

Mathematical Analysis of Models Describing the Motion of Implicitly Constituted Materials

Miroslav Bulíček

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

Governing equations for fluids and solids

• Incompressible fluids: ${\bf v}$ -velocity, ϱ -density, ${\bf T}$ -Cauchy stress, ${\bf f}$ -body forces

$$(\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \mathbf{T} + \varrho \mathbf{f},$$

 $\varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) = 0,$
 $\operatorname{div} \mathbf{v} = 0.$

Solids (already approximation): ρ₀-"initial" density,
 u-displacement, T-Cauchy stress, f-body forces

$$\varrho_0 \mathbf{u}_{,tt} = \operatorname{div} \mathbf{T} + \mathbf{f}.$$

Governing equations for fluids and solids

• Incompressible fluids: ${\bf v}$ -velocity, ϱ -density, ${\bf T}$ -Cauchy stress, ${\bf f}$ -body forces

$$(\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \mathbf{T} + \varrho \mathbf{f},$$

 $\varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) = 0,$
 $\operatorname{div} \mathbf{v} = 0.$

Solids (already approximation): ρ₀-"initial" density,
 u-displacement, T-Cauchy stress, f-body forces

$$\varrho_0 \mathbf{u}_{,tt} = \operatorname{div} \mathbf{T} + \mathbf{f}.$$

Initial and boundary conditions

Governing equations for fluids and solids

• Incompressible fluids: ${\bf v}$ -velocity, ϱ -density, ${\bf T}$ -Cauchy stress, ${\bf f}$ -body forces

$$(\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \mathbf{T} + \varrho \mathbf{f},$$

 $\varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) = 0,$
 $\operatorname{div} \mathbf{v} = 0.$

Solids (already approximation): ρ₀-"initial" density,
 u-displacement, T-Cauchy stress, f-body forces

$$\varrho_0 \mathbf{u}_{,tt} = \operatorname{div} \mathbf{T} + \mathbf{f}.$$

- Initial and boundary conditions
- Constitutive equation for the Cauchy stress

To find a suitable description of the Cauchy stress by the use of the other relevant quantities, i.e., the symmetric part of the velocity gradient $\mathbf{D}(\mathbf{v})$ and the strain tensor $\varepsilon(\mathbf{u})$, where,

$$\mathbf{D}(\mathbf{v}) := \frac{1}{2}(\nabla \mathbf{v} + (\nabla \mathbf{v})^T), \qquad \varepsilon(\mathbf{u}) := \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T),$$

the density ϱ , the pressure p, the temperature θ , etc.

To find a suitable description of the Cauchy stress by the use of the other relevant quantities, i.e., the symmetric part of the velocity gradient $\mathbf{D}(\mathbf{v})$ and the strain tensor $\varepsilon(\mathbf{u})$, where,

$$\mathbf{D}(\mathbf{v}) := \frac{1}{2}(\nabla \mathbf{v} + (\nabla \mathbf{v})^T), \qquad \varepsilon(\mathbf{u}) := \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T),$$

the density ϱ , the pressure p, the temperature θ , etc.

★ The typical "old fashion" strategy:

$$T := T^*(D(v), \varepsilon(u), \theta, \varrho, ...)$$

unable to justify the dependence of the viscosity on the pressure (incompressible fluids), unable to describe in a reasonable way "discontinuities" (Binghan-like models), unable to justify non-linear models in the linearized elasticity, lost of a huge class of physically reasonable models

B

"New fashion" - still not optimal strategy:

$$\mathbf{D}(\mathbf{v}) := \mathbf{D}^*(\mathbf{T},...),$$

 $\varepsilon(\mathbf{u}) := \varepsilon^*(\mathbf{T},...).$

new class of possible relations, Bingham-like fluids (or whatever with an activation criteria) expressed by a continuous mapping, non-linear linearized elasticity can be easily justified, still lost of a class of models

"New fashion" - still not optimal strategy:

$$\mathbf{D}(\mathbf{v}) := \mathbf{D}^*(\mathbf{T}, ...),$$

 $\varepsilon(\mathbf{u}) := \varepsilon^*(\mathbf{T}, ...).$

new class of possible relations, Bingham-like fluids (or whatever with an activation criteria) expressed by a continuous mapping, non-linear linearized elasticity can be easily justified, still lost of a class of models

Optimal strategy: fully implicit models:

$$\mathbf{G}(\mathbf{T}, \mathbf{D}(\mathbf{v}), \varepsilon(\mathbf{u}), \varrho, \theta, ...) = \mathbf{0}.$$

■ no slip bc

 $\mathbf{v} = \mathbf{0}$ on $\partial \Omega$

problems with globally integrable pressure, non-validity if $|\textbf{Tn}|\gg 1$ near $\partial\Omega$

