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Section 1

Introduction



Continuum mechanics

◮ Matter is a continuously distributed substance.

◮ Newton’s second law, m d2x

dt2
= F, is reformulated for the

continuously distributed substance.



Governing equations – Eulerian description

Eulerian description:

dρ

dt
+ ρ div v = 0

ρ
dv

dt
= divT + ρb

T = T⊤

Eulerian description, convective form:

∂ρ

∂t
+ div (ρv) = 0

∂ρv

∂t
+ div (ρv ⊗ v) = divT + ρb

T = T⊤

All functions are functions of x and t, T is the Cauchy stress tensor.



Governing equations – Lagrangian description

Lagrangian description, F =def
∂χ(X,t)
∂X :

ρR(X, t0) = ρ(χ(X, t), t) detF(X, t)

ρR
∂2χ

∂t2
= DivTR

TRF⊤ = FT⊤

R

All functions are, if not stated otherwise, functions of X and t, TR

denotes the first Piola–Kirchhoff stress tensor

TR =def (detF)TF−⊤.



Constitutive relations

◮ Governing equations are universally valid for all materials. (As
long as we believe that it makes sense to describe the material
in the continuum mechanics framework.)

◮ Properties of particular material are specified by a relation
between Cauchy stress tensor (or the first Piola–Kirchhoff
tensor) and the kinematical variables.

◮ Boundary conditions can be seen as a specification of
properties of material interface.



Dynamic slip model

Dynamic slip model, us =def v • t, σw =def (Tn) • t:

us + λs
dus
dt

= aσmw

Savvas G. Hatzikiriakos. Wall slip of molten polymers. Prog. Polym. Sci., 37(4):624–643, 2012



Constitutive relations

Standard approach: Stress is an function of kinematical variables.

T = f(D)

Alternative approach: There is a relation between stress and
kinematical variables.

f(T,D) = 0



Section 2

Implicit constitutive relations



K. R. Rajagopal. On implicit constitutive theories. Appl. Math., Praha, 48(4):279–319, 2003 K. R. Rajagopal and

A. R. Srinivasa. On the response of non-dissipative solids. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.,

463(2078):357–367, 2007



Section 3

Examples



Examples

◮ Consistent approach to geometric linearization for non-linear
stress–strain relations.

◮ Non-dissipative solids that are not hyperelastic.

◮ Implicit constitutive relations for fluid like materials with
fading memory.

◮ Stress power-law fluids.



Subsection 1

Nonlinear stress–strain relation and geometric linearization



Governing equations – Lagrangian description

Lagrangian description, F =def
∂χ(X,t)
∂X :

ρR(X, t0) = ρ(χ(X, t), t) detF(X, t)

ρR
∂2χ

∂t2
= DivTR

TRF⊤ = FT⊤

R

All functions are, if not stated otherwise, functions of X and t, TR

denotes the first Piola stress tensor

TR =def (detF)TF−⊤.



Geometric nonlinearity

reference configuration current configuration

x1

dx

x1 = χ(X1, t)

X2

x2

X1

x2 = χ(X2, t)

dX

N

ndS

ds

Boundary condition:
Tn = s(x, t)

Transformed boundary condition:

Tn = TRN

TRN = (detF)
∣

∣

∣
F−⊤

N

∣

∣

∣
s(χ(X, t), t)



Geometric linearization
Formulate the problem in terms of displacement:

u = χ(X, t)− X

Deformation gradient:

F =
∂χ

∂X
= I +

∂u

∂X

Classical approach, e =def
1
2

(

FF⊤ − I
)

:

T = T(e)

Declare
∣

∣

∂u
∂X

∣

∣ to be a small quantity and neglect nonlinear terms:

TR =def (detF)TF−⊤ ≈ T

Unfortunately:

T = T(e) ≈ λ (div u) I+2µ

[

1

2

(

∂u

∂X
+

(

∂u

∂X

)⊤
)]

= λ (div ε) I+2µε



Geomeric linearization – implicit constitutive relation

Recall:

F =
∂χ

∂X
= I +

∂u

∂X

Alternative approach, e =def
1
2

(

FF⊤ − I
)

:

e = f (T)

Declare
∣

∣

∂u
∂X

∣

∣ to be a small quantity and neglect nonlinear terms:

TR =def (detF)TF−⊤ ≈ T

But linearization of the constitutive relation is:

ε =
1

2

(

∂u

∂X
+

(

∂u

∂X

)⊤
)

≈ f (T)



K.R. Rajagopal. On the nonlinear elastic response of bodies in the small strain range. Acta Mech., pages 1–9, 2013



