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ON THE REGULARITY OF TWO-DIMENSIONAL UNSTEADY
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MIROSLAV BULÍČEK, JOSEF MÁLEK, AND TIMOFEI NIKOLAEVICH SHILKIN

Abstract. We study regularity properties of unsteady flows of an incom-
pressible heat-conducting fluid in a two-dimensional spatially periodic setting.

Under certain structural assumptions on the Cauchy stress that include gen-

eralizations of the Ladyzhenskaya or power-law like models we establish the
existence of a classical solution to such problems.

1. Introduction and Main Results

In this study we investigate the long-time and large-data regularity properties of
unsteady flows of homogeneous incompressible heat-conducting fluid in two spatial
dimensions. For simplicity, we restrict ourselves to a spatially periodic setting. In
other words, we are interested in classical solvability of the following system of
equations

div v = 0,

v,t + div(v ⊗ v)− divSSS = −∇p+ f ,

E,t + div (v(E + p)) + div q − div(SSSv) = f · v,
(1.1)

that is supposed to be satisfied in the space-time cylinder QT := Ω× (0, T ), where
T is the length of time interest and Ω := (0, 1)2 is a unit cube in R2. The system
(1.1) is complemented with the following initial and “boundary” conditions

v, E, p, q,SSS are spatially periodic,(1.2)

v(t, x) = v0(x), E(t, x) = E0(x).(1.3)

In (1.1)–(1.3), v : QT → R2 denotes the velocity field, p : QT → R is the mean
normal stress (the pressure), SSS : QT → R2×2

sym the constitutively determined part of

the Cauchy stress, q : QT :→ R2 denotes the heat flux, E : QT → R+ is the density
of the global energy of the fluid and f : QT → R2 denotes the density of the external
body forces. The equation (1.1)1 represents the incompressibility constraint that
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is for a homogeneous fluid equivalent to the mass balance equation. The second
(vectorial) equation in (1.1) is then the balance equation for linear momentum and
the last equation (1.1)3 represents the balance of (total) energy.

In order to study a complete system of partial differential equations, we have
to add to (1.1) constitutive relationships for the Cauchy stress, the heat flux and
the global energy. First, the global energy is given as the sum of the kinetic and
the internal energy, i.e., denoting by e the internal energy of the fluid, E takes the
form E := 1

2 |v|
2 +e. In addition, we have to specify how the density of the internal

energy e depends on other state variables that in our setting means how it depends
on the temperature. Thus, denoting θ the temperature of the fluid we will in what
follows assume for simplicity that e = cvθ and we in addition set cv ≡ 1. Similarly,
for the heat flux q we will consider the Fourier law, i.e., we will assume that

(1.4) −q = κ0∇θ,
and we also set κ0 ≡ 1. Finally, for the part of the Cauchy stress we assume that
it takes the form

(1.5) SSS = SSS(θ,DDD(v)) = 2ν(θ, |DDD(v)|2)DDD(v), DDD(v) :=
1

2
(∇v + (∇v)T ),

where ν denotes the kinematic viscosity of the fluid. Substituting all these relations
into (1.1) and assuming also for simplicity that the external body forces are zero
we get the following system

div v = 0,

v,t + div(v ⊗ v)− divSSS(θ,DDD(v)) = −∇p,
(|v|2/2 + θ),t + div

(
v(|v|2/2 + θ + p)

)
−4θ − div(SSS(θ,DDD(v))v) = 0.

(1.6)

Finally, if we assume that the solution is smooth enough, we can take the scalar
product of (1.6)2 with v and subtract the result from (1.6)3 to get the following
final system of partial differential equations

div v = 0

v,t + div(v ⊗ v)− divSSS(θ,DDD(v)) = −∇p
θ,t + div(vθ)−∆θ = SSS(θ,DDD(v)) : DDD(v)

 in QT ,(1.7)

v and θ are spatially periodic(1.8)

v(0, x) = v0(x), θ(0, x) = θ0(x)(≥ θmin > 0).(1.9)

Note that the systems (1.6) and (1.7) are equivalent if and only if we can multiply
(1.6)2 by (or use as a test function in the weak formulation of (1.6)2) the velocity
v. If it is not the case, the system (1.6) is preferable since it represents the primar
formulation of the balance of energy where all its terms are in the divergence form.
As we are interested in regularity of such flows, we will always observe that v
is an admissible test function in balance of linear momentum and therefore the
“equivallence” described above can be justified. For more details concerning the
existence analysis of the system (1.6) we refer to [4, 5, 6]. For physical motivation
of such models we refer to [18].

The problem (1.7) is the system of nonlinear PDE’s where the nonlinearity is
present even in the leading elliptic term in (1.7)2, and in the heat equation, i.e.,
in (1.7)3, it enters the right-hand side where it represents the term with critical
growth. Such a system belongs (at least formally) to the so-called class of systems
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with strong nonlinearities; see [11]. For these systems, in contrast to the scalar
quasilinear equations, there is so far no regularity theory, and various counter-
examples show that such a theory is not in general possible even if the leading elliptic
term is of the diagonal form, see eg. [7, 10, 12, 24]. Even more, if one assumes that
the viscosity depends only on the temperature, the system (1.7) becomes linear
w.r.t. velocity v in the highest order term in momentum equation (eq (1.7)2) but
is still strongly nonlinear because of the critical term on the right hand side of
(1.7)3 and up to our best knowledge there is no regularity theory available even in
two-dimensional setting if we merely assume that

(1.10) ν(θ, |DDD|2) = ν(θ), 0 < ν0 ≤ ν(s) ≤ ν1, |ν′(s)| ≤ ν2.

The only known regularity result concerning (1.10), we are aware of, is established
in a recent work [3] where the authors proved the maximal L2 regularity theory
for the generalized Stokes system (i.e., the system (1.7) without convective terms)
provided that the viscosity in addition to (1.10) satisfies

(1.11) − 1

15(s− θmin)
≤ ν′(s)

ν(s)
≤ 1

15(s− θmin)
.

Note that (1.11) is satisfied for a large class physically relevant viscosities; see [3].
In the present study we consider a different subclass of viscosities ν, of the

form (1.5) satisfying the assumptions (1.12)–(1.13) below, for which the kind of L2

maximal regularity can be obtained directly from a priori estimates. Having then
such estimates, we are able to show that we can continue in the regularity ladder
and establish better properties for the velocity and the temperature that finally
suffice for an application of the theory1 developed for the stationary as well as
evolutionary generalized Stokes problem by Kaplický et al.; see [13] and [14]. The
fact that such a scheme is successful in our setting is based on an observation that
the time derivative and the second spatial derivatives of the temperature belong to
Lq(QT ) for some q > 2. Saying differently, the purpose of this study is to identify
the class of temperature and shear dependent viscosities so that, for large smooth
data, the planar flows for the resulting generalized Navier-Stokes-Fourier system are
described by the Hölder continuous velocity, pressure and temperature fields that
have Hölder continuous spatial and time derivatives (it then implies that solution
is as smooth as data permit).