- $\bf v=0$ on $\partial\Omega$ problems with globally integrable pressure, non-validity if $|\bf Tn|\gg 1$ near $\partial\Omega$
- * perfect slip bc

$$\begin{array}{c} \textbf{v} \cdot \textbf{n} = \textbf{0}, \\ \text{Tangent part of } (\textbf{Tn}) := (\textbf{Tn})_{\tau} = \textbf{0} \end{array} \} \qquad \text{on } \partial \Omega$$

pressure exists, non-validity for most materials

■ no slip bc

$$\mathbf{v} = \mathbf{0}$$
 on $\partial \Omega$

problems with globally integrable pressure, non-validity if $|\mathbf{T}\mathbf{n}|\gg 1$ near $\partial\Omega$

perfect slip bc

$$\left. \begin{array}{c} \boldsymbol{v}\cdot\boldsymbol{n}=0,\\ \\ \mathrm{Tangent\ part\ of\ }(\boldsymbol{T}\boldsymbol{n}):=(\boldsymbol{T}\boldsymbol{n})_{\tau}=\boldsymbol{0} \end{array} \right\} \qquad \mathrm{on\ }\partial\Omega$$

pressure exists, non-validity for most materials

Navier's slip bc

pressure exists, nice connection between no slip and perfect slip

■ no slip bc

$$\mathbf{v} = \mathbf{0}$$
 on $\partial \Omega$

problems with globally integrable pressure, non-validity if $|\mathbf{Tn}|\gg 1$ near $\partial\Omega$

perfect slip bc

$$\left. \begin{array}{c} \textbf{v} \cdot \textbf{n} = \textbf{0}, \\ \text{Tangent part of } (\textbf{Tn}) := (\textbf{Tn})_{\tau} = \textbf{0} \end{array} \right\} \qquad \text{on } \partial \Omega$$

pressure exists, non-validity for most materials

Navier's slip bc

pressure exists, nice connection between no slip and perfect slip

 \bigvee Threshold slip (κ - the threshold)

$$\frac{\mathbf{v} \cdot \mathbf{n} = 0,}{\frac{(|(\mathbf{T}\mathbf{n})_{\tau}| - \kappa)_{+}}{|(\mathbf{T}\mathbf{n})_{\tau}|} (\mathbf{T}\mathbf{n})_{\tau} = -f(\mathbf{v})\mathbf{v} }$$
 on $\partial \Omega$

Liblice 2013

***** "old fashioned": $\mathbf{T} = \mathbf{S} + p\mathbf{I}$, where

$$\mathbf{S} := 2\mu_0 \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_1(|\mathbf{D}|)\mathbf{D}, \qquad \text{if } \mathbf{D} \neq \mathbf{0},$$
 $|\mathbf{S}| \leq 2\mu_0 \qquad \text{if } \mathbf{D} = \mathbf{0}.$

where $2\mu_1 = const$ - Bingham fluid or $2\mu_1(|\mathbf{D}|) \sim 2\mu_1|\mathbf{D}|^{r-2}$, Herschley-Bulkey fluid

 $\mathbf{*}$ "old fashioned": $\mathbf{T} = \mathbf{S} + p\mathbf{I}$, where

$$\mathbf{S} := 2\mu_0 \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_1(|\mathbf{D}|)\mathbf{D}, \qquad \text{if } \mathbf{D} \neq \mathbf{0},$$
 $|\mathbf{S}| \leq 2\mu_0 \qquad \text{if } \mathbf{D} = \mathbf{0}.$

where $2\mu_1=const$ - Bingham fluid or $2\mu_1(|\mathbf{D}|)\sim 2\mu_1|\mathbf{D}|^{r-2}$, Herschley-Bulkey fluid

implicit (with S)

$$2\mu_1(|\mathbf{D}|)\mathbf{D} - \frac{(|\mathbf{S}| - 2\mu_0)_+\mathbf{S}}{|\mathbf{S}|} = \mathbf{0},$$

***** "old fashioned": $\mathbf{T} = \mathbf{S} + p\mathbf{I}$, where

$$\mathbf{S} := 2\mu_0 \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_1(|\mathbf{D}|)\mathbf{D}, \qquad \text{if } \mathbf{D} \neq \mathbf{0},$$
 $|\mathbf{S}| \leq 2\mu_0 \qquad \text{if } \mathbf{D} = \mathbf{0}.$

where $2\mu_1=const$ - Bingham fluid or $2\mu_1(|\mathbf{D}|)\sim 2\mu_1|\mathbf{D}|^{r-2}$, Herschley-Bulkey fluid

implicit (with **S**)

$$2\mu_1(|\mathbf{D}|)\mathbf{D} - \frac{(|\mathbf{S}| - 2\mu_0)_+\mathbf{S}}{|\mathbf{S}|} = \mathbf{0},$$

$$2\mu_1(|\mathbf{D}|)\mathbf{D} - \frac{(|\mathbf{T}^d| - 2\mu_0)_+ \mathbf{T}^d}{|\mathbf{T}^d|} = \mathbf{0},$$

where \mathbf{T}^d is the deviatoric part of \mathbf{T} , i.e., $\mathbf{T}^d := \mathbf{T} - \frac{\operatorname{tr} \mathbf{T}}{d} \mathbf{I}$.

