ
(⋃
Kj,t(S)

)
= λ

(⋃
T (ztk,Wt)

S
) L.3.6

≥ 1

2
λ(S)λ(Wt)

(3.5)

≥ λ(S) · (2l)−1 = λ(S) · (2l)j−t.
Now, we assume that t > j + 1 and we already proved

λ
(⋃
Kj,t−1(S)

)
≥ λ(S) · (2l)j−t+1.(3.7)

Let L ∈ Kj,t−1(S) be arbitrary. Then λ(L) = λ(Wt−1)

|zt−1
k | . By (3.4) we have λ(Wt−1)

|zt−1
k | ≥

10
|ztk|

. Thus

we have

λ(L) ≥ 4

|ztk|
.(3.8)
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By Lemma 3.14 (ii)-(iii), Lemma 3.6, (3.8), (3.5) and (3.7) we have

λ
(⋃
Kj,t(S)

)
= λ

(⋃ ⋃
L∈Kj,t−1(S)

T (ztk,Wt)
L
)

L.3.14(ii),(iii)
=

∑
L∈Kj,t−1(S)

λ
(⋃
T (ztk,Wt)

L
)

L.3.6

≥
∑

L∈Kj,t−1(S)

1

2
λ(L)λ(Wt)

(3.5)

≥
∑

L∈Kj,t−1(S)

λ(L)(2l)−1

L.3.14(iii)
= (2l)−1λ

(⋃
Kj,t−1(S)

)
(3.7)

≥ λ(S) · (2l)j−t,

where the formula (3.8) was used to verify the condition of Lemma 3.6.
�

Lemma 3.16. Let 0 ≤ σ < ρ ≤ N , 1 ≤ s ≤ N , 1 ≤ j ≤ N + 1, n, k be natural numbers
and I ∈ Pn,s. Suppose that the following conditions are satisfied

n ≥ l2,(3.9)

n‖Pn,s+1‖ ≥
1

|zik|
≥ (n+ 1)‖Pn+1,j‖, σ < i ≤ ρ.(3.10)

Then

]V(PIn+1,j, Ak,σ,ρ)

]PIn+1,j

≥ 1

4
· (2l)σ−ρ.(3.11)

Proof. By Lemma 3.14(iii),(iv) we have

V(PIn+1,j, Ak,σ,ρ) ⊃ P
⋃
Kσ,ρ(I)

n+1,j ⊃
⋃

K∈Kσ,ρ(I)

PKn+1,j.(3.12)

By (3.12), Lemma 3.14(iii) and Lemma 3.4(i) we have

]V(PIn+1,j, Ak,σ,ρ)

]PIn+1,j

≥
∑

K∈Kσ,ρ(I)

]PKn+1,j

]PIn+1,j

=
∑

K∈Kσ,ρ(I)

λ(
⋃
PKn+1,j)

λ(
⋃
PIn+1,j)

≥
∑

K∈Kσ,ρ(I)

λ(
⋃
PKn+1,j)

λ(I)
.
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Thus, it is enough to verify that∑
K∈Kσ,ρ(I)

λ
(⋃
PKn+1,j

)
≥ 1

4
λ(I)(2l)σ−ρ.(3.13)

By (3.9) and (3.5) we have n ≥ l2 and l > 4. By Lemma 3.4(v) and (3.10) we have

λ(I) = ‖Pn,s‖ ≥ n2‖Pn,s+1‖ ≥
n

zσ+1
k

≥ 4

zσ+1
k

.

Thus by Lemma 3.15 we have

λ
(⋃
Kσ,ρ(I)

)
≥ λ(I)(2l)σ−ρ.(3.14)

Let K ∈ Kσ,ρ(I) be arbitrary. By Lemma 3.14(i), (3.10) and n+ 1 > 8l we have

λ(K) ≥ 1

lzρk
≥ 8‖Pn+1,j‖.

Thus by Lemma 3.7 we have

λ
(⋃
PKn+1,j

)
≥ 1

4
λ(K).(3.15)

By (3.15), Lemma 3.14(iii) and (3.14) we have∑
K∈Kσ,ρ(I)

λ
(⋃
PKn+1,j

)
≥ 1

4

∑
K∈Kσ,ρ(I)

λ(K) =
1

4
λ
(⋃
Kσ,ρ(I)

)
≥ 1

4
λ(I)(2l)σ−ρ.