Before we formulate the assumption on the viscosity ν and also the main theorem
of this paper, we introduce notation that we will use in what follows. The vector-
valued functions will be denoted by bold italic, i.e., v(t, x) : QT → R2, similarly
the tensor-valued functions by bold capital letter, e.g. DDD. Through the whole paper
we also use Einstein summation convection over repeated indices. For simplicity,
we also denote u · v = uivi ≡

∑2
i=1 uivi the scalar product of the vectors u and v

and similarly we denote AAA : BBB = AijBij ≡
∑2
i,j=1AijBij , for scalar product of any

AAA,BBB ∈ R2×2, and |AAA| := (AAA : AAA)1/2. In addition, we denote I : M2×2 → M2×2 the
identity tensor of the rank 4. In order to simplify the notation of partial derivative,
we will frequently use v,k := ∂v

∂xk
, and similarly v,t := ∂v

∂t . Note that using this

notation we have (∇v)ij = vi,j .

1The origin of this theory goes back to works by Nečas and Stará developed for elliptic problems
in two dimensions; see [20] and [23]. The key tool in their approach plays Lp-theory as developed

by Bojarski in [2] and Meyers in [19].
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For clarity we also introduce a notation of function spaces used in the paper. The
usual Lebesgue and Sobolev spaces equipped with the standard norm are denoted
by Lq(Ω), Lq(QT ) and W k

q (Ω). The dual space to W k
q (Ω) is denoted by W−kq (Ω).

Moreover, for any Banach space X we use the notation Xm := X × · · · ×X︸ ︷︷ ︸
m−times

.

We further set Lq,s(QT ) := Ls(0, T ;Lq(Ω)) to shorten notation for the Bochner
spaces equipped with the standard norm. We also use the abbreviationW k,m

q (QT ) :=

{v ∈ Lq(0, T ;Lq(Ω));∇kv ∈ Lq(QT ), ∂
mv
∂tm ∈ Lq(QT )}. Finally, for any k,m ∈ N

and any α, β ∈ [0, 1] we introduce a notation for space of Hölder continuous func-

tions as Ck+α,m+β(QT ) := {v ∈ C(QT );∇kv ∈ Cα(QT ), ∂
mv
∂tm ∈ C

β(QT )}, where
Cα(Ω) or Cα(QT ) stand for the usual space of α-Hölder continuous functions de-
fined on Ω or QT .

Finally, in what follows we denote by the constant Cv0,θ0 some universal constant
depending only on the structure of the viscosity ν (see (1.5)), the length of time
interval T and also on the initial data v0, θ0.

Next, we formulate our assumption on the Cauchy stress tensor given by (1.5),
give several examples satisfying such assumptions and then we formulate the main
theorem of the paper.

1.1. Assumptions on the Cauchy stress SSS. Throughout the paper we assume
that the constitutively determined part of the Cauchy stress SSS is given by (1.5)
and we assume that SSS : R+ × R2×2

sym → R2×2
sym is at least Lipschitz mapping. In

addition we assume that there are three positive constants ν0, ν1 and ν3, there is
some r ∈ (1,∞) and there is some λ > 0 such that

∣∣∣∣∂SSS(θ,DDD)

∂θ

∣∣∣∣ ≤ ν3
(1 + |DDD|2)

r−2
4

(1 + θ)λ+ 1
2

(1.12)

ν0(1 + |DDD|2)
r−2
2 |AAA|2 ≤ ∂SSS(θ,DDD)

∂DDD
: (AAA⊗AAA) ≤ ν1(1 + |DDD|2)

r−2
2 |AAA|2(1.13)

for all DDD,AAA ∈ R2×2
sym and all θ ∈ R+.

At this point, we give two examples of viscosities that satisfy (1.12)–(1.13). Note,
that from physical point of view the viscosity should be decreasing function of the
temperature. Also note that from the point of view of engineering applications the
values of r between (1, 2) plays the most important role. We refer to [18] for details.
Hence, let us assume that the viscosity takes the form

(1.14) ν(θ,DDD) =
(
γ(θ) + (1 + |DDD|2)p

) r−2
2p , p ≥ 1,

where γ is bounded smooth nonnegative function satisfying

(1.15) |γ′(θ)| ≤ c(1 + θ)−
1
2−λ for some λ > 0.
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It is not difficult to observe that the viscosities of the form (1.14) meet the condition
(1.13). In order to deduce also the validity of (1.12) we can compute∣∣∣∣∂SSS(θ,DDD)

∂θ

∣∣∣∣ = |DDD|
∣∣∣∣∂ν(θ, |DDD|2)

∂θ

∣∣∣∣
= |DDD| |r − 2|

2p

(
γ(θ) + (1 + |DDD|2)p

) r−2−2p
2p |γ′(θ)|

≤ ν3(1 + θ)−
1
2−λ

(
γ(θ) + (1 + |DDD|2)p

) r−1−2p
2p

≤ ν3(1 + θ)−
1
2−λ

(
1 + |DDD|2

) r−1−2p
2

and we see that if we chose p ≥ r
4 the inequality (1.12) holds.

The next example,

ν(θ, |DDD|2) = arctan(1 + γ(θ) + |DDD|2),

describes a fluid for which (1.12)–(1.13) hold with r = 2, yet the relation between
SSS and DDD is nonlinear.

Finally, we finish this subsection by summarizing the consequences of the as-
sumptions (1.5) and (1.12)–(1.13).

Lemma 1.1. Let r ∈ (1,∞) and assume that SSS satisfies (1.5) and (1.12)–(1.13).
Let

(1.16) m(θ,DDD) :=

|DDD|2∫
0

ν(θ, τ) dτ.

Then m satisfies the following inequalities

c1(1 + |DDD(v)|2)
r
2 ≤ m(θ,DDD(v)) ≤ c2(1 + |DDD(v)|2)

r
2 ,(1.17) ∣∣∣∣∂m(θ,DDD(v))

∂θ

∣∣∣∣ ≤ c3(1 + |DDD(v)|2)
r
4 (1 + θ)−

1
2−λ.(1.18)

Proof. The estimates (1.17) are direct consequences of (1.12). The second relation,
i.e., the inequality (1.18), can be deduced by using (1.5) and (1.13). We refer reader
to [17] for details. �

1.2. The main theorem. Some results on the existence of the weak solutions to
the system (1.7)–(1.9) can be found in [6], [9]. In order to prove the existence of
classical solution to (1.7)–(1.9) we need to assume smoothness and compatibility
conditions on the initial data. Namely, we assume that

(1.19)
∃ α > 0 such that v0 ∈ C2+α(R2)2, θ0 ∈ C2+α(R),

v0, θ0 are Ω-periodic.

The main result of the present paper is the following theorem:

Theorem 1.1. Let SSS be given by (1.5) and satisfy (1.12)–(1.13) for some r ∈
( 4

3 ,∞). Then for any v0 and θ0 satisfying (1.19) there exists a triple (v, p, θ) such
that

(1.20) v ∈ C2+α,1+α
2 (QT )2, ∇p ∈ Cα,α2 (QT )2, θ ∈ C2+α,1+α

2 (QT ),

which solves (1.7)–(1.9). Moreover, this solution is unique in the class (1.20).
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The rest of the paper is organized as follows. Section 2 contains some auxiliary
tools and lemmas that are known and will be used to the proof of Theorem 1.1.
The key part of the paper is presented in Section 3 where we establish the principal
a priori estimates of the solution of the problem (1.7) in Hölder continuous spaces.
Finally in Section 4 we sketch an application of the variant of the Leray-Schauder
fixed point theorem which is appropriate for our case.

