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Intro

Reaction-Diffusion-Advection Model

Standard Reaction-Diffusion-Advection system:

Oic1 +v-Ve — DiAcg = r1(C1, ceey CN)

Oren +v - Vey — DyAcey = ru(er, -+, cn)

with molar concentrations ¢;, velocity v, diffusivities D;, reaction rates r;



Intro

Reaction-Diffusion-Advection Model

Standard Reaction-Diffusion-Advection system:

Oic1 +v-Ve — DiAcg = r1(C1, ceey CN)

Oren +v - Vey — DyAcey = ru(er, -+, cn)
with molar concentrations ¢;, velocity v, diffusivities D;, reaction rates r;
@ cross-effects not included
@ non-idealities not included; chemical potentials & activities
@ consistency with continuity equations requires equal D;'s
@ assumption of constant total density (i.e. divv = 0) inconsistent

@ not applicable to reactions which change the particle numbers



Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A, ..., Ay
Ngr chemical reactions between the A;:

A+ oAy =BTA+.. . +BAy fora=1,... Ng

with stoichiometric coefficients o, 87 € Ng



Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A, ..., Ay
Ngr chemical reactions between the A;:

A+ oAy =BTA+.. . +BAy fora=1,... Ng

with stoichiometric coefficients o, 87 € Ng
Let R, = Rf — R® be the (molar) rate of reaction a and v? := 37 — .
Then

= Z MviR, with M; the molar mass of species A;

a=1

is the total rate of change of mass of component A;

Mass conservation in individual reactions: >, Mjy? =0 Va



Intro

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: v denotes the barycentric velocity of the mixture

Classical mixture balances in T.I.P:

partial mass balances:

Ocoi +div (oiv +ji) =ri
total momentum balance:

O(ov) + div (ov ® v — S) = b; ob=>".0ib;
internal energy balance:

O¢(0€) + div (vev +q) = Vv : S + om; om =) ji-bj

Definition of internal energy: pe = peiot — %QVQ




Intro

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: v denotes the barycentric velocity of the mixture

Classical mixture balances in T.I.P:

partial mass balances:

Oroi +div(oiv+ji)=r >,ji=0 & dwo+div(pv) =0
total momentum balance:

Ot(ov) + div (ov @ v — S) = gb; ob=>".0ib;
internal energy balance:

O¢(0€) + div (vev +q) = Vv : S + om; om =) ji-bj

Definition of internal energy: pe = peiot — %QVQ




The 2"d Law: Entropy Inequality

Entropy production:

C=q V= +Z v“—’——")+%si“ D——ZRA

S . D=S°:D°+MNdivy, S=—pl+S"

Notation:

T denotes the (absolute) temperature

u; denotes the chemical potentials

S° denotes the traceless part of S

D° denotes the symmetric, traceless part of Vv

I denotes the dynamic pressure (or, irreversible pressure part)

Ay =) piMiv} are the chemical affinities.



Intro
The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
= quadratic form

heat flux and diffusive fluxes:
a = LoVH— S Lo (VEEE — F(bi— b))

o= LoVE - S (VE - b)) i1 N -1

j=



Intro
The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
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Entropy inequality: [L;j] and [/,5] positive semi-definite and L > 0



Intro
The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
= quadratic form

heat flux and diffusive fluxes:

a = LoVH— S Lo (VEEE — F(bi— b))

LoV T — ZN?LU(V@—%(M—M)) i=1,.,N-1

Ji =

viscous stress, dynamic pressure and chemical reaction rates:
S° =LD° 0N =—ldive—>)", h.A,, Ry, = —lodivv =", LpAp
Entropy inequality: [L;j] and [/;5] positive semi-definite and L > 0

Onsager-Casimir reciprocal relations: [Lj], [/.s] symmetric, but hh, = —/.o



Intro
Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations



Intro

Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
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constitutive relations

@ Onsager’s reciprocal relations: [L;] and [l,5] are symmetric

relies on microscopic theory; only derived for rates (ODE case),
not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations



Intro

Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations

@ Onsager’s reciprocal relations: [L;] and [l,5] are symmetric

relies on microscopic theory; only derived for rates (ODE case),
not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations
@ Some disadvantages of classical TIP:
- the L;; show complex nonlinear dependence on the composition
- the linear closure for chemical reactions rates is not appropriate
- in recent applications different species can experience different BCs



Intro

The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:
local balance between driving and friction forces:

di:—Zf,'jX,'Xj(v,-—vj)——ZM

B Crot Djj
#i A e

d; the thermodynamic driving forces, d; = Z-v,um + Lidivp — iz (b — b)

Ji = ji/M; molar mass fluxes; B = 1/f; the Maxwell-Stefan diffusivities
in many cases: Dj; nearly constant or affine functions of the composition

Origin of the Maxwell-Stefan Equations:

@ James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

@ Josef Stefan: Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).