Mechanical response of human patellar tendons

ε = f(T(0), t) +

∫ t

s=0

∂f

∂T
(T(s), t − s)

dT

ds
ds

A. Muliana, K. R. Rajagopal, and A. S. Wineman. A new class of quasi-linear models for describing the nonlinear

viscoelastic response of materials. Acta Mech., 224(9):2169–2183, 2013



Subsection 2

Non-dissipative solids that are not hyperelastic



Classical approach, e =def
1
2

(

FF⊤ − I
)

:

T = T(e)

Alternative approach, E =def
1
2

(

F⊤F − I
)

, SR = F−1TR:

f(SR,E) = 0

Taking time derivative yields:

g(SR,E)
dSR

dt
+ h(SR,E)

dE

dt
= 0



Simple one dimensional model ψ(σ, ε) = 0

dσ

dt
=
σ − ∂ψ(σ,ε)

∂ε
∂ψ
∂σ

(σ, ε)

dε

dt

ψ(σ, ε) =def a1σ
2 + a2ε

2 + a3σε+ a4σ + a5ε

dσ

dt
=

(1− a3)σ − 2a2ε− a5
2a1σ + a3ε+ a4

dε

dt



K. R. Rajagopal and A. R. Srinivasa. On the response of non-dissipative solids. Proc. R. Soc. Lond., Ser. A, Math.

Phys. Eng. Sci., 463(2078):357–367, 2007



An implicit elastic theory for lung parenchyma

Alan D. Freed and Daniel R. Einstein. An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci.,

62(0):31–47, 2013



An implicit elastic theory for lung parenchyma

Alan D. Freed and Daniel R. Einstein. An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci.,

62(0):31–47, 2013



Subsection 3

Implicit constitutive relations for fluids with fading memory



Fading memory

Explicit formula for Cauchy stress:

T = −pI + F+∞

s=0(Ct (t − s))

Bernard D. Coleman and Walter Noll. An approximation theorem for functionals, with applications in continuum

mechanics. Arch. Ration. Mech. Anal., 6:355–370, 1960

Implicit relation between the histories:

H+∞

s=0 (T(t − s),Ct (t − s)) = 0

V. Pr̊uša and K. R. Rajagopal. On implicit constitutive relations for materials with fading memory. J. Non-Newton.

Fluid Mech., 181–182:22–29, 2012



Independent variables

[. . . ] the properties of a material element may depend
upon the previous rheological states through which that
element has passed, but not in any way on the states of
neighbouring elements and not on the motion of the
element as a whole in the space.

[. . . ] only those tensor quantities need to be considered
which have a significance for the material element
independent of its motion as a whole in space.

J. G. Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

200(1063):523–541, 1950



Convected coordinate system

eŷ
ξ3

ξ2

ξ1

τ = t− s

τ = t

χ

X

eẑ

ex̂

x = χ(X, t)



Special form of the general implicit constitutive relation

π = −πI + σ

0 = G+∞

s=0 (γ(ξ, t − s)− I,σ(ξ, t − s))



Slow history/fading memory

t− s

t− αs̄

(x, t− s)

t



Plan
◮ Formulate the constitutive relation in the convected

coordinate system.
H. Hencky. Die Bewegungsgleichungen beim nichtstationären Fließen plastischer massen. Z. Angew. Math.

Mech., 5:144–146, 1925

◮ Formulate the constitutive relation in an implicit form.
K. R. Rajagopal. On implicit constitutive theories. Appl. Math., Praha, 48(4):279–319, 2003

◮ Expand the functional using an analogue of the retardation
theorem.
Bernard D. Coleman and Walter Noll. An approximation theorem for functionals, with applications in

continuum mechanics. Arch. Ration. Mech. Anal., 6:355–370, 1960

◮ Use representation theorems for isotropic linear and bilinear
functions.
C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Flüge, editor, Handbuch der

Physik, volume III/3. Springer, Berlin, 1965

◮ Transform the constitutive relation to a fixed-in-space
coordinate system.
J. G. Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

200(1063):523–541, 1950



Approximation formulae

First order:

G+∞

s=0

([

γ(ξ, t − αs̄)− I

σ(ξ, t − αs̄)− σ(ξ, t)

])

7→ b0 (Tr S) I + b1S + 2b3D + b4

(

Tr
▽

S
)

I + b5
▽

S + o (α)



Approximation formulae

Second order:

G+∞

s=0

([

γ(ξ, t − αs̄)− I

σ(ξ, t − αs̄)− σ(ξ, t)

])

7→
[

b0 (Tr S) + b4

(

Tr
▽

S
)

+ b6

(

Tr
▽▽

S
)

+ (b15 − 2b8) Tr (D)
2

+
(

b10 (Tr S)
2 + b11 Tr (S)

2
)

+

(

b18

(

Tr
▽

S
)2

+ b19 Tr
(

▽

S
)2
)