2. Auxiliary Results

First, we discuss the higher integrability results for the generalized Stokes system.
We consider both time-independent and evolutionary case referring to [13] and [14]
for details.

Proposition 2.1 (Evolutionary problem, see Proposition 2.1 in [14]). Let a fourth
order tensor A = (Aijkl(x, t)) possess the following properties:

(2.1) Aijkl ∈ L∞(QT ), Aijkl = Aklij = Ajikl = Aijlk

ν0|DDD|2 ≤ A(x, t) : (DDD⊗DDD) ≤ ν1|DDD|2,
for all DDD ∈ R2×2

sym and for a.e. (x, t) ∈ QT . Assume that FFF ∈ Lq0(QT )2×2 for some

q0 > 2 and assume that u ∈W 1,0
2 (QT )2, p ∈ L2(QT ) satisfy the generalized Stokes

problem with periodical boundary conditions:

u,t − div (ADDD(u)) +∇p = divFFF,
divu = 0, u is periodic.

Then for any q ∈ (2, q0] such that

(2.2) 1− 2

q
≤ c0

ν0

ν1
,

the following estimates hold:

‖∇u‖Lq(QT )2×2 ≤ c1
ν0
‖FFF‖Lq(QT )2×2 ,(2.3)

‖u‖L∞(0,T ;Lq(Ω)2) ≤ c2
ν

1/q
1

ν0
‖FFF‖Lq(QT )2×2 ,(2.4)

where ci, i = 0, 1, 2, are some absolute constants.

Proposition 2.2 (Stationary problem, see Proposition 2.2 in [13]). Let a fourth
order tensor A = (Aijkl(x)) possess the following properties:

(2.5) Aijkl ∈ L∞(Ω), Aijkl = Aklij = Ajikl = Aijlk

ν0|DDD|2 ≤ A(x) : (DDD⊗DDD) ≤ ν1|DDD|2,
for all DDD ∈ R2×2

sym and for a.e. x ∈ Ω. Assume that FFF ∈ Lq0(Ω)2×2 for some q0 > 2

and assume that u ∈ W 1
2 (Ω)2, p ∈ L2(Ω) satisfy the generalized Stokes problem

with periodical boundary conditions:

−div (ADDD(u)) +∇p = divFFF,
divu = 0, u is periodic.

Then for any q ∈ (2, q0] satisfying (2.2) the following estimates hold

(2.6) ‖∇u‖Lq(Ω)2×2 ≤ C

ν0
‖FFF‖Lq(Ω)2×2 .

In conclusion we recall some known facts of the theory of functions.
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Proposition 2.3 (see [16]). For any w ∈W 1
q (Ω) with q > 2 there holds

sup
x∈Ω
|w(x)| ≤

(
C

1− 2
q

)(1− 1
q )

‖∇w‖Lq(Ω)2 .

The following proposition is proved in [21]:

Proposition 2.4 (see [21]). Assume that ∇v ∈ L∞(0, T ; Cα(Ω)2) and that ∇v,t ∈
Lq(QT )2 for some q > 1. Then there is α0 ∈ (0, 1) such that

∇v ∈ Cα0,
α0
2 (QT )2.

Here chosen scheme of the proof of the classical solvability of the system (1.7) is
based on the two general statements2. The first one is the theorem on existence of
the classical solution to the generalized Navier-Stokes fluid (sometimes called the
Ladyzhenskaya system) (see Kaplický et al. [14]), and the second is some variant
of the Leray-Schauder principle (see [16]). We reproduce their statements here for
the completeness.

Proposition 2.5 (generalized Navier-Stokes (or Ladyzhenskaya) system, see The-
orem 1.1 in [14]). Assume that 4

3 < r and that SSS is independent of the temperature θ

and satisfy (1.5) and (1.13). Assume that v0 ∈ C2+α(Ω)2 is spatially periodic. Then
there exists the unique couple (v, p) satisfying v ∈ C2+α,1+α

2 (QT )2, ∇p ∈ Cα,α2 (QT )
that represents the classical solution of the Ladyzhenskaya system

v,t + div(v ⊗ v)− divSSS(DDD(v)) +∇p = 0,

div v = 0,

v(0) = v0, v is spatially periodic.

(2.7)

Moreover, this solution is unique in the class of all strong solutions to the system
(2.7).

Proposition 2.6 (Leray-Schauder, see [16]). Let X be a Banach space, BR :=
{u ∈ X : ‖u‖X < R}, and assume

Φτ : B̄R ⊂ X → X, τ ∈ [0, 1]

is a family of non-linear operators such that

(1) for any τ ∈ [0, 1] the map Φτ (·) is continuous on B̄R,
(2) sup

u∈B̄R
‖Φτ (u)− Φτ0(u)‖X → 0 as τ → τ0,

(3) for any τ ∈ [0, 1] the set Φτ (B̄R) is precompact in X,
(4) for any τ ∈ [0, 1] and for any u ∈ B̄R such that u = Φτ (u) we have

(2.8) ‖u‖X < R

(5) there is a unique u0 ∈ BR such that u0 = Φ0(u0).

Then there is at least one u ∈ BR such that u = Φ1(u).

2Note that it is possible to built the solution via the Galerkin approximations and uniform

apriori estimates established below. These estimates, at an appropriate point, allow one to take
the limit and obtained the strong solution for which one can proved the C1,α-regularity results

similarly as it is performed here
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Finally, to verify the validity of all conditions of Proposition 2.6 for the solu-
tion operator corresponding to the problem (1.7), we need the following result on
the continuous dependence of solutions to the generalized Stokes system on the
coefficients.

Proposition 2.7 (Continuous dependence on the coefficients, see [22]). Let for
any m ∈ N, wm denotes solutions to the following problem

wm
,t − Am∇2wm +∇qm = fm,

divwm = 0

wm(0) = v0, w
m is spatially periodic,

(2.9)

with the tensor Am := Amijkl(x, t) satisfying (2.1). Assume ‖Am‖C0,α0 (QT )24 < ∞
for some α0 > 0, and Am(x, t)→ A(x, t) a.e. in QT as m→∞. Assume also that
fm → f in Ls(QT ) for some s > 1. Then

(2.10) wm → w strongly in W 2,1
s (QT ).

In particular, if s > 4, then for some α > 0

(2.11) wm → w in C1+α, 1+α2 (QT ).

3. A Priori Estimates

In this section we derive formally (under assumption that the solution is smooth)
some a priori estimates. These estimates can be however justified by using the semi-
Galerkin procedure (see [5] for details) since in the periodic setting it is allowed to
use −4v as a test function in balance of linear momentum. Therefore in principle
we establish the existence of weak solution to (1.7)–(1.9) and we show which kind
of regularity such constructed solution has.

In the rest of this section we will always assume that SSS is given by (1.5) and
satisfies (1.12)–(1.13) with some fixed r ∈ (1,∞). Moreover we will always assume
that the initial data satisfies (1.19). To simplify the notation we will usually omit
writing of dependence on (x, t) whenever it is clear from the context.

We begin with the first a priori estimates.