Intro

The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:
local balance between driving and friction forces:

di:—Zf,'jX,'Xj(v,-—vj):—Zw

Ciot Pjj
#i A e

d; the thermodynamic driving forces, d; = Jrv,ume + 2iYivp — iz (b —b)

i oRT

Ji = ji/M; molar mass fluxes; B = 1/f; the Maxwell-Stefan diffusivities
in many cases: Dj; nearly constant or affine functions of the composition

Origin of the Maxwell-Stefan Equations:

@ James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

@ Josef Stefan: Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).

Implicitly constituted multicomponent diffusion fluxes



Intro
Maxwell-Stefan Equations - Criticism

Problems and open issues:

@ rigorous derivation of the Maxwell-Stefan equations,
including the thermodynamical driving forces

@ proper coupling to the mass and momentum balance
@ extension to non-isobaric, non-isothermal situation

@ extension to chemically reacting fluid mixtures

Aim: thermodynamically consistent mathematical modeling of
reacting fluid mixtures, guided by rational thermodynamics



Balances

@ Partial Balances and Modeling Framework



Balances
Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A;
mass : 0;0; + div (giv;) = r;
mom. : 8t(g,-v,-) + div (Q,'V,' XV — S,) =f; + oib;
Qi Qi

energy : O:(ojei + Ev’?) + div ((eiei + EV,?)V; —v;S;+q;) =1l +oib; - v;



Balances
Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A;
mass : 0;0; + div (giv;) = r;
mom. : 8t(g,-v,-) + div (Q,'V,' XV — S,) =f; + oib;
Qi Qi 2

energy : 0:(oje + Ev,?) +div ((ojei + Ev,-)v,- —v;Si+q;) =i + 0ib; - v;

mass conservation: >iri=0
momentum conservation: > fi =0
energy conservation: >ili=0

Note: power due to external forces is g;b; - v;, while internal forces
(mechanical and chemical interactions) contribute to the /;



Balances
Balance of internal energy

Partial balance of internal energy:

8t(g,-e,-) + diV(g;e;V,' + q,-) =Vv;:S;i+1—v;- (f,' — %r,-v,-))

Alternative definition of internal energy:

oe =Y, pie total internal energy = o(etor — 2V2) — Y., S0iu?
pi = f%tr(s,-) partial pressures, p 1= >, pi

q:=>_,(qi + (oiej + pi)u;) mixture heat flux



Balances
Balance of internal energy

Partial balance of internal energy:

8t(g,-e,-) + diV(g;e;V,' + q,-) =Vv;:S;i+1—v;- (f,' — %r,-v,-))

Alternative definition of internal energy:

oe 1= Z,. oie; total internal energy = o(etot — %V2) - Z,- S0iu;
pi = 7%tr(S,-) partial pressures, p 1= >, pi
q:=>_,(qi + (oiej + pi)u;) mixture heat flux

mixture energy balance:
O¢(0€e) +div (gev +q) = —pdivv+ >, Vv; : S?
— Zi u; - (f,' — riv; + %r,-u,- — Vp,')



Balances
Constitutive Modeling

Variables: ¢1,...,0n, V1,...,VpN, 0€

class-Il model requires constitutive equations for:
Rm Sia fi —rnvi, q

We consider non-polar fluids, hence the stresses S; are symmetric.
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Universal Principles:
@ material frame indifference

@ entropy principle (second law of thermodynamics)



Balances
Constitutive Modeling

Variables: ¢1,...,0n, V1,...,VpN, 0€

class-Il model requires constitutive equations for:
Rm Sia fi —rnvi, q
We consider non-polar fluids, hence the stresses S; are symmetric.

