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Section 1

Introduction



Continuum mechanics

» Matter is a continuously distributed substance.

, 2 .
» Newton's second law, m% = F, is reformulated for the

continuously distributed substance.



Governing equations — Eulerian description

Eulerian description:

%—i—pdivv:o
p% =divT + pb
T=T"

Eulerian description, convective form:

% +div(pv) =0
)
ait" +div(pv @ v) =divT + pb

T=T"

All functions are functions of x and ¢, T is the Cauchy stress tensor.



Governing equations — Lagrangian description

Lagrangian description, F =gq¢t 8Xé§,t):

Pr(X; to) = p(x(X, t), t) det F(X, t)

9%x .
pRW = DivTgr
TRF' =FTR

All functions are, if not stated otherwise, functions of X and t, Tgr
denotes the first Piola—Kirchhoff stress tensor

TR =der (det F) TF .



Constitutive relations

» Governing equations are universally valid for all materials. (As
long as we believe that it makes sense to describe the material
in the continuum mechanics framework.)

» Properties of particular material are specified by a relation
between Cauchy stress tensor (or the first Piola—Kirchhoff
tensor) and the kinematical variables.

» Boundary conditions can be seen as a specification of
properties of material interface.



Dynamic slip model

Dynamic slip model, us =gef Vo t, o =ger (Tn) o t:

dus
— = ac

Us + As T

w

Savvas G. Hatzikiriakos. Wall slip of molten polymers. Prog. Polym. Sci., 37(4):624-643, 2012



Constitutive relations

Standard approach: Stress is an function of kinematical variables.
T = (D)

Alternative approach: There is a relation between stress and
kinematical variables.
f(T,D) =0



Section 2

Implicit constitutive relations
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Figure 1. A simple mechanical example of a spring mass system with a stiffening spring in parallel
with an inextensible string. (@) Initial state with unstretched spring and slack string. (b) The
response of the spring to an applied load demonstrating the maximum extension. (¢) Resulting

stress versus strain curve.

K. R. Rajagopal. On implicit constitutive theories. Appl. Math., Praha, 48(4):279-319, 2003 K. R. Rajagopal and

A. R. Srinivasa. On the response of non-dissipative solids. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.,

463(2078):357-367, 2007



Section 3

Examples



Examples

» Consistent approach to geometric linearization for non-linear
stress—strain relations.

» Non-dissipative solids that are not hyperelastic.

» Implicit constitutive relations for fluid like materials with
fading memory.

» Stress power-law fluids.



Subsection 1

Nonlinear stress—strain relation and geometric linearization



Governing equations — Lagrangian description

Lagrangian description, F =gq¢t 8Xé§,t):

Pr(X; to) = p(x(X, t), t) det F(X, t)

9%x .
pRW = DivTgr
TRF' =FTR

All functions are, if not stated otherwise, functions of X and t, Tgr
denotes the first Piola stress tensor

TR =der (det F) TF .



Geometric nonlinearity

= x(X1,1)
reference configuration current configuration
Boundary condition:
Tn =s(x,t)

Transformed boundary condition:
Tn=TgN
TrN = (det[) ‘[F TN‘ (X, t), t)



Geometric linearization
Formulate the problem in terms of displacement:

u= X(X> t) - X
Deformation gradient:

_Ox Ou
“ax T ax

Classical approach, e =gef % ([F[FT — U):

F

T=T(e)
Declare ‘g—;‘ to be a small quantity and neglect nonlinear terms:

TR =der (detF)TF~ " ~ T

Lfou  (ou)'
2 \oX oX

Unfortunately:

T=T(e) = A(divu) 1424 = A(dive) [4+2pue




Geomeric linearization — implicit constitutive relation

Recall:
_0x _y Ou

[F—ax—ﬂ-i-a—x

Alternative approach, e =gef 5 (FF' —1):
e =f(T)
Declare ‘g—;‘ to be a small quantity and neglect nonlinear terms:

TR =qef (detP)TF~ " = T

But linearization of the constitutive relation is:

(E ()0



+ experimental data
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Fig. 1 Strain-stress relation for a Gum metal alloy (Figure is taken from the paper by Saito et al. [29]

K.R. Rajagopal. On the nonlinear elastic response of bodies in the small strain range. Acta Mech., pages 1-9, 2013