Methods for Bingham-like fluids

Identify $\mathbf{G}(\mathbf{T}^d, \mathbf{D}) = \mathbf{G}(\mathbf{S}, \mathbf{D}) = \mathbf{0}$ with the maximal monotone r-graph $\mathcal{A} \subset \mathbb{R}^{d \times d}_{sym} \times \mathbb{R}^{d \times d}_{sym}$, i.e.

A1 Monotone graph: for all $(S_{1,2}, D_{1,2}) \in A$ we have

$$(\textbf{S}_1-\textbf{S}_2)\cdot(\textbf{D}_1-\textbf{D}_2)\geq 0$$

A2 Maximality (replaces the continuity of \mathbf{T}^*): If $(\mathbf{S}, \mathbf{D}) \in \mathbb{R}^{d \times d}_{sym} \times \mathbb{R}^{d \times d}_{sym}$ fulfills

$$(\boldsymbol{S}-\overline{\boldsymbol{S}})\cdot(\boldsymbol{D}-\overline{\boldsymbol{D}})\geq 0 \qquad \text{ for all } (\overline{\boldsymbol{S}},\overline{\boldsymbol{D}})\in\mathcal{A}$$

then $(S, D) \in \mathcal{A}$

A3 the *r*-coercivity: there exists C_1 , $C_2 > 0$ such that for all $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$ we have

$$\mathbf{S} \cdot \mathbf{D} \geq C_1(|\mathbf{D}|^r + |\mathbf{S}|^{r'}) - C_2.$$

Methods for Bingham-like fluids

Lemma (The key convergence lemma)

Let O be a measurable set and let A be a maximal monotone r-graph. Assume that $(\mathbf{S}^n, \mathbf{D}^n) \in \mathcal{A}$ a.e. in O and

$$\mathbf{S}^{n} \rightharpoonup \mathbf{S}$$
 weakly in $L^{r'}$, $\mathbf{D}^{n} \rightharpoonup \mathbf{D}$ weakly in L^{r} , $\lim\sup_{n\to\infty} \int_{O} \mathbf{S}^{n} \cdot \mathbf{D}^{n} \leq \int_{O} \mathbf{S} \cdot \mathbf{D}$.

Then $(S, D) \in A$ a.e. in O.

Methods for Bingham-like fluids

Lemma (The key convergence lemma)

Let O be a measurable set and let \mathcal{A} be a maximal monotone r-graph. Assume that $(\mathbf{S}^n, \mathbf{D}^n) \in \mathcal{A}$ a.e. in O and

$$\begin{array}{ccc} \mathbf{S}^n \rightharpoonup \mathbf{S} & weakly \ in \ L^{r'}, \\ \mathbf{D}^n \rightharpoonup \mathbf{D} & weakly \ in \ L^r, \\ \limsup_{n \to \infty} \int_O \mathbf{S}^n \cdot \mathbf{D}^n \leq \int_O \mathbf{S} \cdot \mathbf{D}. \end{array}$$

Then $(S, D) \in A$ a.e. in O.

- If the energy equality holds, i.e., if we can test by the solution, i.e., if the a priori estimates are good enough, the convergence lemma can be easily applied for $O := Q = (0, T) \times \Omega$ to get the existence of a weak solution
- In case of "bad" a priori estimates, we can (but **not** easily) still prove for certain r's that the assumptions of the convergence lemma hold for O fulfilling $|Q\setminus O|\leq \varepsilon$ with $\varepsilon>0$ arbitrary and therefore we can still identify the limit

Results for Bingham-like fluids

Theorem (Constant density)

Let $\mathcal A$ be a maximal monotone r-graph. Then for all reasonable data (initial, boundary) and reasonable body forces there exists a weak solution provided that

$$r > \frac{2d}{d+2}$$
 (\Longrightarrow compactness of the convective term)

 $r \geq rac{3d+2}{d+2}$ Minty, Lions, Ladyzhenskaya, Gwiazda, Świerczewska-Gwiazda, MORE $r > rac{2d}{d+2}$ Nečas, Frehse, Steinhauer, Wolf, Diening, Ružička, Shelukin, Gwiazda, Świerczewska-Gwiazda, MORE