Universal Principles:

@ material frame indifference

@ entropy principle (second law of thermodynamics)

Assumption: gs = h(pe, g1, ..., on) with a concave function h.
Definition: absolute temperature T and chemical potentials ;-

1 dos M dos

T dge’ T do




Balances
Entropy Principle evaluated

Evaluation of the entropy principle:
Q entropy flux: & =4 — 5~ il
@ Gibbs-Duhem equation p + o1) — >, 0jpi =0

@ restrictions for constitutive equations for dissipative mechanisms:
entropy inequality, i.e. ( >0



Balances
Entropy Principle evaluated

Evaluation of the entropy principle:
Q entropy flux: & =4 — 5~ il
@ Gibbs-Duhem equation p + o1) — >, 0jpi =0

@ restrictions for constitutive equations for dissipative mechanisms:
entropy inequality, i.e. ( >0

Entropy production rate:
—_1y N p g 1 Sir . D. A vaS
(=—F2 1 RaAa+ 35,8 :Di+3,q - Vs
—>ui (Q/V% + +(fi = rvi + 3riu; — Vpi) — (oiei + P/)V%)

I = M1 +S5, ie. S;=—pil + S



Nonreactive

© Case 1: Non-Reactive Systems



Nonreactive

Case 1: no viscosity, no chemistry

entropy production without viscosity, no chemical reactions:
C=—2ui @V + (i = Vp)) + (X0 + hiw) - V£

with partial enthalpies h; := p;e; + p;.



Nonreactive

Case 1: no viscosity, no chemistry

entropy production without viscosity, no chemical reactions:
C=—=>ui- (aiV5 + +(fi—Vp)) + (X;qi + hu) - V+
with partial enthalpies h; := p;e; + p;.

Shuffle diffusive part from q to the left term:

(=-=>ui-(Bi+3f)+>,q -Vt
with )

pi 1
B = oV — ZVp — hV=
i=oVE - FVpi—hiV—

Note: The Gibbs-Duhem equation implies: ). B; =0



Nonreactive
Exploiting the second law

The interaction term necessarily satisfies

— ZlNzl u; - (B,‘ + %f,‘) >0 and ZlNzl B; =0, Z;N:1 fi=0

Hence
=3 (wi — up) - (B,- + %fi) >0,

with build-in constraints



Nonreactive
Exploiting the second law

The interaction term necessarily satisfies

— ZlNzl u; - (B,‘ + %f,‘) >0 and ZlNzl B; =0, Z;N:1 fi=0

Hence
=3 (wi — up) - (B,- + %fi) >0,

with build-in constraints
The standard linear Ansatz for B; + %f,- is
B+ 1f = — =1 Tij (uj —up) (fori=1,....,N—1)

with a positive (semi-)definite matrix [7;].



Nonreactive
Closure for thermo-mechanical Interactions

Extension to N x N format (positive semi-definite):
7-,-,\,:_2 17’,1 (i=1,...,N-1), TN——E 1Tu (G=1,...,N)

Straight forward computation:

Bi+ +fi = — XLy (w —un) = 0 7 (ui — w)



Nonreactive
Closure for thermo-mechanical Interactions

Extension to N x N format (positive semi-definite):
T;N:—Z i (=1, N 1), TN——E Ut G=1,...,N)
Straight forward computation:

Bi+ +fi = — XLy (w —un) = 0 7 (ui — w)
Assumption of binary type interactions: (Truesdell)

7 = 7ij(T,0i,0;)) = 0 if oi = 0+ or gj — 0+
implies symmetry of [r;] & 7; <0 Vi#j

= 7= —fjoio; with fj=1; >0, f; =f;(T, 0, 0j)-



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances: (non-conservative form)

i(Oevi + Vi - Vv;) + Vp; = fi + oib;
with 0i(Oevi +vi- Vvi) + Vpi = i+ ¢

f,‘ = —0j TV% + Vp; + h,‘ TV% - T Zj f,’jQ,‘Qj(V,‘ — Vj)



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances: (non-conservative form)

i(Oevi + Vi - Vv;) + Vp; = fi + oib;
with 0i(Oevi +vi- Vvi) + Vpi = i+ ¢

f,‘ = —0j TV% + Vp,- + h,‘ TV% - T Zj f,’jQ,‘Qj(V,‘ — Vj)
class-1l momentum balances (no viscosity, no chemical reactions):
g;(atv,- “+v; - VV,') = —0j TV“T' + Th,V% — TZJ f}jQ,‘Qj(V,‘ — Vj) + Q,‘b,’



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances: (non-conservative form)

i(Oevi + Vi - Vv;) + Vp; = fi + oib;
with 0i(Oevi +vi- Vvi) + Vpi = i+ ¢

fi=—0iTVE +Vpi+hTVE — T Y, fioioi(vi — v))
class-1l momentum balances (no viscosity, no chemical reactions):
0i(Oevi +vi - Vvi) = —0; TV + ThiV + — T Y2, fj0i0i(vi — vj) + oib;
special case of a simple mixture:

