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The subject of our analysis will be

ut − ∂xL(ux) = f

with suitable boundary conditions and initial datum
we prefer Dirichlet boundary conditions

Function L is assumed to be monotone (increasing), in other words:

(L(ux), ux) ∈ A with A maximal monotone



Whenever our key goal is to study multidimensional case like

ut − div ( sgn ux1 , sgn ux2) = 0

ut − div ( sgn ux1 , sgn ux2) − ∆u = 0

What we can observe are special feature which are not present in
qualitative picture of monodimensional solutions.

A way to find a connection between 1d and multi-d case are
inhomogeneous systems.



In 1d we’d like to study model case:

L(w) = w + sgnw =


w + 1 for w > 0
[−1, 1] for w = 0
w − 1 for w < 0



goal: the behavior/structure of solutions
we are interested in facets, flat regions of the solutions
ruled surfaces

unstable facet

Figure: A facet
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We consider

ut − ∂x(ux + sgn ux) = f (t)

with boundary data

u(0, t) = 0, u(1, t) = 0

and initial datum

u|t=0 = u0



We are allowed to determine typical shapes of solutions

Typical front of solution (flanc)

facets

Figure: Addmissible profile



an example of unstable shape
(it may happen just in isolated time point)

unstable facet

Figure: Nonadmissible shape



Qualitative analysis for 1d problems

We want to analyze the possible behavior of facets:

– stagnation

– creation

– breaking



STAGNATION

Observation

Let u0 ≡ 0, if

‖f ‖L∞ is sufficiently small

then

u ≡ 0

The proof of this fact is an immediate consequence of the result
for the steady case

More precisely we have



THEOREM

If u0 = 0 and

0 ≤
∫ x

0
f (s, t)ds ≤ 2 for x ∈ (0, 1) and t ∈ (0,T )

Then

u ≡ 0

The weak formulation

(ut , φ)L2(0,1) + (σ, φx)L2(0,1) = (f , φ)L2(0,1)

where σ(x , t) ∈ L ◦ ux



PROOF.

we have

u ≡ 0 and

σ(x , t) = −1 +

∫ x

0
f (s, t)ds ∈ [−1, 1] = L(0)

So the proof of the theorem is done.

ps. we see that there is a room to generalize the assumptions on f



More complex case

Let u0 be a steady solution to the problem

−∂x(ux + sgn ux) = f (0)

say f (0) ≥ 0

Then there exist points ξ− < ξ+ such that 0 < ξ− < ξ+ < 1 and∫ ξ+

ξ−

f (s, 0)ds = −2



We have a picture

Figure: Shape of u0



u the solution to the evolutionary system

ut − ∂x(ux + sgn ux) = f (t)

is static

ie. u(x , t) = u0(x)

if f (t) fulfills

supp f (t) − f (0) ⊂ [ξ−, ξ+] for all t ∈ (0,T )∫ ξ+

ξ−

f (x , t)dx = −2

|
∫ b

a
f (x , t)dx | < 2 for all a, b s.t. ξ− < a < b < ξ+.



A proof of the above fact follows directly from the considerations
for the stationary case,

just for all t, the function f (t) generates the same stationary
solution,

so the uniqueness of the evolutionary system yields the stagnation
of the initial state.



CREATION

The first observation is the following:

facets are typical

fixing time, the minima, maxima are realized
over facets (non degenerated)

Let u be sufficiently smooth solution to

ut − ∂x(ux + sgn ux) = f (t)

with u(0, t) = u(1, t) = 0



Fix t > 0, we look at the function u(·, t) over (0, 1).

Assume that at ξ0 ∈ (0, 1) the function u has a minimum

Take two sequences: {an}, {bn} such that

u(an), u(bn) > u(ξ0)

and
an → ξ−0 and bn → ξ+0



Integrate the equation over (an, bn)

−(ux + sgn ux)|bnan =

∫ bn

an

(f (t) − ut)dx

Passing to the limit we get

−2 =

∫ b

a
(f (t) − ut)dx

As f , ut is integrable then we conclude that a 6= b, so

u(ξ0) = u(a) = u(b)

the minimum is obtained on the interval [a, b]



Observation:

The regularity of solutions seems to be very important here



BREAKING

If a facet can be broken?

We go back to the total variation flow
(the simples case)

ut − ∂x sgn ux = f

Let us consider the case

u(0, t) = u(1, t) = 0 and u0 = 0.

Take f (x , t) = tg(x) and supp g ⊂ [1/4, 3/4].



However one can consider the problem over the interval [1/4, 3/4]

uRt − ∂x sgn u
R
x = f

and assume

uR(1/4, t) = uR(3/4, t) = 0 and uR0 = 0.

The existence of weak solutions is clear in both cases.



In addition it is a simple exercise that an extension of uR on the
interval (0, 1) by zero defines a weak solution to the first problem,

so the uniqueness of solutions implies the following shape of the
solution

Figure: Breaking of facet



What about multidimensional case ...



We put our attention on the 2d mentioned systems:

ut − div ( sgn ux1 , sgn ux2) − γ∆u = 0

with suitable boundary and initial conditions.

we keep in mind

γ > 0 or γ = 0



THEOREM

Let u0 ∈ H1(K ), then the solutions fulfill the following estimate

‖ut‖L2(0,T×K) + sup
t∈[δ,T ]

‖ut , γ∇2u‖L2(K)(t) ≤ DATA(δ).



Ruled surface and convexity

The first phenomenon we study are features of minimizers and
maximizers of the solution.

We ask about possible structure of sets where the function u, for
fixed time t, admits extrema.

Since the issue of regularity is not well studied here we prove only
the following result.