Lemma 3.1 (First a priori estimate). Let (v, p, θ) be smooth solution to (1.7)–(1.9).
Then θ ≥ θmin a.e. in QT and the following estimates hold

‖v‖2L2,∞(QT )2 + ‖v‖r
W 1,0
r (QT )2

≤ C‖v0‖22 ≤ Cv0,θ0 ,(3.1)

‖θ‖L1,∞(QT ) +

∫
QT

|∇θ|2

θ1+λ
dx dt ≤ C(λ−1)(‖v0‖22 + ‖θ0‖1) ≤ Cv0,θ0(3.2)

for all λ > 0.

Proof. The proof of (3.1)–(3.2) is standard. To obtain (3.1) it is enough to mul-
tiply balance of linear momentum (1.7)2 by v and integrate over QT . Since v is
divergence free field, the convective term and the pressure term vanish after inte-
gration by parts. Finally, it is enough to use the structural assumption (1.5) and
the growth assumption (1.12) together with the Korn inequality. Since the right
hand side of the heat equation (1.7)3 is non-negative (which follows from (1.5) and
(1.13), see e.g. [5]) it is easy to deduce that θ(t, x) ≥ θ0(x) ≥ θmin a.e. in QT . Then
integration over Ω of the heat equation, and use (3.1) leads to the first estimate in
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(3.2). The second estimate in (3.2) can be obtained by using θ−λ as a test function
for the heat equation. We refer to [1] or [5] for details. �

Next, we derive the estimates for the second spatial derivatives.

Lemma 3.2 (Estimate of the second spatial derivatives). Let (v, p, θ) be a smooth
solution to (1.7)–(1.9). Then the following estimates hold

‖∇v‖2L2,∞(QT )2×2 +

∫
QT

(1 + |DDD(v)|2)
r−2
2 |∇2v|2 dx dt ≤ C‖∇v0‖22

≤ Cv0,θ0 .

(3.3)

In particular, we have

(3.4) ‖|DDD(v)| r2 ‖2
W 1,0

2 (QT )
≤ Cv0,θ0 .

Proof. Multiplying the momentum equation (i.e., equation (1.7)2) by −∆v, inte-
grating the result over Ω and using integration by parts, we obtain (note that the
pressure term again vanishes)

1

2

d

dt
‖∇v‖22 +

∫
Ω

∂SSS(θ,DDD(v))

∂DDD
: (DDD(∇v)⊗DDD(∇v)) dx

= −
∫
Ω

(
∂SSS(θ,DDD(v))

∂θ
⊗∇θ

)
: DDD(∇v) dx−

∫
Ω

div (v ⊗ v) ·∆v dx

=: I1 + I2.

Next, using (1.13) we obtain that the second term on the left hand side can be
estimated as ∫

Ω

∂SSS(θ,DDD(v))

∂DDD
: (DDD(∇v)⊗DDD(∇v)) dx

≥ ν0

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(∇v)|2 dx := J(t).

(3.5)

For the term I2 we get

I2 =

∫
Ω

∂vi
∂xj

∂vj
∂xk

∂vk
∂xi

dx = 0,

where for the first identity we used integration by parts formula, and in the second
inequality we used the fact that we study the two-dimensional problem and therefore
the integrand is identically zero (see [17] for details).

To estimate I1 we use the assumption (1.13) and the Young inequality to get

I1 ≤ ν3

∫
Ω

|∇θ|
θλ+ 1

2

(1 + |DDD(v)|2)
r−2
4 |DDD(∇v)| dx ≤ 1

2
J(t) +

ν2
3

2ν0

∫
Ω

|∇θ|2

θ2λ+1
dx.

Therefore, combining all together we end up with the estimate

(3.6)
d

dt
‖∇v‖22 + ν0

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(∇v)|2 dx ≤ C

∫
Ω

|∇θ|2

θ2λ+1
dx.
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Owing to the point-wise relation |∇2v| ≤ C|DDD(∇v)| we can easily replace DDD(∇v)
in (3.6). Moreover, having a priori estimate (3.2) we see that the right hand side is
integrable w.r.t. time t and therefore we can deduce the relation (3.3).

To complete the proof we need to show (3.4). It however suffices to combine
(3.3) with the following point-wise estimate

|∇(1 + |DDD(v)|2)
r
4 |2 ≤ C(1 + |DDD(v)|2)

r−2
2 |DDD(∇v)|2.

Thus the proof of Lemma 3.2 is complete. �

The next step is focused on improving the regularity of the time derivative of
the solution.

Lemma 3.3 (Estimates on time derivative). Let (v, p, θ) be a smooth solution to
(1.7)–(1.9). Then the following estimates hold

‖v,t‖2L2,∞(QT ) +

∫
QT

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dxdt

≤ C(‖v0‖W 2
2+ε(Ω)2 , ‖θ0‖W 1

2 (Ω)) ≤ Cv0,θ0 .

(3.7)

Proof. Step 1: Derivation of the estimates that follow from (3.3)–(3.4) by stan-
dard interpolation techniques. First, for r ≥ 2, we get by using the embedding

W
2
r+2

2 (Ω) ↪→ L 2(r+2)
r

(Ω) and the standard interpolation inequality that

‖DDD(v)‖r+2
Lr+2(Ω)2×2 = ‖|DDD(v)| r2 ‖

2(r+2)
r

L 2(r+2)
r

(Ω) ≤ C‖|DDD(v)| r2 ‖
2(r+2)
r

W
2
r+2
2 (Ω)

≤ C‖|DDD(v)| r2 ‖2L2(Ω)‖|DDD(v)| r2 ‖
4
r

W 1
2 (Ω)

≤ C‖DDD(v)‖
4
r

L2(Ω)2×2‖DDD(v)‖r−
4
r

Lr+2(Ω)2×2‖|DDD(v)| r2 ‖
4
r

W 1
2 (Ω)

and consequently we observe that

(3.8) ‖DDD(v)‖r+2
Lr+2(Ω)2×2 ≤ C‖DDD(v)‖2L2(Ω)2×2‖|DDD(v)| r2 ‖2W 1

2 (Ω).

Next, for r ≤ 2 we use the embedding W
r2

2(r+2)
4
r

(Ω) ↪→ L
2(r+2)
r (Ω), the standard

interpolation inequality and the embedding W 1
2 (Ω) ↪→W

r
2
4
r

(Ω) to deduce

‖DDD(v)‖r+2
Lr+2(Ω)2×2 = ‖|DDD(v)| r2 ‖

2(r+2)
r

L 2(r+2)
r

(Ω) ≤ C‖|DDD(v)| r2 ‖
2(r+2)
r

W
r2

2(r+2)
4
r

(Ω)

≤ C‖|DDD(v)| r2 ‖
4
r

L 4
r

(Ω)‖|DDD(v)| r2 ‖2
W

r
2
4
r

(Ω)
,

which again leads to (3.8).
Hence, integrating (3.8) with respect to time and using the a priori estimates

(3.3) and the Korn inequality we conclude that

(3.9) ‖∇v‖Lr+2(QT )2×2 ≤ Cv0,θ0 .