So, we verify (3.13). �

Lemma 3.17. Let n0 ≤ n1 < n2 ∈ N, 1 ≤ j1 < j2 < j3 ≤ N + 1 and T1, T2 ⊂ [0, 1]. If
there exist α1 > 0, α2 > 0 such that

]V(PI1n1+1,j2
, T1)

]PI1n1+1,j2

≥ α1,(3.16)

]V(PI2n2+1,j3
, T2)

]PI2n2+1,j3

≥ α2,(3.17)

for every I1 ∈ Pn0,j1 and I2 ∈ Pn2,j2 then

]V(PIn2+1,j3
, T1 ∪ T2)

]PIn2+1,j3

≥ 1

4
α1α2

for every I ∈ Pn0,j1.

Proof. Let I ∈ Pn0,j1 be arbitrary. Clearly,

]V(PIn2,j2
, T1) ≥

∑
V ∈V(PIn1+1,j2

,T1)

]PVn2,j2
.(3.18)
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By (3.18), Lemma 3.4(ii),(iv) and (3.16) we have

]V(PIn2,j2
, T1)

]PIn2,j2

(3.18),L.3.4(iv)

≥

∑
V ∈V(PIn1+1,j2

,T1)
]PVn2,j2

2
∑

W∈PIn1+1,j2

]PWn2,j2

(3.19)

L.3.4(ii)

≥
]V(PIn1+1,j2

, T1)

2 ]PIn1+1,j2

(3.16)

≥ 1

2
α1.

Clearly,

]V(PIn2+1,j3
, T1 ∪ T2) ≥

∑
V ∈V(PIn2,j2 ,T1)

]V(PVn2+1,j3
, T2).(3.20)

By (3.20), (3.19), (3.17) and Lemma 3.4(iv) we have

]V(PIn2+1,j3
, T1 ∪ T2)

]PIn2+1,j3

(3.20),L.3.4(iv)

≥

∑
V ∈V(PIn2,j2 ,T1)

]V(PVn2+1,j3
, T2)

2
∑

W∈PIn2,j2
]PWn2+1,j3

(3.17)

≥ α2

]V(PIn2,j2
, T1)

2 ]PIn2,j2

(3.19)

≥ 1

4
α2α1.

�

Lemma 3.18. There exists ε > 0 such that for every n, k ∈ N there exist ñ ∈ N and k̃ ∈ N
such that ñ > n, k̃ > k and

]V(PIñ,N+1, Ak̃,0,N)

]PIñ,N+1

≥ ε

for every I ∈ Pn,N+1.

Proof. Set ε = 2(32l)−N . Let n, k ∈ N be arbitrary. We set n0 = max {n+ 1, l2}. We will

construct k̃ > k, s ≤ N and sequences n0 < n1 < · · · < ns and 0 = v0 < v1 < · · · < vs = N
such that

∀0 < i ≤ s ∀vi−1 < j ≤ vi : ni‖Pni,vi−1+2‖ ≥
1∣∣zj
k̃

∣∣ > (ni + 1)‖Pni+1,vi+1‖.

Since z ∈ QN(R \ {0}) and (3.4) holds we have lim |z1i | = ∞ and
∣∣zj+1
i

∣∣ ≥ 10
∣∣zji ∣∣ for

every i ∈ N, j < N . Thus, we can find k̃ > k such that 1

|z1
k̃
| ≤ ‖Pn0+1,2‖(n0 + 1). We set

v0 = 0. Assume that we have already constructed n0, . . . , ni and v0, . . . , vi for some i ≥ 0.
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If vi = N we set s = i and we are done. If vi < N we find ni+1 ∈ N such that

ni+1‖Pni+1,vi+2‖ ≥
1∣∣∣zvi+1

k̃

∣∣∣ > (ni+1 + 1)‖Pni+1+1,vi+2‖.

