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Governing equations for fluids and solids

• Incompressible fluids: v-velocity, %-density, T-Cauchy stress,
f-body forces

(%v),t + div(%v⊗ v) = divT+ %f,
%,t + div(%v) = 0,

div v = 0.

• Solids (already approximation): %0-“initial" density,
u-displacement, T-Cauchy stress, f-body forces

%0u,tt = divT+ f.

• Initial and boundary conditions
• Constitutive equation for the Cauchy stress
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Implicit character of the constitutive equations

To find a suitable description of the Cauchy stress by the use of the
other relevant quantities, i.e., the symmetric part of the velocity
gradient D(v) and the strain tensor ε(u), where,

D(v) := 1
2(∇v+ (∇v)T ), ε(u) := 1

2(∇u+ (∇u)T ),

the density %, the pressure p, the temperature θ, etc.

6 The typical “old fashion" strategy:

T := T∗(D(v), ε(u), θ, %, ...)

unable to justify the dependence of the viscosity on the
pressure (incompressible fluids), unable to describe in a
reasonable way “discontinuities" (Binghan-like models), unable
to justify non-linear models in the linearized elasticity, lost of a
huge class of physically reasonable models
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Implicit character of the constitutive equations

+ “New fashion" - still not optimal strategy:

D(v) := D∗(T, ...),
ε(u) := ε∗(T, ...).

new class of possible relations, Bingham-like fluids (or whatever
with an activation criteria) expressed by a continuous mapping,
non-linear linearized elasticity can be easily justified, still lost of
a class of models

, Optimal strategy: fully implicit models:

G(T,D(v), ε(u), %, θ, ...) = 0.
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Implicit character of boundary conditions - internal
flows

6 no slip bc
v = 0 on ∂Ω

problems with globally integrable pressure, non-validity if |Tn| � 1 near ∂Ω
6 perfect slip bc

v · n = 0,
Tangent part of (Tn) := (Tn)τ = 0

}
on ∂Ω

pressure exists, non-validity for most materials
+ Navier’s slip bc

v · n = 0,
(Tn)τ = −λv

}
on ∂Ω

pressure exists, nice connection between no slip and perfect slip

, Threshold slip (κ - the threshold)

v · n = 0,
(|(Tn)τ | − κ)+

|(Tn)τ |
(Tn)τ = −f (v)v

 on ∂Ω
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Bingham-like fluids

6 “old fashioned": T = S+ pI, where

S := 2µ0
D
|D| + 2µ1(|D|)D, if D 6= 0,

|S| ≤ 2µ0 if D = 0.
where 2µ1 = const - Bingham fluid or 2µ1(|D|) ∼ 2µ1|D|r−2,
Herschley-Bulkey fluid

+ implicit (with S)

2µ1(|D|)D−
(|S| − 2µ0)+S

|S| = 0,

, implicit with T

2µ1(|D|)D−
(|Td | − 2µ0)+Td

|Td |
= 0,

where Td is the deviatoric part of T, i.e., Td := T− trT
d I.
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Methods for Bingham-like fluids

Identify G(Td ,D) = G(S,D) = 0 with the maximal monotone
r -graph A ⊂ Rd×d

sym × Rd×d
sym , i.e.

A1 Monotone graph: for all (S1,2,D1,2) ∈ A we have

(S1 − S2) · (D1 −D2) ≥ 0

A2 Maximality (replaces the continuity of T∗): If
(S,D) ∈ Rd×d

sym × Rd×d
sym fulfills

(S− S) · (D−D) ≥ 0 for all (S,D) ∈ A

then (S,D) ∈ A
A3 the r -coercivity: there exists C1,C2 > 0 such that for all

(S,D) ∈ A we have

S ·D ≥ C1(|D|r + |S|r
′)− C2.
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Methods for Bingham-like fluids

Lemma (The key convergence lemma)
Let O be a measurable set and let A be a maximal monotone
r -graph. Assume that (Sn,Dn) ∈ A a.e. in O and

Sn ⇀ S weakly in Lr ′ ,
Dn ⇀ D weakly in Lr ,

lim sup
n→∞

∫
O
Sn ·Dn ≤

∫
O
S ·D.

Then (S,D) ∈ A a.e. in O.