Step 2: We show that

(3.10) ‖ div(v ⊗ v)‖L2(QT )2 ≤ Cv0,θ0 .
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Indeed, in the case r > 2 thanks to the energy estimate (3.1) we have v ∈
Lr(0, T ;W 1

r (Ω)2) ↪→ Lr(0, T ;L∞(Ω)2) and hence after using (3.9) we obtain

(3.11) ‖ div(v ⊗ v)‖2L2(QT )2 ≤ ‖∇v‖
2
L2,∞(QT )2

T∫
0

‖v‖2L∞(Ω)2 dt ≤ Cv0,θ0 .

For 1 < r ≤ 2 we use the following inequality (see also [17] for details)

‖∇2v‖2
L2

(
0,T ;L 4

4−r
(Ω)2×2

) ≤ (1 + ‖DDD(v)‖2−rL∞(0,T ;L2(Ω))2×2

) ∫
QT

|∇2v|2

(1 + |DDD(v)|2)
2−r
2

dxdt.

and obtain

(3.12) ‖v‖L2(0,T ;W 2
4

4−r
(Ω)2) ≤ Cv0,θ0 .

Consequently, using the imbedding W 2
4

4−r
(Ω) ↪→ W 1

4
2−r

(Ω) ↪→ L∞(Ω) and also

(3.12) we conclude that

(3.13) ‖v‖L2(0,T ;L∞(Ω)2) ≤ Cv0,θ0 ,

and we see that integral in (3.11) is finite, and (3.10) holds.
Step 3: Improvement of regularity for θ following from (3.3). First, thanks to (3.9)
and the growth assumption on SSS (1.13), wee see that the right-hand side of the heat
equation (1.7)3 is bounded in L r+2

r
(QT ). Due to the first part of the estimate (3.3)

we also have that ‖v‖L∞(0,T ;Lq(Ω)2) ≤ Cv0,θ0 for any q ∈ (1,∞). Next, we easily
deduce from (3.2) (see e.g. [5] for details) that ‖θ‖Lq(0,T ;W 1

q (Ω)) ≤ Cv0,θ0 for all

q ∈ (1, 4
3 ). Consequently, using the fact that div v = 0 we obtain that

‖ div(vθ)‖Lq(QT ) = ‖v · ∇θ‖Lq(QT ) ≤ Cv0,θ for all q ∈ (1,
4

3
).

Hence, moving the convective term onto the right hand side of (1.7)3 and referring
to Lq maximal regularity of the heat equation (see [16, Chapter IV, Theorem 9.1]),
we deduce that

(3.14) ‖θ‖W 2,1
q̃ (QT ) ≤ Cv0,θ0

for all q̃ < 4
3 and q̃ ≤ r+2

2 . Hence, in case r+2
r < 4

3 we directly obtain

(3.15) ‖θ‖W 2,1
r+2
r

(QT ) ≤ Cv0,θ0 .

On the other hand, in case that r+2
r ≥ 4

3 we can bootstrap our estimate to still
conclude (3.15). Indeed, it follows from the standard parabolic interpolation (see
for example [8]) and (3.14) that

‖|∇θ|‖
L

4q̃
4−q̃ (QT )

≤ Cv0,θ0 .

Using (3.3) and the fact that q̃ ∈ [1, 4
3 ) is arbitrary, we conclude that

‖ div(vθ)‖Lq(QT ) = ‖v · ∇θ‖Lq(QT ) ≤ Cv0,θ for all q ∈ (1, 2).

If r+2
r < 2 we move the convective term onto the right hand side and conclude

(3.15). Otherwise, we repeat the bootstrap argument again. It is evident that after
finite number of steps we always deduce (3.15).
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Step 4: Derivation of

‖v,t‖L2(QT )2 + ‖θ,t‖L2(QT ) + ‖∇v‖Lr,∞(QT )2×2 + ‖∇θ‖L2,∞(QT )2 ≤ Cv0,θ0 .(3.16)

We start with multiplying the momentum equation (1.7)1 by v,t, integrating over
Ω and using the integration by parts (the term with pressure vanishes due to the
divergence free constraint). It leads to the identity

‖v,t‖2L2(Ω) +

∫
Ω

SSS(θ,DDD(v)) : DDD(v,t) dx = −
∫
Ω

v,t · div(v ⊗ v) dx.

Applying the Young inequality to the term on the right hand side and absorbing
the term with time derivative into the first term on the left-hand side, we observe
that

(3.17)
1

2
‖v,t‖2L2(Ω) +

∫
Ω

SSS(θ,DDD(v)) : DDD(v,t) dx ≤
1

2
‖ div(v ⊗ v)‖2L2(Ω)2 .

Taking further (1.5) and the definition of m (see (1.16)) into account, we can rewrite
the second term on the left-hand side of (3.17) as∫

Ω

SSS(θ,DDD(v)) : DDD(v,t) dx =
1

2

∫
Ω

ν(θ, |DDD(v)|2)|DDD(v)|2,t dx

=
1

2

d

dt

∫
Ω

m(θ,DDD(v)) dx− 1

2

∫
Ω

∂m(θ,DDD)

∂θ
θ,t dx

Thus, inserting this relation into (3.17) and using the Young inequality together
with (1.18) we obtain

‖v,t‖2L2(Ω) +
d

dt

∫
Ω

m(θ,DDD(v)) dx ≤ ‖div(v ⊗ v)‖2L2(Ω)2 +
1

2
‖θ,t‖L2(Ω)

+ C(‖DDD(v)‖rLr(Ω)2×2 + 1).

(3.18)

Next, multiplying (1.7)3 by θ,t and integrating the result over Ω, one can easily
observe, after using (1.12) and the Young inequality, that

(3.19) ‖θ,t‖2L2(Ω) +
d

dt
‖∇θ‖2L2(Ω)2 ≤ C(1 + ‖DDD(v)‖2rL2r(Ω) + ‖v · ∇θ‖22).

In order to be able to control the right hand side of (3.19) by means of the Gronwall
lemma, we proceed as follows. First, for sufficiently small ε > 0, we get by the
Hölder inequality and the interpolation inequality that

‖v · ∇θ‖2L2(Ω) ≤ C‖v‖
2
W 1

2 (Ω)2‖∇θ‖
2
L2+ε(Ω)2

≤ C‖v‖2W 1
2 (Ω)2(1 + ‖∇θ‖2L2(Ω)2‖θ‖W 2

r+2
r

(Ω)).
(3.20)

Similarly, using the Ladyzhenskaya inequality (see [15]) and the estimate (1.17) we
get

‖DDD(v)‖2rL2r(Ω)2×2 = ‖|DDD(v)| r2 ‖4L4(Ω) ≤ C‖|DDD(v)| r2 ‖2L2(Ω)‖|DDD(v)| r2 ‖2W 1
2 (Ω)

≤ C‖|DDD(v)| r2 ‖2W 1
2 (Ω)

∫
Ω

m(θ,DDD(v)) dx.
(3.21)
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Finally, summing (3.18) and (3.19) and using (3.1), (3.4), (3.11), (3.15), (3.20)
and (3.21), we obtain

‖v,t‖2L2(Ω)2 + ‖θ,t‖2L2(Ω) +
d

dt

(
‖∇θ‖2L2(Ω)2 +

∫
Ω

m(θ,DDD(v)) dx

)
≤ Cg(t)(‖∇θ‖2L2(Ω)2 +

∫
Ω

m(θ,DDD(v)) dx+ 1),

(3.22)

where g := C(‖ |DDD(v)| r2 ‖2
W 1

2 (Ω)
+ ‖v‖2

W 1
2 (Ω)2

+ ‖θ‖W 2
r+2
r

(Ω) + ‖div(v ⊗ v)‖L2(QT )2)

fulfills ∫ T

0

g(t) ≤ Cv0,θ0 .