Theorem (Inhomogeneous)

Let $\mathcal A$ be a maximal monotone r-graph. Then for all reasonable data (initial, boundary) and reasonable body forces there exists a weak solution provided that

$$r > \frac{2d}{dr + 2r - 2d}$$
 (\Longrightarrow we can test by $u \in L^{\infty}(0, T; W^{1,r}(\Omega))$)

• Frehse, Ružička, Zhikov, MORE

Pressure dependent viscosities

Many experiments shows that even in incompressible fluids the viscosity should depend on the pressure

Pressure dependent viscosities

Many experiments shows that even in incompressible fluids the viscosity should depend on the pressure

★ "old fashion" approach

$$T = S + pI$$
,
 $S = 2\mu(p, |D|)D$

However, one can not justify the dependence of μ on p since it is understood now as a multiplier

Pressure dependent viscosities

Many experiments shows that even in incompressible fluids the viscosity should depend on the pressure

★ "old fashion" approach

$$T = S + \rho I,$$

 $S = 2\mu(\rho, |D|)D$

However, one can not justify the dependence of μ on \emph{p} since it is understood now as a multiplier

$$\mathbf{T}^d - 2\mu\left(\frac{\operatorname{tr}\mathbf{T}}{d}, |\mathbf{D}|\right)\mathbf{D} = \mathbf{0},$$

and then we denote

$$dp := \operatorname{tr} \mathbf{T}$$
.

"

Pressure dependent viscosities - results

The prototype model

$$\mathbf{T}^d = (1 + \gamma(\operatorname{tr} \mathbf{T}) + |\mathbf{D}|^2)^{\frac{r-2}{2}} \mathbf{D}.$$

Pressure dependent viscosities - results

The prototype model

$$\mathbf{T}^d = (1 + \gamma(\operatorname{tr} \mathbf{T}) + |\mathbf{D}|^2)^{\frac{r-2}{2}} \mathbf{D}.$$

Theorem (Only homogeneous case)

Let $r \in (\frac{2d}{d+2}, 2]$ and γ be nonnegative function fulfilling

$$(2-r)\gamma'(s)\ll 1$$
 for all $s\in\mathbb{R}$.

Then for all reasonable initial data and for all boundary data (Navier's slip or threshold slip) there exists a weak solution.

Nečas, MORE and more

The key splitting condition

$$T = T_{el} + T_{dis}$$

where

$$\mathbf{G}_1(\mathbf{T}_{\mathit{el}}, arepsilon) = \mathbf{0}, \qquad \mathbf{G}_2(\mathbf{T}_{\mathit{dis}}, \mathbf{D}) = \mathbf{0}$$

Prototype cases:

Liblice 2013

Prototype cases:

1 Fully linear

 $\mathbf{T}_{\textit{dis}} \sim \mathbf{D}, \qquad \mathbf{T}_{\textit{el}} \sim \boldsymbol{\varepsilon}.$

Prototype cases:

1 Fully linear

$$\mathsf{T}_{\mathit{dis}} \sim \mathsf{D}, \qquad \mathsf{T}_{\mathit{el}} \sim \varepsilon.$$

2 Linear viscous part

$$\mathbf{T}_{ extit{dis}} \sim \mathbf{D}, \qquad \mathbf{G}_1(\mathbf{T}_{ extit{el}}, oldsymbol{arepsilon}) = \mathbf{0}.$$

Prototype cases:

1 Fully linear

$$\mathsf{T}_{\mathit{dis}} \sim \mathsf{D}, \qquad \mathsf{T}_{\mathit{el}} \sim \varepsilon.$$

2 Linear viscous part

$$\mathsf{T}_{dis} \sim \mathsf{D}, \qquad \mathsf{G}_1(\mathsf{T}_{el}, arepsilon) = \mathsf{0}.$$

3 Linear elastic part

$$\mathbf{G}_{2}(\mathbf{T}_{\mathit{dis}},\mathbf{D})=\mathbf{0},\qquad \mathbf{T}_{\mathit{el}}\sim arepsilon.$$

Prototype cases:

1 Fully linear

$$\mathsf{T}_{\mathit{dis}} \sim \mathsf{D}, \qquad \mathsf{T}_{\mathit{el}} \sim \varepsilon.$$

2 Linear viscous part

$$\mathsf{T}_{\mathit{dis}} \sim \mathsf{D}, \qquad \mathsf{G}_1(\mathsf{T}_{\mathit{el}}, arepsilon) = \mathsf{0}.$$

3 Linear elastic part

$$\mathbf{G}_{2}(\mathbf{T}_{\mathit{dis}},\mathbf{D})=\mathbf{0},\qquad \mathbf{T}_{\mathit{el}}\sim arepsilon.$$

4 Fully nonlinear

$$G_2(T_{dis}, D) = 0,$$
 $G_1(T_{el}, \varepsilon) = 0.$

In all cases we identify G_1 with the graph A_{el} and G_2 with the graph A_{dis} .