• If the energy equality holds, i.e., if we can test by the solution, i.e., if the
a priori estimates are good enough, the convergence lemma can be easily
applied for O := Q = (0,T )× Ω to get the existence of a weak solution

• In case of “bad" a priori estimates, we can (but not easily) still prove for
certain r ’s that the assumptions of the convergence lemma hold for O
fulfilling |Q \O| ≤ ε with ε > 0 arbitrary and therefore we can still identify
the limit

Liblice 2013 M. Bulíček Implicitly constituted materials
8/25



Methods for Bingham-like fluids

Lemma (The key convergence lemma)
Let O be a measurable set and let A be a maximal monotone
r -graph. Assume that (Sn,Dn) ∈ A a.e. in O and

Sn ⇀ S weakly in Lr ′ ,
Dn ⇀ D weakly in Lr ,

lim sup
n→∞

∫
O
Sn ·Dn ≤

∫
O
S ·D.

Then (S,D) ∈ A a.e. in O.
• If the energy equality holds, i.e., if we can test by the solution, i.e., if the

a priori estimates are good enough, the convergence lemma can be easily
applied for O := Q = (0,T )× Ω to get the existence of a weak solution

• In case of “bad" a priori estimates, we can (but not easily) still prove for
certain r ’s that the assumptions of the convergence lemma hold for O
fulfilling |Q \O| ≤ ε with ε > 0 arbitrary and therefore we can still identify
the limit

Liblice 2013 M. Bulíček Implicitly constituted materials
8/25



Results for Bingham-like fluids

Theorem (Constant density)
Let A be a maximal monotone r-graph. Then for all reasonable data (initial,
boundary) and reasonable body forces there exists a weak solution provided that

r > 2d
d + 2 ( =⇒ compactness of the convective term)

r ≥ 3d+2
d+2 Minty, Lions, Ladyzhenskaya, Gwiazda, Świerczewska-Gwiazda, MORE

r > 2d
d+2 Nečas, Frehse, Steinhauer, Wolf, Diening, R�užička, Shelukin, Gwiazda,

Świerczewska-Gwiazda, MORE

Theorem (Inhomogeneous)
Let A be a maximal monotone r-graph. Then for all reasonable data (initial,
boundary) and reasonable body forces there exists a weak solution provided that

r > 2d
dr + 2r − 2d ( =⇒ we can test by u ∈ L∞(0,T ;W 1,r (Ω)))

• Frehse, R�užička, Zhikov, MORE
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Pressure dependent viscosities
Many experiments shows that even in incompressible fluids the
viscosity should depend on the pressure

6 “old fashion" approach

T = S+ pI,
S = 2µ(p, |D|)D

However, one can not justify the dependence of µ on p since it
is understood now as a multiplier

, implicit approach

Td − 2µ
( trT

d , |D|
)
D = 0,

and then we denote
dp := trT.

“
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Pressure dependent viscosities - results

The prototype model

Td = (1 + γ(trT) + |D|2)
r−2

2 D.

Theorem (Only homogeneous case)
Let r ∈ ( 2d

d+2 , 2] and γ be nonnegative function fulfilling

(2− r)γ′(s)� 1 for all s ∈ R.

Then for all reasonable initial data and for all boundary data
(Navier’s slip or threshold slip) there exists a weak solution.

• Nečas, MORE and more
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Kelvin-Voigt-like model for viscoelasticity

The key splitting condition

T = Tel + Tdis ,

where
G1(Tel , ε) = 0, G2(Tdis ,D) = 0
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Kelvin-Voigt-like model for viscoelasticity
Prototype cases:

1 Fully linear
Tdis ∼ D, Tel ∼ ε.

2 Linear viscous part

Tdis ∼ D, G1(Tel , ε) = 0.

3 Linear elastic part

G2(Tdis ,D) = 0, Tel ∼ ε.

4 Fully nonlinear

G2(Tdis ,D) = 0, G1(Tel , ε) = 0.

In all cases we identify G1 with the graph Ael and G2 with the
graph Adis .
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Kelvin-Voigt-like model - easy results

Theorem (Fully linear)
Let

Tdis ∼ D, Tel ∼ ε.
Then for all reasonable initial and boundary data there exists unique weak
solution. Moreover, the solution is as smooth as data allows.