Consequently, using (1.17) and the Gronwall inequality, we arrive at (3.16).
Step 5: Consequences following from (3.16). First, referring to (3.21), we observe
that (3.16) implies that

(3.23) ‖∇v‖L2r(QT )2 ≤ Cv0,θ0 .

Next, using the properties of the heat equation solution operator, it is not difficult
to see that

(3.24) ‖θ‖W 2,1
2 (QT ) ≤ Cv0,θ0 .

Step 6: Proof of the estimate (3.7). In fact, we use the procedure similar to the
one that led to the estimate (3.3). Indeed, applying the time derivative to the the
momentum equation (1.7)2, multiplying the result by v,t and integrating over Ω,
we obtain (after integration by parts and using div v = 0)

1

2

d

dt
‖v,t‖2L2(Ω)2 +

∫
Ω

∂SSS(θ,DDD(v))

∂DDD
: (DDD(v,t)⊗DDD(v,t)) dx

= −
∫
Ω

θ,t
∂SSS(θ,DDD(v))

∂θ
: DDD(v,t) dx+

∫
Ω

(v ⊗ v),t : DDD(v,t) dx.

First, using the fact that div v = 0 and integration by parts, we get∫
Ω

(v ⊗ v),t : DDD(v,t) dx = −
∫
Ω

(v,t ⊗ v,t) : DDD(v) dx.

Then, applying (1.12)–(1.13) to the corresponding terms above we get

1

2

d

dt
‖v,t‖2L2(Ω)2 + ν0

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dx

≤ C
∫
Ω

|θ,t|(1 + |DDD(v)|2)
r−2
4 |DDD(v,t)| dx+ C

∫
Ω

|v,t|2|DDD(v)| dx.
(3.25)

The first integral at the right-hand side can be handled by using the Young inequal-
ity:

C

∫
Ω

|θ,t|(1 + |DDD(v)|2)
r−2
4 |DDD(v,t)| dx ≤

ν0

4

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dx+C‖θ,t‖22.
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Next, we estimate the second term on the right-hand side of (3.25). First, for r ≥ 2
we have after using the Hölder and Ladyzhenskaya inequalities∫

Ω

|v,t|2|DDD(v)| dx ≤ ‖v,t‖2L4(Ω)2‖DDD(v)‖L2(Ω)2×2

≤ ν0

4
‖DDD(v,t)‖2L2(Ω)2×2 + ‖v,t‖2L2(Ω)2‖DDD(v)‖2L2(Ω)2×2

For r ∈ (1, 2) we proceed as follows. By means of the Hölder inequality and (3.3)
we have

‖DDD(v,t)‖L 4
4−r

(Ω)2×2 ≤
(

1 + ‖DDD(v)‖2−rL2(Ω)

) 1
2

∫
Ω

|DDD(v,t)|2(1 + |DDD(v)|2)
r−2
2 dx

 1
2

≤ Cv0,θ0

∫
Ω

|DDD(v,t)|2(1 + |DDD(v)|2)
r−2
2 dx

 1
2

.

Having this estimate we then get for r ∈ (1, 2) that (after using also (3.3))∫
Ω

|v,t|2|DDD(v)| dx ≤ ‖v,t‖2L4(Ω)2‖DDD(v)‖L2(Ω)2×2

≤ Cv0,θ0‖v,t‖
2(r−1)
r

L2(Ω)2‖DDD(v,t)‖
2
r

L 4
4−r

(Ω)2×2

≤ ν0

4

∫
Ω

|DDD(v,t)|2(1 + |DDD(v)|2)
r−2
2 dx+ Cv0,θ0‖v,t‖2L2(Ω)2 .

Thus, combining above estimates with (3.25) we obtain

d

dt
‖v,t‖2L2(Ω)2 +

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dx

≤ Cv0,θ0(‖v,t‖2L2(Ω)2 + ‖θ,t‖2L2(Ω)).

(3.26)

Finally using (3.24) and the Gronwall inequality we deduce3 the relation (3.7). �

Lemma 3.4 (Further estimates for v). Let (v, p, θ) be a smooth solution to (1.7)–
(1.9). Then the following estimate holds

(3.27) ‖v‖L∞(QT )2 ≤ Cv0,θ0 .
Moreover, for r ≥ 2 we have

(3.28) sup
t∈(0,T )

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |∇2v|2 dx ≤ Cv0,θ0

and consequently

(3.29) ‖∇2v‖L∞(0,T ;L2(Ω)2×2×2) ≤ Cv0,θ0 .
For r ∈ (1, 2) there holds

(3.30) ‖∇v‖L∞(0,T ;Lr+1(Ω)2×2) ≤ Cv0,θ0 .

3For using the Gronwall lemma we need that ‖v,t(0)‖L2(Ω)2 is finite. However, this can be

deduce directly from equation (1.7)2 provided that v0 ∈W 2
2+ε(Ω)2 and θ0 ∈W 1

2 (Ω).
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In addition, we have

(3.31) ‖v,t‖Lq0 (QT )2 ≤ Cv0,θ0 , q0 =

{
4 2 ≤ r,

r + 2 1 < r < 2.

Proof. For r > 2, the relation (3.27) is a direct consequence of (3.16). For r ∈ (1, 2],
we have

d

dt

∫
Ω

(1 + |DDD(v)|2)
r+1
2 dx = (r + 1)

∫
Ω

(1 + |DDD(v)|2)
r−1
2 DDD(v) : DDD(v,t) dx

≤ C

∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dx

1/2∫
Ω

(1 + |DDD(v)|2)
r+2
2 dx

1/2

≤ C
∫
Ω

(1 + |DDD(v)|2)
r−2
2 |DDD(v,t)|2 dx+ C

(
1 + ‖DDD(v)‖r+2

Lr+2(Ω)2×2

)
.

Upon the integration by parts and use of (3.9) and (3.7), we obtain (3.30). Conse-
quently, the embedding theorem W 1

r+1(Ω) ↪→ L∞(Ω) implies (3.27).
To observe (3.28), we use (3.6) but move the time derivative on the right hand

side. Since

− d

dt
‖∇v‖2L2(Ω)2×2 =

∫
Ω

v,t · 4v dx ≤ ν0

2
‖DDD(∇v)‖2L2(Ω)2×2×2 + C‖v,t‖2L2(Ω)2 .

we obtain (note that here we need r ≥ 2)∫
Ω

(1 +DDD(v)|2)
r−2
2 |∇2v|2 dx ≤ C(‖∇θ‖2L2(Ω)2 + ‖v,t‖2L2(Ω)2).