Further we find the largest vi+1 ∈ {vi + 1, . . . , N} such that

1∣∣∣zvi+1

k̃

∣∣∣ > (ni+1 + 1)‖Pni+1+1,vi+1+1‖

and we are done. We set ñ = ns + 1.
We use Lemma 3.16 replacing σ, ρ, s, j, n, k by vi−1, vi, vi−1+1, vi+1, ni, k̃ respectively

to obtain

]V(PVni+1,vi+1, Ak̃,vi−1,vi
)

]PVni+1,vi+1

≥ 1

4
· (2l)vi−1−vi(3.21)

for every V ∈ Pni,vi−1+1 and 1 ≤ i ≤ s.
We prove by induction that

]V(PVnj+1,vj+1, Ak̃,v0,vj)

]PVnj+1,vj+1

≥ 4−j(2l)−vj .4−j+1(3.22)

for every V ∈ Pn1,1 and 1 ≤ j ≤ s.
By (3.21) we have (3.22) for j = 1.
Suppose that 1 < j ≤ s and (3.22) holds for j − 1. Thus, by (3.21) and Lemma 3.17

replacing n0, n1, n2, j1, j2, j3, T1, T2 by n1, nj−1, nj, 1, vj−1 + 1, vj + 1, Ak̃,v0,vj−1
, Ak̃,vj−1,vj

respectively we have

]V(PVnj+1,vj+1, Ak̃,v0,vj)

]PVnj+1,vj+1

=
]V(PVnj+1,vj+1, Ak̃,v0,vj−1

∪ Ak̃,vj−1,vj
)

]PVnj+1,vj+1

≥ 1

4

(
4−j+1(2l)−vj−1 .4−j+2

)(1

4
(2l)vj−1−vj

)
= 4−j(2l)−vj .4−j+1.

Thus we have (3.22).
Since vs = N , s ≤ N and (3.22) holds we have

]V(PVñ,N+1, Ak̃,0,N)

]PVñ,N+1

≥ 4−s(2l)−N .4−s+1 ≥ 2ε(3.23)

for every V ∈ Pn1,1. Fix arbitrary I ∈ Pn,N+1. Clearly,

]V(PIñ,N+1, Ak̃,0,N) ≥
∑

V ∈PIn1,1

]V(PVñ,N+1, Ak̃,0,N).(3.24)
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By (3.24), (3.23) and Lemma 3.4(iv),(ii) we have

]V(PIñ,N+1, Ak̃,0,N)

]PIñ,N+1

≥

∑
V ∈PIn1,1

]V(PVñ,N+1, Ak̃,0,N)

2
∑

W∈PIn1,1
]PWñ,N+1

≥ ε.

So, we are done. �

Proof of Lemma 2.4. We need to show that µ(A) = 0. Set ε = 2(32l)−N . Let n, k ∈ N be

arbitrary. By Lemma 3.18 there exist ñ, k̃ ∈ N such that

]V(PIñ,N+1, Ak̃,0,N)

]PIñ,N+1

≥ ε

for every I ∈ Pn,N+1. Since Ak̃ ⊂ Ak̃,0,N we have

µI
ñ,k̃

=
]PIñ,N+1 − ]V(PIñ,N+1, Ak̃)

]PIñ,N+1

≤
]PIñ,N+1 − ]V(PIñ,N+1, Ak̃,0,N)

]PIñ,N+1

≤ 1− ε

for every I ∈ Pn,N+1. Thus by Lemma 3.12(ii) we have µñ,k̃ ≤ (1−ε)µn,k. Thus inf{µn,k; n, k ∈
N} = 0. By Lemma 3.12(i) we have

0 ≤ µ(A) ≤ inf{µn,k; n, k ∈ N} = 0.

So, µ(A) = 0. �

4. Proof of Theorem 2.5

Notation 4.1. Let N, n ∈ N, a ∈ QN(R \ {0}), y ∈ R and J ⊂ R, J =
∏N

j=1 J
j ⊂ [0, 1]N

be open intervals. We set

T (y, J) = {x ∈ [0, 1]; 〈xy〉 ∈ 〈J〉},

Hn(a,J ) = [0, 1] \
N⋂
p=1

T (apn, J
p),

H(a,J ) =
⋂
n∈N

Hn(a,J ).

Notation 4.2. Let m ∈ N, I ⊂ [0, 1]m be an interval and z ∈ Qm(R\{0}). Then we define

H(z, I) = {x ∈ [0, 1]; ∀k ∈ N : 〈x · zk〉 /∈ I}.
Remark 4.3. Let m ∈ N.