Mechanical response of human patellar tendons
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Fig. 5 Response of human patellar tendons under a ramp loadings with a constant strain rate and b stress relaxation

e = £(T(0), t) +

‘o
=0 OT

(T(s), £ s)%ds

A. Muliana, K. R. Rajagopal, and A. S. Wineman. A new class of quasi-linear models for describing the nonlinear

viscoelastic response of materials. Acta Mech., 224(9):2169-2183, 2013



Subsection 2

Non-dissipative solids that are not hyperelastic



Classical approach, e =gef % ([F[FT — U):

T="T(e)
Alternative approach, E =qef 5 ([FT ) Sp =F1Tg:
f(Sr,E) =0
Taking time derivative yields:
dSr
(SRv ) (SR> [E)

dt



Simple one dimensional model ¥(o,e) =0

do o — _aqp(gc;,s) de

At P(oe) dt

P(0,€) =qef 2102 + ape? + a3oe + ano + ase

do (1 —a3)o —2axe —asde
dt 2a10 + aze + a4 dt
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Figure 2. Stress-strain response of the non-dissipative material, whose implicit constitutive
equation is given by equation (3.11) with constants given by a;=0.01, ap=—0.1, a3=1.1, a,=0.1
and a;= —0.1. Note the fact that the compressive response is multivalued.

K. R. Rajagopal and A. R. Srinivasa. On the response of non-dissipative solids. Proc. R. Soc. Lond., Ser. A, Math.

Phys. Eng. Sci., 463(2078):357-367, 2007



An implicit elastic theory for lung parenchyma
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Fig. 2. Bulk tangent modulus K for canine lung. Data are from Lai-Fook et al. (1976) and Lai-Fook (1979) and are tabulated in Table 2. Correlations are from
Egs. (25) and (31) where % =4 cm H,0 and k =7 cm H,0.

Alan D. Freed and Daniel R. Einstein. An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci.,

62(0):31-47, 2013



An implicit elastic theory for lung parenchyma
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Fig. 4. Elastic tangent modulus E of Young for canine lung. Data are from Lai-Fook et al. (1976) and are tabulated in Table 2. A correlation of these data to the
model of Eq. (47) are drawn for s =1.5 cm H,0 and f = 3.85.

Alan D. Freed and Daniel R. Einstein. An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci.,

62(0):31-47, 2013



Subsection 3

Implicit constitutive relations for fluids with fading memory



Fading memory

Explicit formula for Cauchy stress:
T=—pl+FL5(Cc (¢ 5))

Bernard D. Coleman and Walter Noll. An approximation theorem for functionals, with applications in continuum

mechanics. Arch. Ration. Mech. Anal., 6:355-370, 1960

Implicit relation between the histories:
H 55 (T(t—5),Co(t—5)) =0

V. Priga and K. R. Rajagopal. On implicit constitutive relations for materials with fading memory. J. Non-Newton.

Fluid Mech., 181-182:22-29, 2012



Independent variables

[ .. ] the properties of a material element may depend
upon the previous rheological states through which that
element has passed, but not in any way on the states of
neighbouring elements and not on the motion of the
element as a whole in the space.

[- .. ] only those tensor quantities need to be considered
which have a significance for the material element
independent of its motion as a whole in space.

J. G. Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

200(1063):523-541, 1950



Convected coordinate system

T=t—S5



Special form of the general implicit constitutive relation

n=-nl+o
(D — @;’—208 (6(€7t_5) - [I,(D'(g,t—S))



Slow history /fading memory

o(x,t—s)




Plan

Formulate the constitutive relation in the convected
coordinate system.

H. Hencky. Die Bewegungsgleichungen beim nichtstationaren FlieBen plastischer massen. Z. Angew. Math.
Mech., 5:144-146, 1925

Formulate the constitutive relation in an implicit form.

K. R. Rajagopal. On implicit constitutive theories. Appl. Math., Praha, 48(4):279-319, 2003

Expand the functional using an analogue of the retardation
theorem.

Bernard D. Coleman and Walter Noll. An approximation theorem for functionals, with applications in
continuum mechanics. Arch. Ration. Mech. Anal., 6:355-370, 1960

Use representation theorems for isotropic linear and bilinear
functions.

C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Fliige, editor, Handbuch der
Physik, volume 111/3. Springer, Berlin, 1065

Transform the constitutive relation to a fixed-in-space
coordinate system.