Theorem (Linear viscous part)
Let

Tdis ∼ D
and Ael be a maximal monotone q-graph. Then for all reasonable data there
exists a weak solution provided that either q ≤ 2 or Ael has the potential
structure, i.e., for all (Tel , ε) ∈ Ael

Tel · ε,t =
d
dt ϕ(Tel , ε)

with nonnegative ϕ fulfilling ϕ(Tel , ε) ≥ C1(|Tel |q
′
+ |ε|q).
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Kelvin-Voigt-like model - more tricky results

Theorem (Linear elastic part)
Let

Tel ∼ ε

with the potential structure and Adis be a maximal monotone r-graph. Then
for all reasonable initial and boundary data there exists unique weak solution.

• for r ≥ 2 the proof is relatively easy - we can test by v - energy equality
• for r < 2 the proof is more delicate but we can still “test" by v - energy

equality

Theorem (Fully nonlinear)
Let Adis be maximal monotone r-graph with r ≥ 2 fulfilling for all (T1,2,D1,2)

(T1 − T2) · (D1 −D2) ≥ C1|D1 −D2|2

and Ael be Lipschitz continuous graph, i.e., for all (T1,2, ε1,2) ∈ Ael

|T1 − T2| ≤ C2|ε1 − ε2|.

Then for all reasonable data there exists unique weak solution. Moreover, for
smoother data we have ∇2v ∈ L2 and further in 2D setting the solution is
classical provided that data are smooth enough.
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Limiting strain model
Consider only elastic deformation and “forget" evolution, i.e.,

− divT = f in Ω,
G(T, ε) = 0 in Ω,

u = 0 on Γ1,
Tn = g on Γ2.

(El)

+ The key assumption in linearized elasticity

|ε| � 1 . (A)

6 Consider Ω a domain with non-convex corner at x0, Γ = ∂Ω, u0 = 0 and G
of the form

T = ε.
Then there exists a smooth f such that the solution (T, ε) fulfils

|T(x)| = |ε(x)| x→x0→ ∞.

=⇒ contradicts the assumption of the model (A) =⇒ not valid model
at least in the neighborhood of x0.
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Limiting strain model

, Consider implicit models which a priori guarantees |ε| ≤ K :

ε = λ1(| trT|)(trT)I+ λ2(|T|)T+ λ3(|Td |)Td , (L-S)

where
|λ1,2,3(s)| ≤

K
3(s + 1) .

, A priori estimates: from (L-S)

|ε| ≤ K .

From the equation, we may hope that∫
Ω

λ1(| trT|)| trT|2 + λ2(|T|)|T|2 + λ3(|Td |)|Td |2 =
∫
Ω

T · ε ≤ C .

+ The reasonable assumptions (∞-Laplacian-like problem):

λ1,2,3(s) ≥ 0,

λ3(s) ≥
α

s + 1.

}
=⇒

∫
Ω

|Td | ≤ C .
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Limiting strain model & monotonicity

+ Apriori estimates for Td in L1

+ For the convergence at least some monotonicity needed, the minimal
assumption:

0 ≤ d
ds (λ1,2,3(s)s). (M)

+ If we would have a sequence fulfilling∫
Ω0

|(Td)n|1+δ ≤ C(Ω0) for all Ω0 ⊂⊂ Ω,

=⇒ Tn ⇀ T weakly in L1
loc .

then using (M) we can identify the limit.

, Assume kind of uniform monotonicity, i.e., for some α, a,K > 0
α

(K + s)a ≤
d
dt (λ3(s)s) (UM)

for example

λ3(s) :=
1

(1 + sa) 1
a
.
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Limiting strain model & Theorems

Theorem (Dirichlet data)
Let Ω ⊂ Rd , λ1,2 fulfil (M) and λ3 satisfy (UM) with a < 1

d . Then there exists
a weak solution (T, u). Moreover, u is unique. Further, if either λ1 or λ2 are
strictly monotone then also T is unique.

+ Proper approximation (p-Laplacian)

+ Uniform L1 estimates
+ Uniform L1+δ

loc estimates by showing that T ∈ Nα,1 for some α ∈ (0, 1).

Theorem (Periodic data)
Let λ1,2 fulfil (M) and λ3 satisfy (UM) with a < 2

d . Then there exists a weak
solution (T, u). Moreover, u is unique. Further, if either λ1 or λ2 are strictly
monotone then also T is unique.