(i) If A ∈ H(m)∗ then there exist z ∈ Qm(R \ {0}) and an open interval W ⊂ [0, 1]m

such that A ⊂ H(z,W ).
(ii) If I ⊂ J ⊂ [0, 1]m are open intervals and r ∈ Qm(R \ {0}), then H(r, J) ⊂ H(r, I).
(iii) Let m ∈ N, I ⊂ [0, 1]m be an interval and z ∈ Qm(R \ {0}). Then

H(z, I) = {x ∈ [0, 1]; ∀k ∈ N : 〈x · zk〉 /∈ I}.
Lemma 4.4. Let N ∈ N,a = {aj} ∈ QN(R \ {0}), {jk} be an increasing sequence of
integers and J ⊂ U ⊂ [0, 1]N be open intervals. Then the following assertions hold.
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(i) {ajk} ∈ QN(R \ {0})
(ii) H(a,U) ⊂ H({ajk},U)

(iii) H(a,U) =
⋂
n∈NH

n(a,U)
(iv) Let L ∈ RN×N be a regular matrix. Then there exists a finite set M ⊂ N such that

for every increasing sequence {vk} of elements from N \ M we have {L(avk)} ∈
QN(R \ {0}).

(v) Let y ∈ R\{0} and J ⊂ [0, 1] be an open interval. Then T (y, J) =
⋃
n∈Z

1
y
(J+ n)∩

[0, 1] =
⋃
T (y, J) ∩ [0, 1].

(vi) Let m ∈ Z \ {0}, y ∈ R \ {0} and u, r ∈ R. Then we have T (y,B(u, r)) ⊃
T ( y

m
, B( u

m
, r
|m|)), where the symbol B(x, s) = (x− s, x+ s) for s > 0.

(vii) Let y ∈ R \ {0}, J ⊂ R and V ⊂ 〈J〉 be open intervals. Then T (y, J) ⊃ T (y, V ).

Proof. (i)-(iii),(v),(vii) are trivial.
(iv) We set M = {i ∈ N; ∃s ≤ N : (L(ai))

s = 0}. Let {vk} be arbitrary increasing
sequence of elements from N \M . Then {L(avk)} ∈ ((R \ {0})N)N. Let α ∈ ZN be nonzero
vector. Then LT (α) be nonzero vector, where LT be transpose of matrix L. Thus we have

lim
n→∞

|(L(avk), α)| = lim
n→∞

|(avk , LT (α))| =∞.

Thus, L(avk) ∈ QN(R \ {0}).
(vi) Clearly, T (y,B(u, r)) ⊃ T ( y

m
, B( u

m
, r
|m|)). Thus (vi) follows from (v).

�

We will use the following well known approximation theorem.

Lemma 4.5. [10, Dirichlet’s Theorem on Simultaneous Approximations] Let α1, . . . , αn
be real numbers and Q > 1 be an integer. Then there exist integers q, p1, . . . , pn with
1 ≤ q < Qn and |αiq − pi| ≤ 1/Q for all 1 ≤ i ≤ n.

Lemma 4.6. Let N ∈ N,a ∈ QN(R\{0}) and Un = U1×· · ·×UN−1×UN
n ⊂ [0, 1]N , n ∈ N

be open intervals. If there exists α > 0 such that λ(UN
n ) ≥ α for all n ∈ N then there exist

an increasing sequence {jn} of positive integers and an open interval J = U1×· · ·×UN−1×
JN ⊂ [0, 1]N such that for every n ∈ N we have

(i) 4λ(JN) ≥ λ(UN
jn),

(ii) Hn({ajn},Ujn) ⊂ Hn({ajn},J ).

Proof. Since inf{λ(UN
n ); n ∈ N} ≥ α > 0 there exists an increasing sequence vn of positive

integers such that

4 inf{λ(UN
vn); n ∈ N} > 3 sup{λ(UN

vn); n ∈ N}.
We find l ∈ N such that

2

l
≤ inf{λ(UN

vn); n ∈ N} < 3

l
.