J. G. Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci.,

200(1063):523-541, 1950



Approximation formulae

First order:

®+oo<|: @(g’t_ag)_l] :|>
s=0 0(57 t— ag) - 0(57 t)
s bo (Tr )1 4 byS + 2b3D + by (Tr%) I+ bsS + 0 (a)



Approximation formulae

Second order:

o155 ([o( ) D atern))
o [bo (TrS) + by (Tré) + be (Tr‘VSV> + (bys — 2bg) Tr (D)?
+ (bm (TrS)? + by Tr (8)2) + (blg (Tw%)z ¥ bio Tr (§>2>
Fbay Tr ([D%) v <b27 TrSTrS + bog Tr (Sé)) ¥ by Tr (SD)} n
n [bl + b1 (TrS) + bsg (Tr%)} Sy [bg, + bos (ﬂ%) + bga (Tr 8)} D
+ b13(S)? 4 b7 (D)? + bz (SD + DS)
4 boD + [bg, + bag (Tr %) + bog (TrS)] S+ by (%)2

+ bz (DS + D) + b3y (85 + 55) + b5 + 0 (a?)



Rate type models

T=-xl+S

J. G. Oldroyd. Non-newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc.

A-Math. Phys. Eng. Sci., 245(1241):278-297, 1958

8+A£+%(DS+SD)+%(T@)D+ﬁ(s D)1

v A7
:—M<ID+)\2|D+)\4[D2+7(|DZ|D)”>

N. Phan Thien. Non-linear network viscoelastic model. J. Rheol., 22(3):259-283, 1978

A§

Y5138+ 25 (DS +5D) = -
Y — e—a% Trs
Notation:
Y d
D= o B "

dt



Subsection 4

Incompressible stress power-law fluids



Incompressible stress power law fluids

Classical power-law fluids:

S

2 m
T = —pl+2u0 (1+ 11 |DP?)
Stress power-law fluids:
2 n
D=a(1+8[Ts?) T
Stress power-law fluids, linear response at infinity:

n
D=a (1 +ﬁ|1I5|2) Ts +Ts

J. Malek, V. PriZa, and K. R. Rajagopal. Generalizations of the Navier—Stokes fluid from a new perspective. Int. J.
Eng. Sci., 48(12):1907-1924, 2010 Christiaan Roux and K. R. Rajagopal. Shear flows of a new class of power-law

fluids. Applications of Mathematics, 58(2):153-177, 2013



Qualitative behaviour

m € (0,400)
shear thickening

me (~4.0)
shear thinning
1
m=-}
limit case

(a)
T =

Classical power-law type model,
—pI+2p0 (1+m [D?)"D.

| né(-o0-1)

[Tsl |
n € (0,+00)

0 &
D]

(b) Stress power-law type model,
D=a(l+a|1s)" Ts.
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FIG. 2. Summary of the steady state rheology for constant applied stress (solid circles) and shear rate (open

squares). The dashed lines indicate the different rheological regimes of behavior. The small open circles locate
the final stress/shear-rate pairs for the quenches plotted in Fig. 16.

Y. T. Hu, P. Boltenhagen, and D. J. Pine. Shear thickening in low-concentration solutions of wormlike micelles. I.

Direct visualization of transient behavior and phase transitions. J. Rheol., 42:1185-1208, 1998



5= (a1 + 8o = 0y500)" +0)(& — 7yia)

o @ =181.2401

£ = 0.0019862
8 n 24.5725
§ = 32.4491

Oyiaa = 0.22756
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(c) Constant “rate of strain”.

(Data fitted by Adam Janetka and Tereza Perldcova.) Y. T. Hu, P. Boltenhagen, and D. J. Pine. Shear thickening
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(d) Constant shear stress.

in low-concentration solutions of wormlike micelles. |. Direct visualization of transient behavior and phase

transitions. J. Rheol., 42:1185-1208, 1998




Constant rate of strain versus constant shear stress
experiment




Fully implicit models
Algebraic type relations:

f(T,D) =0

One dimensional data sets can be fitted by the following function:

4= p10° + p0? + p3o + pa
02+ g0+ g

General relation for isotropic tensor function of T and D:

aol + a1 T+ aaD + a3 T? + a4D? + a5 (TD + DT)
+ ag (T’D + DT?) + a7 (TD? + D°T) + ag (T°D? + D*T?) = 0

Invariants:

a; = a; (TrD, Tr T, Tr D2, Tr T2, Tr T3, Tr D?,
Tr(TD), Tr (T?D) , Tr (TD?) , Tr (T°D?))
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Conclusion



Conclusion

» There exist a unifying approach to the theory of constitutive
relations in continuum mechanics.

» The idea of implicit constitutive relations is useful in
articulating several theoretical concepts in continuum
mechanics.

> There exist materials that can be described only using implicit
type constitutive relations.

» There exists a solid thermodynamical background for implicit
type constitutive relations.



