The Effect of Rough Walls on Laminar Flows

works with

A. Basson, N. Masmoudi, A.L. Dalibard, D. Bucur, and M. Bonnivard

David Gérard-Varet

IMJ, Université Paris 7

1. Setting of the problem

<u>Motivation</u>: Drag reduction in microfluidics.

<u>Issue</u>: to make fluids flow through very small devices.

Minimizing the drag at the walls is important.

Many theoretical and experimental works.

[Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results are still debated.

Maths may help, notably through a homogenization approach.

2. A simple model

2D rough channel:
$$\Omega^{\varepsilon} = \Omega \cup \Sigma \cup R^{\varepsilon}$$

Ω

$$R^{\varepsilon}$$
 Σ

- $ightharpoonup \Omega$: smooth part: $\mathbb{R} \times (0,1)$.
- ▶ R^{ε} : rough part, *typical size* $\varepsilon \ll 1$.

$$R^{\varepsilon} = \{x = (x_1, x_2), \quad 0 > x_2 > \varepsilon \omega(x_1/\varepsilon)\}$$

 ω with values in (-1,0), and K-Lipschitz.

▶ Σ : interface: $\mathbb{R} \times \{0\}$.

Stationary Navier-Stokes, with given flow rate:

$$\begin{cases} u \cdot \nabla u - \Delta u + \nabla p = 0, & x \in \Omega^{\varepsilon}, \\ \operatorname{div} u = 0, & x \in \Omega^{\varepsilon}, \\ u|_{\partial \Omega^{\varepsilon}} = 0, & \int_{\sigma} u_{1} = \phi, \end{cases}$$
(NS^{\varepsilon})

with $\phi > 0$, σ vertical cross-section.

Homogenization problem, as $\varepsilon \to 0$.

<u>Goal</u>: To get rid the oscillations, that is to replace Ω^{ε} by Ω .

Question: What is the effective boundary condition at Σ ?

Effective = regular in ε .

3. Results

a) Zeroth order B.C.: Dirichlet (no slip)

<u>Idea</u>: $u^{\varepsilon} \approx u_D$

where u_D is the solution of Navier-Stokes in Ω , with wall law

$$u|_{\Sigma} = 0.$$

Solution: Poiseuille Flow:

$$u_D = u_D(x_2) = (6\phi x_2(1-x_2), 0).$$

Theorem 1 : For ϕ small enough, (NS $^{\varepsilon}$) has a unique solution u^{ε} in $H^1_{uloc}(\Omega^{\varepsilon})$. Moreover,

$$||u^{\varepsilon} - u_{D}||_{H^{1}_{uloc}(\Omega)} \leq C\sqrt{\varepsilon},$$

$$||u^{\varepsilon} - u_{D}||_{L^{2}_{uloc}(\Omega)} \leq C\varepsilon.$$

The limit boundary condition is no slip.

Question: Can we do better?

Can we detect slip at first order in ε ?

b) First order BC: Navier condition (slip condition)

Two ideas behind this Navier condition.

Idea 1:
$$u^{\varepsilon} \approx u_D + 6\phi \varepsilon v\left(\frac{x}{\varepsilon}\right)$$
,

v = v(y): Boundary layer corrector. Cancels the trace of u_D at Γ^{ε} .

$$\Omega_{bl}$$

$$O(1)$$
 $O(1)$

Defined on $\Omega^{bl} := \{y_2 > \omega(y_1)\}$. Formally,

$$\begin{cases}
-\Delta v + \nabla p = 0, & y \in \Omega^{bI}, \\
\operatorname{div} v = 0, & y \in \Omega^{bI}, \\
v(y) = (-\omega(y_1), 0), & y \in \partial \Omega^{bI}.
\end{cases}$$
(BL)

Idea 2: The boundary layer generates a non-zero mean flow

$$v \to v^{\infty} = (\alpha, 0)$$
, as $y_2 \to +\infty$, for some $\alpha > 0$.

Consequence: Formal expansion yields

$$u^{\varepsilon} \approx u_D + 6\phi\varepsilon(\alpha,0) + o(\varepsilon)$$
 in L^2

A better approximation should be the solution u_N of NS in Ω with Navier boundary condition:

$$u_2|_{\Sigma} = 0, \quad u_1|_{\Sigma} = \varepsilon \alpha \partial_2 u_1|_{\Sigma}.$$

Pb: To make these formal ideas rigorous!

The analysis of system (BL) is difficult.

- Well-posedness:
 No tangential decay at infinity. Requires local bounds.
 No Poincaré's inequality.
 No maximum principle, no Harnack's inequality.
- ▶ Behaviour as $y_2 \rightarrow +\infty$?

One easier setting: periodic roughness. [Achdou et al, Jäger et al]

- ▶ Solvability: Variational formulation in a space of functions periodic with respect to y_1 .
- ▶ $y_2 \to +\infty$: Fourier series in y_1 . Convergence at exponential rate of v to some $(\alpha, 0)$.

General setting: much harder.

- Well-posedness holds for general ω .
- Convergence of the boundary layer flow is false in general. Requires some *ergodicity properties*. No speed of convergence in general.

Example: ω stationary ergodic process, with values in (-1,0), uniformly lipschitz.