Kelvin-Voigt-like model - easy results

Theorem (Fully linear)

Let

$$extsf{T}_{ extit{dis}} \sim extsf{D}, \qquad extsf{T}_{ extit{el}} \sim arepsilon.$$

Then for all reasonable initial and boundary data there exists unique weak solution. Moreover, the solution is as smooth as data allows.

Kelvin-Voigt-like model - easy results

Theorem (Fully linear)

Let

$$\mathsf{T}_{\mathit{dis}} \sim \mathsf{D}, \qquad \mathsf{T}_{\mathit{el}} \sim \varepsilon.$$

Then for all reasonable initial and boundary data there exists unique weak solution. Moreover, the solution is as smooth as data allows.

Theorem (Linear viscous part)

Let

$$T_{dis} \sim D$$

and \mathcal{A}_{el} be a maximal monotone q-graph. Then for all reasonable data there exists a weak solution provided that either $q \leq 2$ or \mathcal{A}_{el} has the potential structure, i.e., for all $(\mathbf{T}_{el}, \boldsymbol{\varepsilon}) \in \mathcal{A}_{el}$

$$\mathbf{T}_{\mathit{el}}\cdotarepsilon_{,t}=rac{d}{dt}arphi(\mathbf{T}_{\mathit{el}},arepsilon)$$

with nonnegative φ fulfilling $\varphi(\mathbf{T}_{el}, \varepsilon) \geq C_1(|\mathbf{T}_{el}|^{q'} + |\varepsilon|^q)$.

Kelvin-Voigt-like model - more tricky results

Theorem (Linear elastic part)

Let

$$\mathsf{T}_{el}\simarepsilon$$

with the potential structure and A_{dis} be a maximal monotone r-graph. Then for all reasonable initial and boundary data there exists unique weak solution.

- for $r \ge 2$ the proof is relatively easy we can test by \mathbf{v} energy equality
- for r < 2 the proof is more delicate but we can still "test" by ${\bf v}$ energy equality

Kelvin-Voigt-like model - more tricky results

Theorem (Linear elastic part)

I et

$$\mathsf{T}_{el}\simarepsilon$$

with the potential structure and A_{dis} be a maximal monotone r-graph. Then for all reasonable initial and boundary data there exists unique weak solution.

- for $r \geq 2$ the proof is relatively easy we can test by \mathbf{v} energy equality
- for r < 2 the proof is more delicate but we can still "test" by \mathbf{v} energy equality

Theorem (Fully nonlinear)

Let A_{dis} be maximal monotone r-graph with $r \geq 2$ fulfilling for all $(T_{1,2}, D_{1,2})$

$$(\textbf{T}_1 - \textbf{T}_2) \cdot (\textbf{D}_1 - \textbf{D}_2) \geq \textit{C}_1 |\textbf{D}_1 - \textbf{D}_2|^2$$

and A_{el} be Lipschitz continuous graph, i.e., for all $(\mathbf{T}_{1,2}, \varepsilon_{1,2}) \in A_{el}$

$$|\mathbf{T}_1 - \mathbf{T}_2| \leq C_2 |\varepsilon_1 - \varepsilon_2|.$$

Then for all reasonable data there exists unique weak solution. Moreover, for smoother data we have $\nabla^2 \mathbf{v} \in L^2$ and further in 2D setting the solution is classical provided that data are smooth enough.

Limiting strain model

Consider only elastic deformation and "forget" evolution, i.e.,

$$\begin{split} -\operatorname{div} \mathbf{T} &= \mathbf{f} & \text{ in } \Omega, \\ \mathbf{G}(\mathbf{T}, \boldsymbol{\varepsilon}) &= \mathbf{0} & \text{ in } \Omega, \\ \mathbf{u} &= \mathbf{0} & \text{ on } \Gamma_1, \\ \mathbf{T} \mathbf{n} &= \mathbf{g} & \text{ on } \Gamma_2. \end{split} \tag{EI}$$

The key assumption in linearized elasticity

$$|ertarepsilon|\ll 1$$
 . (A)

X Consider Ω a domain with non-convex corner at x_0 , $\Gamma = \partial \Omega$, $\mathbf{u}_0 = \mathbf{0}$ and \mathbf{G} of the form

$$T = \varepsilon$$
.