Finally the estimates (3.7) and (3.16) imply (3.28).
The relation (3.31) can be deduced from (3.7) and (3.9) by using standard in-

terpolation (see e.g. [14] for details). �

Lemma 3.5 (Further estimates for θ). Let (v, p, θ) be a smooth solution to (1.7)–
(1.9). Then the following estimate holds

(3.32) ‖θ‖W 2,1
s (QT )2 ≤ Cv0,θ0 ,

{
for all s < +∞, 2 ≤ r

s = 3, 1 < r < 2

In particular, we obtain

(3.33) ‖∇θ‖L∞(0,T ;Ls(Ω)2) ≤ Cv0,θ0 ,
{

for all s < +∞, 2 ≤ r
s = 3, 1 < r < 2

Proof. In the case of 2 ≤ r the estimate (3.32) follows from (3.29) and the standard
properties of the heat operator. In the case of 1 < r < 2 we use the the embedding
W 1,1

2 (QT ) ↪→ L6(QT ) and obtain the estimate

‖∇v‖L3r(QT ) ≤ Cv0,θ0 .

Using estimates of the heat equation we get the inequality

‖θ‖W 2,1
3 (QT ) ≤ Cv0,θ0 .

Lemma 3.32 is proved. �
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Let us mention that the above estimates suffice to establish the existence of
strong solution. The rest of this section is devoted to a priori estimate for a classical
solution. We note that this is the part where the restriction to the case r > 4

3
appears.

Lemma 3.6. Let r > 4
3 and SSS satisfy (1.5) and (1.12)–(1.13). Then for any initial

data (v0, θ0) satisfying (1.19) there is a positive constant Cv0,θ0 such that for any
smooth solution (v, p, θ) of the problem (1.7) the following estimate holds

(3.34) ‖v‖C2+α,1+α2 (QT )2
+ ‖θ‖C2+α,1+α2 (QT )

≤ Cv0,θ0 .

Proof. We define

(3.35) V := sup
QT

(1 + |DDD(v)|2)
1
2

and denote by u = v,t, π̃ = p,t. Next, we differentiate (1.7)2 w.r.t. time and obtain

u,t − div (ADDD(u)) +∇π̃ = divFFF,

divu = 0,
(3.36)

where we set

A =
∂SSS(θ,DDD(v))

∂DDD
,

FFF =
∂SSS(θ,DDD(v))

∂θ
θ,t − (v ⊗ v),t.

Using (1.12) we get that

|FFF| ≤ C
(

(1 + |DDD(v)|2)
r−2
4 |θ,t|+ |v||v,t|

)
and owing to (3.27), (3.31) and (3.32), we obtain

(3.37) ‖FFF‖Lq0 (QT )2×2 ≤ Cv0,θ0

for some q0 > 2.
Now we split the proof in two parts: the case 2 ≤ r and the case 4

3 < r < 2.

(i) The case 2 ≤ r.
In this case, it follows from (1.13) and (3.35) that the tensor A satisfies

ν0|DDD|2 ≤ A : (DDD⊗DDD) ≤ ν1V
r−2|DDD|2, for all DDD ∈ R2×2

sym.

Hence by Proposition 2.1 we get for any q ∈ (2, q0) satisfying

(3.38) 1− 2

q
≤ c0

ν0

ν1
V 2−r

that

‖∇u‖Lq(QT )2×2 ≤ Cv0,θ0 ,

‖u‖L∞(0,T ;Lq(Ω)2) ≤ Cv0,θ0

(
1 + V

r−2
q

)
.

(3.39)

Recalling (3.29) we have

‖u‖L∞(0,T ;L2(Ω)2) ≤ Cv0,θ0 .

Interpolating this estimate with the second inequality in (3.39) we obtain for any
a ∈ [0, 1]

‖u‖L∞(0,T ;Lq1 (Ω)2) ≤ Cv0,θ0‖u‖1−aL∞(0,T ;L2(Ω)2)‖u‖
a
L∞(0,T ;Lq(Ω)2),
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where q1 is given by

(3.40)
1

q1
=

1− a
2

+
a

q
.

Consequently, we have

(3.41) ‖u‖L∞(0,T ;Lq1 (Ω)2) ≤ Cv0,θ0

(
1 + V a

r−2
q

)
and we conclude that

(3.42) ‖v,t‖L∞(0,T ;Lq1 (Ω)2) ≤ Cv0,θ0

(
1 + V a

r−2
q

)
.

Next, we focus on the spatial derivatives, and we set w := v,k = ∂v
∂xk

, π := p,k = ∂p
∂xk

for this purpose. Thus, applying ∂
∂xk

to (1.7)2 we obtain the identities

−div (ADDD(w)) +∇π = divGGG−w,t,

divw = 0,
(3.43)

where

GGG :=
SSS(θ,DDD(v))

∂θ
θ,k − (v ⊗ v),k.(3.44)

Since

|GGG| ≤ C
(

(1 + |DDD(v)|2)
r−2
4 |∇θ|+ |v| |∇v|

)
we get by using (3.29), (3.27) and (3.33) that for some q0 > 2 we have the estimate

(3.45) ‖GGG‖L∞(0,T ;Lq0 (Ω)2×2) ≤ Cv0,θ0 .

Thus, applying Proposition 2.2 for q1 > 2 that certainly satisfies (3.38) as q1 < q
we obtain the estimate

‖∇w‖L∞(0,T ;Lq1 (Ω)2×2) ≤ Cv0,θ0(1 + ‖v,t‖L∞(0,T ;Lq1 (Ω)2)).

Using (3.42) and the definition of w we finally end up with

(3.46) ‖v‖L∞(0,T ;W 2
q1

(Ω)2) ≤ Cv0,θ0

(
1 + V a

r−2
q

)
.

Then for any b ∈ [0, 1] we define q2 as

1

q2
:=

1− b
2

+
b

q1

and by using Proposition 2.3 and standard interpolation we obtain

V
r
2 ≤ C

(1− 2
q2

)1− 1
q2

‖|DDD(v)| r2 ‖L∞(0,T ;W 1
q2

(Ω)2)

≤ C

(1− 2
q2

)1− 1
q2

‖|DDD(v)| r2 ‖1−b
L∞(0,T ;W 1

2 (Ω)2)
‖|DDD(v)| r2 ‖bL∞(0,T ;W 1

q1
(Ω)2)

(3.47)

Thus, using (3.28), the definition of V and q2, and (3.46) we observe

V
r
2 ≤ Cv0,θ0

C√
b(1− 2

q1
)

1
2

(1 + V ab
r−2
q +b r−2

2 )(3.48)

Next, let q1 be such that (3.38) holds with equality sign, i.e. 1 − 2
q1

= c0
ν0
ν1
V 2−r.

Then using (3.40) we conclude from (3.48) that

V
r
2 ≤ Cv0,θ0C(a, b)V

r−2
2 (1 + V ab

r−2
q +b r−2

2 )(3.49)
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Finally, we chose a, b such

ab
r − 2

q
+ b

r − 2

2
<

1

2
,

and deduce from (3.49) that

V ≤ Cv0,θ0 .

From (3.46) we obtain ∇v ∈ L∞(0, T ; Cα(Ω)2×2) and consequently using (3.39) and
applying Proposition 2.4 we obtain

‖∇v‖Cα, α2 (QT )2×2 ≤ Cv0,θ0

which implies the first part of (3.34). The second part then follows from Schauder-
type estimates in Hölder spaces for the heat equation and for the generalized Stokes
problem, see [22]. The case 2 ≤ r is complete.

(ii) The case 4
3 < r < 2.