+ The same as before but no problem with localization =⇒ better bound
for a
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Limiting strain model & Theorems

Theorem (Periodic data II)
Let λ1,2 fulfil (M) and λ3 satisfy (UM) with a > 0. Then there exists a (T, u)
fulfilling the implicit relation a.e. such that

T ∈ L1, ε ∈ L∞, ∇T
(1 + |T|) a+1

2
∈ L2

the energy inequality holds, i.e.,∫
Ω

T · ε(u) ≤
∫
Ω

f · u,

and fulfill the renormalized equation, i.e., for all smooth periodic v and all
g ∈ D(R) there holds∫

Ω

T · (g(|T|)∇v+ v⊗∇g(|T|)) =
∫
Ω

g(|T|)f · v.

Moreover, if T ∈ La+1 the the solution is weak.
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Limiting strain model - anti-plane stress
We consider the following special geometry

Ω

g

g

ν

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

u = u(x1, x2) = (0, 0, u(x1, x2)), g(x) = (0, 0, g(x1, x2)),

and

T(x) =

( 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

)
. (1)
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Consequences

+ The problem under consideration then simplifies to

−∂T13

∂x1
− ∂T23

∂x2
= 0 in Ω,

ε13 = T13

(1 + |T|a) 1
a
and ε23 = T23

(1 + |T|a) 1
a

in Ω,

ε13 = 1
2ux1 and ε23 = 1

2ux2 in Ω,

T13n1 + T23n2 = g on ∂Ω.

⇒ (and in a simple connected domain also ⇐)(
T13

(1 + |T|a) 1
a

)
x2

=
(

T23

(1 + |T|a) 1
a

)
x1

+ Find U : Ω→ R - the Airy stress function such that

T13 = 1√
2
Ux2 and T23 = − 1√

2
Ux1 .
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Consequences for U

+ U must satisfy

div
(

∇U
(1 + |∇U|a) 1

a

)
= 0 inΩ,

Ux2n1 − Ux1n2 =
√
2g on ∂Ω.

+ Dirichlet problem, indeed assume that ∂Ω is parametrized by
γ(s) = (γ1(s), γ2(s)). Then

n = 1√
(γ′

1 (s))2+(γ′
2 (s))2

(γ′2(s),−γ′1(s)).

U(γ(s0)) = a0 +
∫ s0

0

d
ds U(γ(s)) ds

= a0 +
∫ s0

0
U(γ(s))x2γ

′
2(s) + U(γ(s))x1γ

′
1(s) ds

= a0 +
∫ s0

0

√
(γ′1(s))2 + (γ′2(s))2(U(γ(s))x2n1 − U(γ(s))x1n2) ds

= a0 +
√
2
∫ s0

0
g(γ(s))

√
(γ′

1(s))2 + (γ′
2(s))2ds =: U0(x).
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Consequences for U

+ U must satisfy

div
(

∇U
(1 + |∇U|a) 1

a

)
= 0 inΩ, U = U0 on ∂Ω.

+ a = 2 - the minimal surface equation, you know everything that means you
know nothing in general: for convex domains and smooth data the classical
solution exists, for non-convex domains the weak solution does not exist in
general, the proper function space is BV , the trace is not attained

+ a = 2 what does it say for “physics"? the solution T must be of the
prescribed form due to the uniqueness, g cannot be prescribed arbitrarily to
get the weak solution, if g attains some critical value something very “bad"
happens - either the model is not valid (there is not deformation for large
g) or the body is no more continuum

+ a 6= 2 we cannot use all the geometrical machinery, but on convex domains
we can prove |∇U| ≤ C

+ a < 2 we can localize and prove ∇U ∈ L∞loc

+ a ∈ (1, 2) the weak solution may not exists eg. for Ω = B2 \ B1

+ on the flat part of the boundary, you can extend the solution outside such
that it is still the solution - estimates near the boundary
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Limiting strain - Results II

Theorem (MORE)
Let U0 be arbitrary. Then there exists unique weak solution U
provided that one of the following holds.
, Ω is uniformly convex, a > 0 is arbitrary and U0 smooth.
, a ∈ (0, 2) and ∂Ω =

⋃N
i=1 Γi such that either Γi is uniformly

convex and U0 is smooth on Γi or Γi is flat and U0 is constant
there.
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