Then there exists a smooth f such that the solution (T, ε) fulfils

$$|\mathbf{T}(x)| = |\varepsilon(x)| \stackrel{x \to x_0}{\to} \infty.$$

 \implies contradicts the assumption of the model (A) \implies not valid model at least in the neighborhood of x_0 .

Limiting strain model

Consider implicit models which a priori guarantees $|\varepsilon| \le K$:

$$\varepsilon = \lambda_1(|\operatorname{tr} \mathbf{T}|)(\operatorname{tr} \mathbf{T})\mathbf{I} + \lambda_2(|\mathbf{T}|)\mathbf{T} + \lambda_3(|\mathbf{T}^d|)\mathbf{T}^d, \tag{L-S}$$

where

$$|\lambda_{1,2,3}(s)| \leq \frac{K}{3(s+1)}.$$

A priori estimates: from (L-S)

$$|\varepsilon| \leq K$$
.

From the equation, we may hope that

$$\int_{\Omega} \lambda_1(|\operatorname{tr} \mathbf{T}|)|\operatorname{tr} \mathbf{T}|^2 + \lambda_2(|\mathbf{T}|)|\mathbf{T}|^2 + \lambda_3(|\mathbf{T}^d|)|\mathbf{T}^d|^2 = \int_{\Omega} \mathbf{T} \cdot \boldsymbol{\varepsilon} \leq C.$$

The reasonable assumptions (∞ -Laplacian-like problem):

$$\left. egin{aligned} \lambda_{1,2,3}(s) \geq 0, \ \lambda_{3}(s) \geq rac{lpha}{s+1}. \end{aligned}
ight.
ight. egin{aligned} & \longrightarrow \int_{\Omega} |\mathbf{T}^{d}| \leq C. \end{aligned}$$

Limiting strain model & monotonicity

- Apriori estimates for \mathbf{T}^d in L^1
- For the convergence at least some monotonicity needed, the minimal assumption:

$$0 \le \frac{d}{ds}(\lambda_{1,2,3}(s)s). \tag{M}$$

If we would have a sequence fulfilling

$$\begin{split} &\int_{\Omega_0} \left| \left(\mathbf{T}^d \right)^n \right|^{1+\delta} \leq C(\Omega_0) & \text{ for all } \Omega_0 \subset \subset \Omega, \\ & \Longrightarrow \mathbf{T}^n \rightharpoonup \mathbf{T} & \text{ weakly in } L^1_{loc}. \end{split}$$

then using (M) we can identify the limit.

Assume kind of uniform monotonicity, i.e., for some α , a, K>0

$$\frac{\alpha}{(K+s)^s} \le \frac{d}{dt}(\lambda_3(s)s) \tag{UM}$$

for example

$$\lambda_3(s) := rac{1}{\left(1+s^a
ight)^{rac{1}{a}}}\,.$$

Limiting strain model & Theorems

Theorem (Dirichlet data)

Let $\Omega \subset \mathbb{R}^d$, $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with $\mathbf{a} < \frac{1}{d}$. Then there exists a weak solution (\mathbf{T}, \mathbf{u}). Moreover, \mathbf{u} is unique. Further, if either λ_1 or λ_2 are strictly monotone then also \mathbf{T} is unique.

- Proper approximation (p-Laplacian)
- Uniform L^1 estimates
- Uniform $L_{loc}^{1+\delta}$ estimates by showing that $\mathbf{T} \in \mathcal{N}^{\alpha,1}$ for some $\alpha \in (0,1)$.

Theorem (Periodic data)

Let $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with $\mathbf{a} < \frac{2}{d}$. Then there exists a weak solution (\mathbf{T}, \mathbf{u}). Moreover, \mathbf{u} is unique. Further, if either λ_1 or λ_2 are strictly monotone then also \mathbf{T} is unique.

The same as before but no problem with localization \implies better bound for a

Limiting strain model & Theorems

Theorem (Periodic data II)

Let $\lambda_{1,2}$ fulfil (M) and λ_3 satisfy (UM) with a>0. Then there exists a (T, u) fulfilling the implicit relation a.e. such that

$$\mathbf{T} \in L^1, \qquad \varepsilon \in L^{\infty}, \qquad \frac{\nabla \mathbf{T}}{(1+|\mathbf{T}|)^{\frac{a+1}{2}}} \in L^2$$

the energy inequality holds, i.e.,

$$\int_{\Omega} \mathbf{T} \cdot \mathbf{\varepsilon}(\mathbf{u}) \leq \int_{\Omega} \mathbf{f} \cdot \mathbf{u},$$

and fulfill the renormalized equation, i.e., for all smooth periodic ${\bf v}$ and all $g\in \mathcal{D}(\mathbb{R})$ there holds

$$\int_{\Omega} \mathbf{T} \cdot (g(|\mathbf{T}|) \nabla \mathbf{v} + \mathbf{v} \otimes \nabla g(|\mathbf{T}|)) = \int_{\Omega} g(|\mathbf{T}|) \mathbf{f} \cdot \mathbf{v}.$$

Moreover, if $T \in L^{a+1}$ the the solution is weak.