For all j ∈ N we find bj ∈ N0 and an open interval JNj = (
bj
l
,
bj+1

l
) such that JNj ⊂ UN

vj
. Since

the set {JNj ; j ∈ N} is finite there exists an increasing sequence {pn} of positive integers
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and an open interval JN such that JNpn = JN for all n ∈ N. We set J = U1×· · ·×UN−1×JN
and jn = vpn . Thus,

Hn({ajn},Ujn) ⊂ Hn({ajn},J )

for every n ∈ N. Clearly,

4λ(JN) =
4

l
≥ 4

3
inf{λ(UN

vn); n ∈ N} > sup{λ(UN
vn); n ∈ N} ≥ λ(UN

jm)

for all m ∈ N.
�

The following lemma was inspired by Zaj́ıček [12].

Lemma 4.7. Let y, z ∈ R \ {0}, y 6= z, U = B(u, r1), V = B(v, r2) be subsets of [0, 1] and

δ ≤ min
{
λ(V )
|y| ,

λ(U)
|z|

}
. If 4|y| > 3|z| then

T (y, V ) ∩ T (z, U) ⊃ T

(
z, B

(
u,
|z|δ
4

))
∩ T

(
y − z,B

(
v − u, r2

4

))
.

Proof. Since |z|δ/4 ≤ r1 we have B (u, |z|δ/4) ⊂ U . Thus

T (z, U) ⊃ T
(
z,B

(
u, |z|δ/4

))
.

Let x ∈ T
(
z, B

(
u, |z|δ/4

))
∩ T

(
y − z,B

(
v − u, r2/4

))
. Then there exist ξ ∈ B (0, r2/4),

µ ∈ B (0, |z|δ/4) and m,n ∈ Z such that

x = (ξ + v − u+ n)
1

y − z
,

x = (µ+ u+m)
1

z
.

Thus, x = (ξ + µ + v + m + n) 1
y
. Since |ξ + µ| ≤ r2

4
+ |z|δ

4
< r2

4
+ |y|δ

3
< r2

4
+ 2r2

3
< r2 we

have ξ + µ+ v ∈ V . Thus, x ∈ T (y, V ).
�

Lemma 4.8. Let N ∈ N,a ∈ QN(R \ {0}), U =
∏N

i=1 U
i ⊂ [0, 1]N be an open interval,

L ∈ N and δj = min
{
λ(U i)

|aij |
; i = 1, . . . , N

}
for every j ∈ N. Then there exist a regular

matrix L ∈ QN×N , an increasing sequence {vn} of positive integers and an open interval

J =
∏N

i=1 J
i ⊂ [0, 1]N such that

(a) x := {L(avn)} ∈ QN(R \ {0}),
(b) ∀n ∈ N : Hn({avn},U) ⊂ Hn(x,J ),

(c) ∀n ∈ N ∀i < N :
∣∣∣xNn λ(Ji)xin

∣∣∣ ≥ L,

(d) λ(JN )
|xNn |

≥ δvn/16.
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Proof. Going to a subsequence and permuting indexes if necessary, we can assume that

|ain| < |ai+1
n | for all n ∈ N and i < N . We find Q ∈ N such that 1

Q
< min{λ(U i); i=1,...,N}

8L
. By

Lemma 4.5 for every j ∈ N there exist qj, p
1
j , . . . , p

N−1
j ∈ Z such that

1 ≤ qj ≤ QN−1,∣∣∣∣qj aijaNj − pij
∣∣∣∣ ≤ 1

Q
, i = 1, . . . , N − 1.(4.1)

Since
|aij |
|aNj |

< 1, we have |pij| ≤ QN−1 for every j ∈ N and i = 1, . . . , N − 1. Going

to a subsequence if necessary, we can assume that there exist q, p1, . . . , pN−1 such that
q = qj, p

i = pij for every j ∈ N. Clearly, there exists 0 ≤ s < N such that pi = 0 if and only

if i ≤ s. Denote by ui the center of the interval U i and set

yij =


aij for i ≤ s,
aij
pi
− aNj

q
for s < i < N,

aNj
q

for i = N,

j ∈ N.

Further we define

• J i = U i for i ≤ s,

• J̃ i = B
(
ui

pi
− uN

q
, λ(U

i)
8|pi|

)
for s < i < N ,

• J̃Nj = B
(
uN

q
,
δj |yNj |

4

)
for j ∈ N,

• JNj = J̃Nj ∩ (0, 1).