+b23 Tr
(

D
▽

S
)

+
(

b27 Tr STr
▽

S + b28 Tr
(

S
▽

S
))

+ b33 Tr (SD)
]

I

+
[

b1 + b12 (TrS) + b30

(

Tr
▽

S
)]

S+
[

b3 + b25

(

Tr
▽

S
)

+ b34 (Tr S)
]

D

+ b13 (S)
2 + b17 (D)

2 + b36 (SD + DS)

+ b9
▽

D +
[

b5 + b20

(

Tr
▽

S
)

+ b29 (Tr S)
]

▽

S + b21

(

▽

S
)2

+ b26

(

D
▽

S +
▽

SD
)

+ b31

(

S
▽

S +
▽

SS
)

+ b7
▽▽

S + o
(

α2
)



Rate type models

T = −πI + S

J. G. Oldroyd. Non-newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc.

A-Math. Phys. Eng. Sci., 245(1241):278–297, 1958

S + λ1
▽

S +
λ3

2
(DS + SD) +

λ5

2
(Tr S)D +

λ6

2
(S : D) I

= −µ

(

D + λ2
▽

D + λ4D
2 +

λ7

2
(D : D) I

)

N. Phan Thien. Non-linear network viscoelastic model. J. Rheol., 22(3):259–283, 1978

YS + λ
▽

S +
λξ

2
(DS + SD) = −µD

Y = e
−ελ

µ
Tr S

Notation:
▽

b♭ =def

db♭

dt
− [∇v]b♭ − b♭ [∇v]⊤



Subsection 4

Incompressible stress power-law fluids



Incompressible stress power law fluids

Classical power-law fluids:

T = −pI + 2µ0

(

1 + µ1 |D|
2
)m

D

Stress power-law fluids:

D = α
(

1 + β |Tδ|
2
)n

Tδ

Stress power-law fluids, linear response at infinity:

D = α
(

1 + β |Tδ|
2
)n

Tδ + γTδ

J. Málek, V. Pr̊uša, and K. R. Rajagopal. Generalizations of the Navier–Stokes fluid from a new perspective. Int. J.

Eng. Sci., 48(12):1907–1924, 2010 Christiaan Roux and K. R. Rajagopal. Shear flows of a new class of power-law

fluids. Applications of Mathematics, 58(2):153–177, 2013



Qualitative behaviour

nonmonotone

m ∈
(

−∞,− 1

2

)

limit case

m = − 1

2

shear thickening

m ∈ (0, +∞)

Navier–Stokes

m = 0

shear thinning

m ∈
(

− 1

2
, 0

)

|D|

|Tδ|

0

2µ0
√

λ

0

(a) Classical power-law type model,
T = −pI+ 2µ0

(

1 + µ1 |D |
2
)m

D .

n ∈ (0, +∞)

n = 0

n ∈
(

− 1

2
, 0

)

n = − 1

2

n ∈
(

−∞,− 1

2

)

|D|

|Tδ|

α
√

β0
0

(b) Stress power-law type model,
D = α

(

1 + β |Tδ|
2
)n
Tδ.



Y. T. Hu, P. Boltenhagen, and D. J. Pine. Shear thickening in low-concentration solutions of wormlike micelles. I.

Direct visualization of transient behavior and phase transitions. J. Rheol., 42:1185–1208, 1998
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(Data fitted by Adam Janečka and Tereza Perlácová.) Y. T. Hu, P. Boltenhagen, and D. J. Pine. Shear thickening

in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase

transitions. J. Rheol., 42:1185–1208, 1998



Constant rate of strain versus constant shear stress

experiment



Fully implicit models
Algebraic type relations:

f (T,D) = 0

One dimensional data sets can be fitted by the following function:

γ̇ =
p1σ

3 + p2σ
2 + p3σ + p4

σ2 + q1σ + q2

General relation for isotropic tensor function of T and D:

α0I + α1T + α2D + α3T
2 + α4D

2 + α5 (TD + DT)

+ α6

(

T2D + DT2
)

+ α7

(

TD2 + D2T
)

+ α8

(

T2D2 + D2T2
)

= 0

Invariants:

αi = αi

(

TrD,Tr T,TrD2,Tr T2,Tr T3,TrD2,

Tr (TD) ,Tr
(

T2D
)

,Tr
(

TD2
)

,Tr
(

T2D2
))



Section 4

Conclusion



Conclusion

◮ There exist a unifying approach to the theory of constitutive
relations in continuum mechanics.

◮ The idea of implicit constitutive relations is useful in
articulating several theoretical concepts in continuum
mechanics.

◮ There exist materials that can be described only using implicit
type constitutive relations.

◮ There exists a solid thermodynamical background for implicit
type constitutive relations.