Limiting strain model - anti-plane stress

We consider the following special geometry

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

$$\mathbf{u} = \mathbf{u}(x_1, x_2) = (0, 0, u(x_1, x_2)), \quad \mathbf{g}(x) = (0, 0, g(x_1, x_2)),$$

and

$$\mathbf{T}(x) = \begin{pmatrix} 0 & 0 & T_{13}(x_1, x_2) \\ 0 & 0 & T_{23}(x_1, x_2) \\ T_{13}(x_1, x_2) & T_{23}(x_1, x_2) & 0 \end{pmatrix}.$$

(1)

Consequences

The problem under consideration then simplifies to

$$\begin{split} &-\frac{\partial T_{13}}{\partial x_1}-\frac{\partial T_{23}}{\partial x_2}=0 &&\text{in } \Omega,\\ \varepsilon_{13}&=\frac{T_{13}}{(1+|\mathbf{T}|^a)^{\frac{1}{a}}} &\text{and } \varepsilon_{23}=\frac{T_{23}}{(1+|\mathbf{T}|^a)^{\frac{1}{a}}} &&\text{in } \Omega,\\ \varepsilon_{13}&=\frac{1}{2}u_{x_1} &\text{and } \varepsilon_{23}=\frac{1}{2}u_{x_2} &&\text{in } \Omega,\\ &&T_{13}\mathbf{n}_1+T_{23}\mathbf{n}_2=g &&\text{on } \partial\Omega. \end{split}$$

 \Rightarrow (and in a simple connected domain also \Leftarrow)

$$\left(\frac{T_{13}}{(1+|\mathbf{T}|^{a})^{\frac{1}{a}}}\right)_{x_{2}} = \left(\frac{T_{23}}{(1+|\mathbf{T}|^{a})^{\frac{1}{a}}}\right)_{x_{1}}$$

Consequences

The problem under consideration then simplifies to

$$\begin{split} &-\frac{\partial T_{13}}{\partial x_1}-\frac{\partial T_{23}}{\partial x_2}=0 &&\text{in } \Omega,\\ \varepsilon_{13}&=\frac{T_{13}}{\left(1+|\mathbf{T}|^a\right)^{\frac{1}{a}}} &\text{and } \varepsilon_{23}=\frac{T_{23}}{\left(1+|\mathbf{T}|^a\right)^{\frac{1}{a}}} &&\text{in } \Omega,\\ \varepsilon_{13}&=\frac{1}{2}u_{x_1} \text{ and } \varepsilon_{23}=\frac{1}{2}u_{x_2} &&\text{in } \Omega,\\ T_{13}\mathbf{n}_1+T_{23}\mathbf{n}_2&=g &&\text{on } \partial\Omega. \end{split}$$

 \Rightarrow (and in a simple connected domain also \Leftarrow)

$$\left(\frac{T_{13}}{(1+|\mathbf{T}|^{a})^{\frac{1}{a}}}\right)_{x_{2}} = \left(\frac{T_{23}}{(1+|\mathbf{T}|^{a})^{\frac{1}{a}}}\right)_{x_{1}}$$

Find $U:\Omega \to \mathbb{R}$ - the Airy stress function such that

$$T_{13} = rac{1}{\sqrt{2}} \, U_{x_2} \quad ext{and} \quad T_{23} = -rac{1}{\sqrt{2}} \, U_{x_1}.$$

Liblice 2013

$$\begin{split} \operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^{a})^{\frac{1}{a}}}\right) &= 0 & \text{in}\Omega, \\ U_{x_{2}}\mathbf{n}_{1} - U_{x_{1}}\mathbf{n}_{2} &= \sqrt{2}g & \text{on } \partial\Omega. \end{split}$$

U must satisfy

$$\operatorname{div}\left(\frac{\nabla U}{(1+|\nabla U|^a)^{\frac{1}{a}}}\right) = 0 \qquad \qquad \operatorname{in}\Omega,$$

$$U_{x_2}\mathbf{n}_1 - U_{x_1}\mathbf{n}_2 = \sqrt{2}g \qquad \qquad \operatorname{on}\ \partial\Omega.$$

Dirichlet problem, indeed assume that $\partial\Omega$ is parametrized by $\gamma(s)=(\gamma_1(s),\gamma_2(s)).$ Then

$$\mathbf{n} = \frac{1}{\sqrt{(\gamma_1^{'}(s))^2 + (\gamma_2^{'}(s))^2}} (\gamma_2^{'}(s), -\gamma_1^{'}(s)).$$