Since uN

q
∈ (0, 1) we have λ(JNj ) ≥ 1

2
λ(J̃Nj ). Going to a subsequences if necessary and

using Lemma 4.4(iv) we have that y :=
{

(y1j , . . . , y
N
j )
}
j

is in QN(R \ {0}). For every

s < i < N we find an open interval J i ⊂ [0, 1] such that λ(J i) ≥ λ(J̃i)
2

and J i ⊂ 〈J̃ i〉. By
Lemma 4.4(vi) we have

T (aij, U
i) ⊃ T

(
aij
pi
, B

(
ui

pi
,
λ(U i)

2|pi|

))
,

T (aNj , U
N) ⊃ T

(
yNj , B

(
uN

q
,
λ(UN)

2q

))
.(4.2)

Since ∣∣∣∣q aijaNj − pi
∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

≤ 1

8
,

we have 4
∣∣∣aijpi ∣∣∣ > 3

∣∣yNj ∣∣. Since
aij
pi
− yNj = yij and y ∈ QN(R \ {0}), we have

aij
pi
6= yNj . We

use Lemma 4.7 replacing y, v, r2, δ, z, u, r1 by
aij
pi

, ui

pi
, λ(U i)

2|pi| , δj, y
N
j , uN

q
, λ(UN )

2q
respectively
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to obtain

(4.3) T

(
aij
pi
, B

(
ui

pi
,
λ(U i)

2|pi|

))
∩ T

(
yNj , B

(
uN

q
,
λ(UN)

2q

))
⊃ T (yNj , J̃

N
j ) ∩ T (yij, J̃

i).

Recall that y − z is replaced by
aij
pi
− yNj = yij.

By Lemma 4.4(vii) and our choice of sets J i, JNj we have

T (yNj , J̃
N
j ) ∩ T (yij, J̃

i) ⊃ T (yNj , J
N
j ) ∩ T (yij, J

i).(4.4)

By (4.2), (4.3) and (4.4) we have

Hn(a,U) ⊂ Hn(y, J1 × · · · × JN−1 × JNn ).(4.5)

Observe that we have

λ(JNj ) ≥ 1

2
λ(J̃Nj ) =

1

4
δj|yNj | =

1

4
δj
|aNj |
q
≥ 1

4

min{λ(U i); i = 1, . . . , N}
|aNj |

|aNj |
q

=
1

4

min{λ(U i); i = 1, . . . , N}
q

.

Thus we can use Lemma 4.6 to get an open interval JN and an increasing sequence vn of
positive integers such that for every n ∈ N we obtain

Hn({yvn}, J1 × · · · × JN−1 × JNn ) ⊂ Hn({yvn}, J1 × · · · × JN),(4.6)

4λ(JN) ≥ λ(JNvn).

We set xin := yivn and J = J1 × · · · × JN . By the definition of y we simply get that L is
triangular matrix without any zero element on diagonal. Thus we have (a). By (4.5) and
(4.6) we get (b). Assume i ≤ s. Since∣∣∣∣ xijxNj

∣∣∣∣ =

∣∣∣∣∣qaivjaNvj − pi
∣∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

we have ∣∣∣∣∣xNj λ(J i)

xij

∣∣∣∣∣ =

∣∣∣∣∣xNj λ(U i)

xij

∣∣∣∣∣ ≥
∣∣∣∣∣xNj 8L

xijQ

∣∣∣∣∣ ≥ 8L.

Let s < i < N . Since∣∣∣∣xijpixNj

∣∣∣∣ =

∣∣∣∣∣qaivjaNvj − pi
∣∣∣∣∣ ≤ 1

Q
<

min{λ(U i); i = 1, . . . , N}
8L

we have ∣∣∣∣∣xNj λ(J i)

xij

∣∣∣∣∣ ≥
∣∣∣∣∣xNj λ(J̃ i)

2xij

∣∣∣∣∣ =

∣∣∣∣∣xNj λ(U i)

8xijp
i

∣∣∣∣∣ ≥
∣∣∣∣∣ xNj LxijQp

i

∣∣∣∣∣ ≥ L.