LEMMA

Let u be a solution to equation with γ > 0 or γ = 0.

Let t > 0 and for x0 in the domain u(·, t) has a minimum at x0
u(·, t) is a convex function in a neighborhood N
of set u(·, t) = u(x0, t),

then the set

M = {x : u(x , t) = u(x0, t)} ∩ N

is a closed set with nonempty interior.



Proof.

There is a sequence mn converging to m := u|M from above
and such that each

level sets {u(·, t) = mn} are convex closed curves.

Moreover, the sets Mn = {u(·, t) ≤ mn} are convex too.

Consider the equation over these sets∫
Mn

(
ut − γ∆u − div ( sgn ux1 , sgn ux2)

)
dx1dx2 = 0.



Integration by parts and convexity lead to

∫
{u=mn}

(γ
∂u

∂n
+ n1 sgn ux1 + n2 sgn nx2)dH1 =

∫
Mn

ut dx1dx2.

But convexity implies that

∂u
∂n ≥ 0 at ∂Mn.

At the same time for almost all y functions

x1 7→ u(x1, y , t) and x2 7→ u(y , x2, t)

are monotone,



hence in a neighborhood of Mn

n1 sgn ux1 + n2 sgn ux2 = |n1| + |n2| ≥ |n| = 1.

So we conclude∫
{u=mn}

dH1 ≤ |Mn|1/2(

∫
Mn

u2t dx1dx2)1/2.

Moreover, since u is not constant, then the sets Mn must have
positive two-dimensional Lebesgue measure.



On the other hand, due to the isoperimetric inequality we have

H1(∂Mn) ≥ 1

2
√
π
|Mn|1/2,

the identity holds for the disc. Hence

C ≤ (

∫
Mn

u2t dx1dx2)1/2.

Since ut is square integrable, so the RHS above cannot go to zero
when n → ∞.
Thus, M is a convex set of positive two-dimensional measure,
hence it must have nonempty interior.



The next feature concerns the shape of graph of solutions.

To be more precise, we will show that is the regular level set of u is
convex, then the graph contains ruled surfaces parts of positive
two-dimensional measure.

The tangent is orthogonal to vectors (0, 1) or (1, 0).



LEMMA
Let u be a sufficiently regular solution to for γ equal to 0 or 1.
Furthermore, we assume that for given c ∈ R, the level set

S(c) = {x ∈ K : u(t, x) = c}

for a fixed time t is convex and it is regular, everywhere
∇u|S(c) 6= 0, then sets

M+
1 = {x : x = (m+

1 , x2) ∈ S(c)},

where m+
1 = max{x1 : (x1, x2) ∈ S(c)};

M−
1 = {x : x = (m−

1 , x2) ∈ S(c)}, ...

M+
2 = {x : x = (x1,m

+
2 ) ∈ S(c)}, ...

M−
2 = {x : x = (x1,m

−
2 ) ∈ S(c)}, ...

do not contain isolated points.



For the level set we expect the following structure in (0, 1)
direction:

facets

Figure: shape of the level set



Proof.
At the studied point we assume that x0 ∈ M+

1 is regular,

i .e.∇u(x0) 6= 0,

it means ∂x1u do not change the sign at this point,
so ∂x1 sgn ∂x1u is zero at the neighborhood of the set M+

1 .
Just in the considered region the function must be monotone in x1.

Take a connected component of M+
1 it is a point or an interval, say

I = [(m+
1 , n

∗), (m+
1 , n∗)] with n∗ ≥ n∗.



Take a sequence of points {ak}k∈N, {bk}k∈N such that

(a1k , a
2
k) → ((m+

1 )−, (n∗)−) and (b1k , b
2
k) → ((m+

1 )−, (n∗)+)

and

u(t, ak), u(t, bk) = c and ux2(t, ak) < 0, ux2(t, bk) > 0.

In addition, we require that a1k = b1k and
points ak and bk are points of continuity of ∇u.



Take a rectangle Rk such that:

– longer edges L± are parallel to M+
1 and shorter edges S±

contains point ak , bk .

– ux2(t, s) < 0 for all s ∈ S− and ux2(t, s) > 0 for all s ∈ S+.

– the length of shorter edges is ε > 0.



Then we are allowed to integrate the equation over Rk . Indeed, we
shall proceed via an approximation of the characteristic function of
the set Rk . So we get

∫
Rk

∂x1( sgn ux1) + ∂x2( sgn ux2)dx1dx2 =

∫
Rk

(ut − γ∆u)dx1dx2.

So ∫
∂Rk

sgn ux2n2dσ =

∫
Rk

(ut − γ∆u)dx1dx2.

The term with sgn ux1 vanishes because of the monotonicity in x1,



so by the chosen properties of points ak , bk we find

2ε ≤ |
∫
Rk

(ut−γ∆u)dx1dx2| ≤ ε sup
λ∈(0,1)

∫
λL−+(1−λ)L+

(ut−γ∆u)dx2.

ie

2 ≤ sup
λ∈(0,1)

∫
λL−+(1−λ)L+

(ut − γ∆u)dx2.

as k → ∞, so the rhs must go to zero
it is a consequence of integrability of ut − γ∆u,
2 ≤ 0. Thus, M+

1 must not be a point.



THEOREM
Assume that for t > 0 and region A the solution u(·, t) restricted
to a region A is convex, then
sets

S1 = {(x , u(x , t)) : x ∈ A, ux1(x) = 0}

and
S2 = {(x , u(x , t)) : x ∈ A, ux2(x) = 0}

are ruled surfaces.



Figure: reconstruction



Figure: reconstruction
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