Theorem 2: There exists some $\alpha > 0$ such that:

$$\|u^{\varepsilon}-u_{N}\|_{L^{2}_{uloc}(P\times\Omega)}=o(\varepsilon)$$

with

$$||f||_{L^2_{uloc}(P\times\Omega)}^2:=\sup_t\mathbb{E}\int_{\Omega\cap\{|x_1-t|<1\}}|f|^2dx\,d\mu$$

Remarks:

- ▶ Almost sure estimates also available (weaker than L_{uloc}^2).
- $o(\varepsilon)$ for Navier, instead of $O(\varepsilon)$ for Dirichlet.
- ▶ No rate in general. Rate in special cases:
 - periodic : $O(\varepsilon^{3/2})$
 - stationary with strong decay of correlations: $O(\varepsilon^{3/2}|\ln \varepsilon|)$.

4. Real or apparent slip?

Summary: Rigorous derivation of a Navier condition at Σ .

Question: Does it prove that roughness enhances slip?

Not clear ! The positivity of α is linked to the position of our artificial boundary (namely *above the humps*).

If we keep the artificial boundary at $x_2 = 0$ and shift the roughness, things change.

Example: periodic roughness. One can show [Achdou et al, Jäger et al]

$$\alpha(\omega + h) = \alpha(\omega) - h, \quad \forall h,$$

 $\sup -\omega \leq \alpha(\omega).$

In our setting : $\omega < 0$, so $\alpha > 0$.

Only meaningful case: $<\omega>=$ 0: same averaged flow rate in the rough and smooth channels.

Problem: Find the maximizer and maximum of

$$\tilde{\alpha}(\omega) := \alpha(\omega) - \langle \omega \rangle$$

among all rough profiles $\omega \in W^{1,\infty}(\mathbb{T})$ $(W^{1,\infty}(\mathbb{T}^2)$ in 3d).

Proposition: Maximum slip coefficient is achieved for flat surfaces:

$$\max_{\omega} \tilde{\alpha}(\omega) = \tilde{\alpha}(0) = 0.$$

<u>Conclusion</u>: apparent slip, not real.

5. Hydrophobic rough surfaces

Back to our microfluidics problem:

May rough walls generate substantial slip?

<u>Previous study</u>: suggests the answer is no, starting from a Dirichlet condition.

Closer look at some papers: cavitation phenomenon.

- Rough hydrophobic surfaces generate bubbles in their hollows.
- ▶ The fluid slips above hollows, sticks at bumps.

Suggestion: To consider a model with a *flat boundary, alternating* zones of *slip* and no-slip, with arbitrary relative areas.

Example: $\Omega = \mathbb{T}^2 \times \mathbb{R}_+$ (3d model).

- Stokes in Ω , with some forcing.
- ▶ Boundary $\mathbb{T}^2 \times \{0\}$ divided in $\sim \varepsilon^{-2}$ square cells of side ε :

$$C_k^{\varepsilon} := \varepsilon (k + C), \quad C = [0, 1[^2, k \in [[0, \varepsilon^{-1} - 1]]^2]$$

with patches

$$P_k^{\varepsilon} = \varepsilon(k + P^{\varepsilon}), \quad P^{\varepsilon} \subset C.$$

▶ B.C. is pure slip at $\cup (C_k^{\varepsilon} \setminus P_k^{\varepsilon})$, no-slip at $\cup P_k^{\varepsilon}$,

 $\underline{\mathsf{Question}}$: Averaged boundary condition as $\varepsilon \to 0$?

 $\underline{\mathsf{Key:}} \ \mathsf{Volume} \ \mathsf{fraction} \ \mathsf{of} \ \mathsf{no}\text{-}\mathsf{slip:} \ \ \phi^\varepsilon = |P^\varepsilon| \in [0,1].$

Two main results:

- 1. One for *patches*: broadly, $P^{\varepsilon} \in C$ smooth open set.
- 2. One for *riblets*: $P^{\varepsilon} = [0,1] \times I^{\varepsilon}$, I^{ε} subinterval.

"Theorem for patches"

- If $\phi^{\varepsilon} >> \varepsilon^2$, the limit condition is Dirichlet.
- If $\phi^{\varepsilon} << \varepsilon^{2}$, the limit condition is pure slip.
- If $\phi^{\varepsilon} \sim \varepsilon^2$, the limit condition is Navier.

"Theorem for riblets": C > 0 arbitrary.

- If $\phi^{\varepsilon} >> \exp(-C/\varepsilon)$, the limit condition is Dirichlet.
- If $\phi^{\varepsilon} << \exp(-C\varepsilon)$, the limit condition is pure slip.
- If $\phi^{\varepsilon} \sim \exp(-C/\varepsilon)$, the limit condition is Navier.

Remarks:

- ➤ Significant slip is possible. But the relative area of the no-slip zone needs to be very small (unrealistic ?).
- ▶ The riblet geometry is less efficient in improving slip.

Remarks:

- ➤ Significant slip is possible. But the relative area of the no-slip zone needs to be very small (unrealistic ?).
- ▶ The riblet geometry is less efficient in improving slip.

Proof: More or less already done! Think of the simpler problem:

$$\Delta u^\varepsilon = 0 \text{ in } \Omega, \quad \partial_\nu u^\varepsilon = 1 \text{ in } \cup (\mathit{C}_k \setminus \mathit{P}_k^\varepsilon), \quad u^\varepsilon = 0 \text{ in } \cup \mathit{P}_k^\varepsilon.$$

Homogenization of the fractional Laplacian in domains with holes.

Allows to connect to the existing litterature [Cioranescu et al, 82], [Allaire, 91], [Caffarelli-Mellet, 08].