Although r ∈ ( 4
3 , 2), we still use the same notation introduced in the previous

part (r ≥ 2). Hence, starting with (3.36) we have for the tensor A that

(3.50) ν0V
r−2|DDD|2 ≤ A : (DDD⊗DDD) ≤ ν1|DDD|2, for all DDD ∈ R2×2

sym.

Then by Proposition 2.1 we see that for any q > 2 such that

(3.51) 1− 2

q
≤ c0

ν0

ν1
V r−2

the following estimates holds:

(3.52) ‖∇u‖Lq(QT )2×2 ≤ CV 2−r, ‖u‖L∞(0,T ;Lq(Ω)2) ≤ C
(
1 + V 2−r) .

Interpolating the second inequality in (3.52) with the estimate (3.16), i.e, with the
estimate

‖u‖L∞(0,T ;L2(Ω)2) ≤ Cv0,θ0 ,

for small a ∈ [0, 1] and q1 > 2 such that 1
q1

= 1−a
2 + a

q we obtain the inequality

(3.53) ‖u‖L∞(0,T ;Lq1 (Ω)2) ≤ Cv0,θ0

(
1 + V a(2−r)

)
.

So, we conclude that

(3.54) ‖v,t‖L∞(0,T ;Lq1 (Ω)2) ≤ C
(

1 + V a(2−r)
)
.

Next, we focus on the problem (3.43) and for GGG given in (3.44) we conclude from
(3.33), (3.27) and (3.30) that for some q0 > 2 (3.45) holds. By Proposition 2.2 we
thus derive the estimate

‖∇w‖L∞(0,T ;Lq1 (Ω)2×2) ≤ CV 2−r(1 + ‖v,t‖L∞(0,T ;Lq1 (Ω)2))

and using (3.54) we get

(3.55) ‖v‖L∞(0,T ;W 2
q1

(Ω)2) ≤ Cv0,θ0V
2−r

(
1 + V a(2−r)

)
.

Similarly as in preceding part, we apply Proposition 2.3 and setting q1 such that
(3.38) holds with equality sign, we obtain

V ≤ C(a)Cv0,θ0V
(2−r)(1− 1

q1
)‖v‖L∞(0,T ;W 2

q1
(Ω)2)

≤ C(a)Cv0,θ0V
(2−r)(2− 1

q1
)
(

1 + V a(2−r)
)
.

(3.56)
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Finally, it is evident that for any 4
3 < r < 2 we can find a ∈ (0, 1) and q1 > 2 such

that

(2− r)
(

2− 1

q1
+ a

)
< 1

and we finally obtain the estimate

V ≤ Cv0,θ0 .

Then the arguments similar to the case r ≥ 2 leads to the estimate (3.34) for the
case 4

3 < r < 2. Thus, Lemma 3.6 is proved. �

4. Proof of Theorem 1.1

To prove Theorem 1.1 we use known results on the solvability of Ladyzhenskaya’s
system (2.7) (see Proposition 2.5) and a version of the Leray-Schauder fixed point
theorem (see Proposition 2.6). Thus, for any τ ∈ [0, 1] we define a tensorial function
SSSτ (θ,DDD) by the formula

SSSτ (θ,DDD) := SSS(τθ,DDD).

Note that SSSτ also satisfies (1.12)–(1.13) with constants independent of τ . We con-
sider the system

v,t − Aτ (θ,DDD(v))∇2v +∇p = fτ (θ,v,DDD(v)),

div v = 0

θ,t −∆θ = gτ (θ,v,DDD(v)),

(4.1)

where

Aτ (θ,DDD) :=
∂SSSτ (θ,DDD)

∂DDD
,

fτ (θ,u,DDD) :=
∂SSSτ (θ,DDD)

∂θ
∇θ − div(u⊗ u),

gτ (θ,u,DDD) := SSSτ (θ,DDD) : DDD− div(uθ).

Note that for smooth v and θ the system (4.1) is equivalent to the system (1.7)
where we replace SSS by SSSτ .

Next, for any τ ∈ [0, 1] and any u ∈ C1+α, 1+α2 (QT )2, ψ ∈ C1+α, 1+α2 (QT ) we define
the functions wτ ∈ C2+α,1+α

2 (QT )2, ∇qτ ∈ Cα,α2 (QT ) and θτ ∈ C2+α,1+α
2 (QT ) as

a solution to the following linear system

w,t − Aτ (ψ,DDD(u))∇2wτ +∇qτ = fτ (ψ,u,DDD(u)),

divw = 0,

θτ,t −∆θτ = gτ (ψ,u,DDD(u)),

wτ (0) = v0, θτ (0) = θ0,

wτ and θτ are spatially periodic.

(4.2)

The existence of the solution to (4.2) as well as the following estimate

‖wτ‖C2+α,1+α2 (QT )2
+ ‖θτ‖C2+α,1+α2 (QT )

+ ‖∇qτ‖Cα, α2 (QT )2

≤ F
(
‖ψ‖

C1+α,
1+α
2 (QT )

, ‖u‖
C1+α,

1+α
2 (QT )2

)
(4.3)

that holds for some nondecreasing continuous function F , follow from the results
in [22].
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Next, we denote X := C1+α, 1+α2 (QT )2 × C1+α, 1+α2 (QT ) and define the family of
nonlinear operators depending on the parameter τ ∈ [0, 1] as

Φτ : X → X, Φτ (u, ψ) := (wτ , θτ ),

where (wτ , θτ ) are solutions of (4.2) with data (u, ψ). We also denote BR the ball
of radius R in the space X centered at origin. Let us verify that the operators
Φτ satisfy all conditions of Proposition 2.6. Indeed, for any given τ ∈ [0, 1] the
continuity of the operator Φτ : X → X follows directly from Proposition 2.7. To
prove convergence

(4.4) sup
(u,ψ)∈B̄R

‖Φτm(u, ψ)− Φτ0(u, ψ)‖X → 0, as τm → τ0,

we derive from (4.2) the identities

(wτm −wτ0),t − Aτ0(ψ,DDD(u))∇2(wτm −wτ0) +∇(qτm − qτ0)

= fτm(ψ,u,DDD(u))− fτ0(ψ,u,DDD(u))

+ [Aτm(ψ,DDD(u))− Aτ0(ψ,DDD(u))]∇2wτm ,

div(wτm −wτ0) = 0

(θτm − θτ0),t −∆(θτm − θτ0) = gτm(ψ,u,DDD(u))− gτ0(ψ,u,DDD(u)).

Applying Solonnikov’s coercive estimate to the above system (see Proposition 2.7),
we obtain convergence wτm → wτ0 in W 2,1

s (QT ) with any s > 1, from which the
convergence (4.4) follows. Furthermore, the set Φ(B̄R) is precompact in X due to
(4.3). Moreover, the condition (4) of Proposition 2.6 is satisfied if we set R > Cv0,θ0 ,
where the constant Cv0,θ0 is fixed in Lemma 3.6. Finally, the condition (5) of
Proposition 2.6 holds thanks to Proposition 2.5. Hence, by Proposition 2.6 there
exists at least one classical solution to the problem (1.7)–(1.9). So, the existence
result in Theorem 1.1 is proved.

The uniqueness of the classical solution in the class (1.20) follows from the general
theory of nonlinear evolutionary equations, see e.g. [16]. The proof of Theorem 1.1
is complete.
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