 $=a_0+\sqrt{2}\int_{-s_0}^{s_0}g(\gamma(s))\sqrt{(\gamma_1'(s))^2+(\gamma_2'(s))^2}ds=:U_0(x).$

$$U(\gamma(s_0)) = a_0 + \int_0^{s_0} \frac{d}{ds} U(\gamma(s)) ds$$

$$= a_0 + \int_0^{s_0} U(\gamma(s))_{x_2} \gamma_2'(s) + U(\gamma(s))_{x_1} \gamma_1'(s) ds$$

$$= a_0 + \int_0^{s_0} \sqrt{(\gamma_1'(s))^2 + (\gamma_2'(s))^2} (U(\gamma(s))_{x_2} \mathbf{n}_1 - U(\gamma(s))_{x_1} \mathbf{n}_2) ds$$

$$\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^{a}\right)^{\frac{1}{a}}}\right)=0\quad \text{in}\Omega,\qquad U=U_{0}\quad \text{on }\partial\Omega.$$

U must satisfy

$$\operatorname{div}\left(rac{
abla U}{\left(1+|
abla U|^{a}
ight)^{rac{1}{a}}}
ight)=0\quad ext{in}\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

a = 2 - the minimal surface equation, you know everything that means you know nothing in general:

U must satisfy

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^{a})^{rac{1}{a}}}
ight)=0\quad ext{in}\Omega, \qquad U=U_{0}\quad ext{on }\partial\Omega.$$

a = 2 - the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained

U must satisfy

$$\operatorname{\mathsf{div}}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad \operatorname{\mathsf{in}}\Omega, \qquad U=U_0\quad \operatorname{\mathsf{on}}\ \partial\Omega.$$

a=2 - the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained

a = 2 what does it say for "physics"?

U must satisfy

$$\operatorname{\mathsf{div}}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad \operatorname{\mathsf{in}}\Omega, \qquad U=U_0\quad \operatorname{\mathsf{on}}\ \partial\Omega.$$

a=2 - the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained

a=2 what does it say for "physics"? the solution \mathbf{T} must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens - either the model is not valid (there is not deformation for large g) or the body is no more continuum

$$\operatorname{\mathsf{div}}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad \operatorname{\mathsf{in}}\Omega, \qquad U=U_0\quad \operatorname{\mathsf{on}}\ \partial\Omega.$$

- a=2 the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained
- a=2 what does it say for "physics"? the solution \mathbf{T} must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $a \neq 2$ we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| \leq C$

$$\operatorname{\mathsf{div}}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad \operatorname{\mathsf{in}}\Omega, \qquad U=U_0\quad \operatorname{\mathsf{on}}\ \partial\Omega.$$

- a=2 the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained
- a=2 what does it say for "physics"? the solution ${\bf T}$ must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $a \neq 2$ we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U| \leq C$
- a < 2 we can localize and prove $\nabla U \in L^{\infty}_{loc}$

$$\operatorname{div}\left(rac{
abla U}{(1+|
abla U|^a)^{rac{1}{a}}}
ight)=0\quad ext{in}\Omega, \qquad U=U_0\quad ext{on }\partial\Omega.$$

- a=2 the minimal surface equation, you know everything that means you know nothing in general: for convex domains and smooth data the classical solution exists, for non-convex domains the weak solution does not exist in general, the proper function space is BV, the trace is not attained
- a=2 what does it say for "physics"? the solution ${\bf T}$ must be of the prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to get the weak solution, if g attains some critical value something very "bad" happens either the model is not valid (there is not deformation for large g) or the body is no more continuum
- $a\neq 2$ we cannot use all the geometrical machinery, but on convex domains we can prove $|\nabla U|\leq C$
- a < 2 we can localize and prove $\nabla U \in L^{\infty}_{loc}$
- $a \in (1,2)$ the weak solution may not exists eg. for $\Omega = B_2 \setminus B_1$
- on the flat part of the boundary, you can extend the solution outside such that it is still the solution estimates near the boundary

Limiting strain - Results II

Theorem (MORE)

Let U_0 be arbitrary. Then there exists unique weak solution U provided that one of the following holds.

- $\stackrel{b}{\&}$ Ω is uniformly convex, a > 0 is arbitrary and U_0 smooth.
- & $a \in (0,2)$ and $\partial \Omega = \bigcup_{i=1}^N \Gamma_i$ such that either Γ_i is uniformly convex and U_0 is smooth on Γ_i or Γ_i is flat and U_0 is constant there.