0i (8evi + vi - Vi) = —Vp; — T2, fioioj(vi —vj) + oib;

special case of isothermal conditions:

0i(Oevi +vi - Vvi) = =iV — T Y, fjoioj(vi — vj) + 0ib;



@ Case 2: Reactive Systems



Reactive

Case 2: Chemical Reactions, no Viscosity

With chemical reactions, the entropy production is:
(=30 Vi—Xu- (B,- + 3 (f = rvi + %r,-u,-)) —+ X, RaA

@ decompose f; — riv; as f,-M + f,-C — rV;

@ structure of f¢ from partial momentum balance



Reactive

Case 2: Chemical Reactions, no Viscosity

With chemical reactions, the entropy production is:
(=30 Vi—Xu- (B,- + 3 (f = rvi + %r,-u,-)) —+ X, RaA

@ decompose f; — riv; as f,-M + f,-C — rV;
@ structure of f¢ from partial momentum balance

For single reaction; forward path with rate R':
a1 At + ... +ayAy — B1AL+ ...+ By An

rate of change of i-momentum from reaction: —R’a;Mv; + Rfﬂ,-l\/l,-v,'-r



Reactive

Case 2: Chemical Reactions, no Viscosity

With chemical reactions, the entropy production is:
(=30 Vi—Xu- (B,- + 3 (f = rvi + %r,-u,-)) —+ X, RaA

@ decompose f; — riv; as f,-M + f,-C — rV;
@ structure of f¢ from partial momentum balance

For single reaction; forward path with rate R':
a1 At + ... +ayAy — B1AL+ ...+ By An

rate of change of i-momentum from reaction: —R’a;Mv; + Rfﬂ,-l\/l,-v,'-r
@ conservation of momentum: >, a;Miv; = >, BiMv!

f = vf for all i (with 3; > 0)

i =

@ fundamental assumption: v



Reactive

Case 2: Chemical Interaction - Momentum

chemical momentum exchange

—rv; = E Gii(v

with the chemical matrix

Cj = Z Ek ai M (RiB7 03 + Ryai ;)

Recall: >°, af My =", Bi M due to mass conservation

Note: [Cj] is, in general, not symmetric — it is symmetric in equilibrium



Reactive

Case 2: Chemical Interaction - Momentum

chemical momentum exchange:

N
f,C — Vi = — Z C,-J-(v,- — Vj)
i=1

with the chemical matrix

N
< M;M; f b
Gi=Y, ﬁ(&ﬁf@f + RJaifB;)
1 2k Xk
Recall: >°, af My =", Bi M due to mass conservation
Note: [Cj] is, in general, not symmetric — it is symmetric in equilibrium

Check thermodynamic consistency: chemical momentum exchange part
for a single reaction, forward path:

i i M;M; B
Cexchange = Rf(z;' Mi al;ﬂl ulg - Zi,j P cjfl\?lz uj - uj) 2 0




Reactive

Case 2: Chemical Interaction - Reaction

Closure for reaction rate functions:

nonlinear closure since chemical processes often far away from

equilibrium: N
lo (Rf) S Mg, a0
ey ivIivy,
BRe) = T RT 21 “



Reactive

Case 2: Chemical Interaction - Reaction

Closure for reaction rate functions:

nonlinear closure since chemical processes often far away from
equilibrium: N
Rf « R
log( Rb) T RT ZHIMIV;" a>0

i=1
@ one reaction path is to be modeled, the reverse path is determined

@ this closure implies detailed balance, i.e. Rf = R’ for all ain

equilibrium:
Ng
Cehem = @R > (RS — Ry)(log R} — log RY)
a=1



Reactive
Reactive Class-1I Model

Resulting model (reactive, non viscous)
mass : 0;0; + div (oiv;) = i
mom. : J;(o;v;) + div (giv; ® v;) = —p; TV% + Th;V% + oib;
= T3, fjoioj(vi—v;) = T 32; Gj(vi — vj)

energy : 0;(oe) + div (gev +q) = —pdivv — >, u; - (fi — riv))

reaction rates : r; =, REMi?(1 — exp (35 ZLVZI M)

. , N, MM
chemical matrix : Cj = 37,71 s~—a (RIB7a? + REa?3?)

heat flux : q = aV+ + Y, hiu;



© Class-1l — Class-1 model reduction



Reduction

Reduction: Class-Il — Class-I

Class-1 model does not consider internal structures of momentum and
energy

Strategy: all quantities shall be determined from identification of
balances for partial mass, internal energy and entropy