Thus we have (c). Clearly,

16λ(JN) ≥ 4λ(JNvn) ≥ 2λ(J̃Nvn) = δvn|xNn |
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for all n ∈ N. Thus we have (d).
�

Lemma 4.9. Let N ∈ N,a ∈ QN(R \ {0}), U =
∏N

i=1 U
i ⊂ [0, 1]N be an open interval,

L ∈ N and δj = min
{
λ(U i)

|aij |
; i = 1, . . . , N

}
for every j ∈ N. Then there exist x ∈

(
RN
)N

,

a regular matrix M ∈ QN×N , an increasing sequence {vn} of positive integers and an open

interval J =
∏N

i=1 J
i ⊂ [0, 1]N such that

(a) x := {M(avn)} ∈ QN(R \ {0}),
(b) ∀n ∈ N : Hn((avn),U) ⊂ Hn(x,J ),

(c) ∀n ∈ N ∀i < N :
∣∣∣xi+1

n λ(Ji)
xin

∣∣∣ ≥ L,

(d) λ(JN )
|xNn |

≥ δvn/16.

Proof. We will proceed by induction over N . The case N = 1 is trivial. Assume that our
statement holds for some N − 1 ∈ N, we show that it also holds for N . By Lemma 4.8
there exist a regular matrix L ∈ QN×N , an increasing sequence {pn} of positive integers

and an open interval V =
∏N

i=1 V
i ⊂ [0, 1]N such that

(i) y := {L(apn)} ∈ QN(R \ {0}),
(ii) ∀n ∈ N : Hn((apn),U) ⊂ Hn(y,V),

(iii) ∀n ∈ N ∀i < N :
∣∣∣yNn λ(V i)yin

∣∣∣ ≥ 16L,

(iv) λ(V N )
|yNn |

≥ δpn/16.

Clearly, {y1, . . . , yN−1} ∈ QN−1(R \ {0}). By induction hypothesis there exist {xn} ∈(
QN−1)N, a regular matrix Z ∈ Q(N−1)×(N−1), an increasing sequence {jn} of positive

integers and open intervals J i ⊂ [0, 1], 0 < i < N , such that

(1) {x1n, . . . , xN−1n } := {Z(y1jn , . . . , y
N−1
jn

)} ∈ QN−1(R \ {0}),
(2) ∀n ∈ N :

Hn({y1jn , . . . , y
N−1
jn
},
∏N−1

i=1 V i) ⊂ Hn({x1n, . . . , xN−1n },
∏N−1

i=1 J i),

(3) ∀n ∈ N ∀i < N − 1 :
∣∣∣xi+1

n λ(Ji)
xin

∣∣∣ ≥ L,

(4) λ(JN−1)

|xN−1
n | ≥

1
16

min
{λ(V i)
|yijn |

; i = 1, . . . , N − 1
}

.

We set vn = pjn , xNn = yNjn and JN = V N . We define Z̃ ∈ QN×N by

Z̃i,j =


Zi,j for 0 < i, j < N,

1 for i = j = N + 1,

0 otherwise.

Clearly, Z̃ is regular. We set M = Z̃ · L. Thus M is also regular. Using (i) and (1) we
easily obtain (a). By (2) we have

∀n ∈ N : Hn
(
{y1jn , . . . , y

N
jn},V

)
⊂ Hn(x,J )(4.7)
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Using (4.7) and (ii) we get (b). Using (3) we obtain (c) for i < N − 1. From (iii) we have

min
{λ(V i)
|yijn |

; i = 1, . . . , N − 1
}

= λ(V N−1)

|yN−1
jn
| . Using this, (4) and (iii) again we get the case

i = N − 1. The formula (iv) easily gives (d). �

Proof of Theorem 2.5. The inclusion H(N)∗ ⊃ H
(N)∗
L is trivial.

Let A ∈ H(N)∗ be arbitrary. Then there exists a ∈ QN(R \ {0}) and an open interval

U ⊂ [0, 1]N such that A ⊂ H(a,U). By Lemma 4.9 there exists x ∈
(
QN
)N

and an open

interval J ⊂ [0, 1]N such that H(a,U) ⊂ H(x,J ) ∈ H(N)∗
L . So, A ∈ H(N)∗

L . �
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