Reduction

Reduction: Class-Il — Class-I

Class-1 model does not consider internal structures of momentum and
energy

Strategy: all quantities shall be determined from identification of
balances for partial mass, internal energy and entropy

partial mass balances:
deoi +div (oiv +jj) = 3o, MiviR;
Oroi +div (oiv + ojui) = >, Miv? R,

Identification yields:
ji=omi,  R=R,



Reduction

Reduction: Class-Il — Class-I

internal energy balance:
Or(0€') + div (ge'v+q') =S': Vv + 3. jl - b;
O:(0e) + div (gev +q) = Y, S : Vv; — pdivv

— > ui - (fi = rivi + 3rju; — Vp;)
Identification yields:

oe' =3 0i6i, q' =3 (ai + (oiei + pi — Si)ui), S'=3;S;

fi—rvi=Vp;—yVp— %(r,-u,- Vi 2ok Mu)
—div S + y; divS™ — g;(b; — b)



Reduction

Reduction: Class-Il — Class-I

internal energy balance:
Or(0€') + div (ge'v+q') =S': Vv + 3. jl - b;
O:(0e) + div (gev +q) = Y, S : Vv; — pdivv

— > ui - (fi = rivi + 3rju; — Vp;)
Identification yields:

oe' =3 0i6i, q' =3, (i + (oiei + pi — Si)ui), S'=13.S;

fi—rvi=Vp;—yVp— %(r,-u,- Vi 2ok Mu)
—div S + y; divS™ — g;(b; — b)

Metaprinciple of Truesdell does not apply



Reduction

Reduction: Class-Il — Class-I

entropy balance:

O:(0s') + div (os'v + @) = (!
with

o =} (a' — i)

¢t =at- Vi 8mD - 2N RA - - (V- )



Reduction

Reduction: Class-Il — Class-I

entropy balance:
O:(0s') + div (os'v + @) = (!
with
o =4 (@~ X )
(=t T+ 5D LS R - (T - )
Identifying 0s' = ps and inserting all above identifications yields:

ol=o, (=g



Reduction

Reduction: Class-Il — Class-I

entropy balance:
O:(0s') + div (os'v + @) = (!

with
! =%(c|I = 22 i)
('=q"-Viqisimlp— Ly RIA, -5 (Ve - )

Identifying 0s' = ps and inserting all above identifications yields:
=0,  (l=¢

@ related to entropy-invariant model reduction

@ reduction works for unclosed systems, i.e. for all fluids (from the
general class)



Reduction
Chemical Reacting Class-I model

Maxwell-Stefan equations for chemically reactive flows

Diffusion approximation in the reactive case follows similarly by
entropy invariant model reduction

—TY; fjoigj(ui —w) = T2, Cy(ui — w)) + 3riui + 3y >, ricuk
=0, TV — y;Vp— hTVE — divSI™ + yidivS™ — g;(b; — b)

with the chemical matrix

_ N, M; M; f b
Cij - Za:l P aiij (Ra 6[80‘; + Ra O‘?BJ?)



Reduction
Chemical Reacting Class-I model

Maxwell-Stefan equations for chemically reactive flows

Diffusion approximation in the reactive case follows similarly by
entropy invariant model reduction

—TY; fjoigj(ui —w) = T2, Cy(ui — w)) + 3riui + 3y >, ricuk
=0, TV — y;Vp— hTVE — divSI™ + yidivS™ — g;(b; — b)

with the chemical matrix

N,  MM;
Cj = 300y st (REB7ag + Rbaz3?)

To obtain the final PDE-system:
@ invert the system to obtain j;; algebraical relation if SI'™ = y,Si*

@ model the free energy, i.e. pressure and chemical potentials



Reduction
Final Remarks

@ cross-effects, like thermo-diffusion can be incorporated via entropy
invariant mixing between different flux-driving force products:

>iai Vi + 30 (B — 3f)
=3 (@-D/u) -V +3 v (-B; - 1fi+D/ V1)



Reduction
Final Remarks

@ cross-effects, like thermo-diffusion can be incorporated via entropy
invariant mixing between different flux-driving force products:

>iai Vi + 30 (B — 3f)
=3 (@-D/u) -V +3 v (-B; - 1fi+D/ V1)

@ structure of entropy production as ( = >, F,Dp, is not unique
In particular: mixing of different fluxes or forces is possible!

¢ =(AF,BD) = (F,ATBD) = (F.D) VF,D = A '=8"
diagonal closure implies cross-effects with Onsager relations:

AF := ABD with A = diag()\;) = F:= BTABD



Reduction

Thank You for Your Attention !
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