The Effect of Rough Walls on Laminar Flows

works with

A. Basson, N. Masmoudi, A.L. Dalibard, D. Bucur, and M. Bonnivard

David Gérard-Varet

IMJ, Université Paris 7

Motivation : Drag reduction in microfluidics.

Issue: to make fluids flow through very small devices.

Minimizing the drag at the walls is important.

Many theoretical and experimental works. [Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results are still debated.

Maths may help, notably through a homogenization approach.

2. A simple model

2D rough channel: $\Omega^{\varepsilon} = \Omega \cup \Sigma \cup R^{\varepsilon}$

$$
\begin{array}{c}\n\Omega \\
\longleftarrow \\
\sim\n\end{array}
$$

•
$$
\Omega
$$
 : smooth part: $\mathbb{R} \times (0,1)$.

 \blacktriangleright R^{ε} : rough part, typical size $\varepsilon \ll 1$.

$$
R^{\varepsilon} = \{x = (x_1, x_2), \quad 0 > x_2 > \varepsilon \omega(x_1/\varepsilon)\}
$$

 $ω$ with values in $(-1, 0)$, and *K*-Lipschitz.

$$
\blacktriangleright \Sigma : interface: \mathbb{R} \times \{0\}.
$$

Stationary Navier-Stokes, with given flow rate:

$$
\begin{cases}\n u \cdot \nabla u - \Delta u + \nabla p = 0, & x \in \Omega^{\varepsilon}, \\
 \text{div } u = 0, & x \in \Omega^{\varepsilon}, \\
 u|_{\partial \Omega^{\varepsilon}} = 0, & \int_{\sigma} u_1 = \phi,\n\end{cases}
$$

with $\phi > 0$, σ vertical cross-section.

Homogenization problem, as $\varepsilon \to 0$.

Goal: To get rid the oscillations, that is to replace Ω *^ε* by Ω.

Question: What is the effective boundary condition at Σ ? Effective $=$ regular in ε .

(NS*^ε*)

3. Results

a) Zeroth order B.C. : Dirichlet (no slip)

Idea: $u^ε \approx u_D$

where u_D is the solution of Navier-Stokes in $Ω$, with wall law

$$
|u|_{\Sigma} = 0.
$$

Solution: Poiseuille Flow :

$$
u_D = u_D(x_2) = (6\phi x_2(1-x_2), 0).
$$

Theorem 1 : For *φ* small enough, [\(NS](#page-3-0)*^ε*) has a unique solution u*^ε* in $H^1_{uloc}(\Omega^{\varepsilon})$. Moreover,

$$
||u^{\varepsilon}-u_D||_{H^1_{uloc}(\Omega)} \leq C\sqrt{\varepsilon},
$$

$$
||u^{\varepsilon}-u_D||_{L^2_{uloc}(\Omega)} \leq C\varepsilon.
$$

The limit boundary condition is no slip.

```
Question: Can we do better ?
```
Can we detect slip at first order in *ε* ?

b) First order BC: Navier condition (slip condition) Two ideas behind this Navier condition.

$$
\underline{\mathsf{Ideal}}: \qquad \qquad u^{\varepsilon} \approx u_D + 6\phi \varepsilon \mathsf{v}\left(\tfrac{x}{\varepsilon}\right),
$$

 $v = v(y)$: *Boundary layer corrector*. Cancels the trace of u_D at Γ^{ε} .

 $\Omega_{\rm bl}$

Defined on Ω^{bl} := $\{y_2 > \omega(y_1)\}$. Formally,

$$
\begin{cases}\n-\Delta v + \nabla p = 0, & y \in \Omega^{bl}, \\
\text{div } v = 0, & y \in \Omega^{bl}, \\
v(y) = (-\omega(y_1), 0), & y \in \partial \Omega^{bl}.\n\end{cases}
$$
\n(BL)

Idea 2: The boundary layer generates a non-zero mean flow

$$
v \to v^{\infty} = (\alpha, 0), \quad \text{ as } y_2 \to +\infty, \text{ for some } \alpha > 0.
$$

Consequence: Formal expansion yields

$$
u^{\varepsilon} \approx u_D + 6\phi \varepsilon(\alpha, 0) + o(\varepsilon) \quad \text{in } L^2
$$

A better approximation should be the solution u_N of NS in Ω with Navier boundary condition:

$$
u_2|_{\Sigma} = 0, \quad u_1|_{\Sigma} = \varepsilon \alpha \partial_2 u_1|_{\Sigma}.
$$

Pb: To make these formal ideas rigorous ! The analysis of system [\(BL\)](#page-6-0) is difficult.

 \blacktriangleright Well-posedness:

No tangential decay at infinity. Requires local bounds. No Poincaré's inequality. No maximum principle, no Harnack's inequality.

► Behavior as
$$
y_2 \rightarrow +\infty
$$
 ?

One easier setting: periodic roughness. [Achdou et al, Jäger et al]

- \triangleright Solvability: Variational formulation in a space of functions periodic with respect to v_1 .
- \triangleright y₂ $\rightarrow +\infty$: Fourier series in y₁. Convergence at exponential *rate* of v to some $(\alpha, 0)$.

General setting: much harder.

- \triangleright Well-posedness holds for general ω .
- \triangleright Convergence of the boundary layer flow is false in general. Requires some ergodicity properties. No speed of convergence in general.

Example: ω stationary ergodic process, with values in $(-1,0)$, uniformly lipschitz.

Theorem 2: There exists some $\alpha > 0$ such that:

$$
||u^{\varepsilon}-u_N||_{L^2_{uloc}(P\times\Omega)}=o(\varepsilon)
$$

with

$$
||f||^2_{L^2_{uloc}(P\times\Omega)}:=\sup_t \mathbb{E}\int_{\Omega\cap\{|x_1-t|<1\}}|f|^2dx\,d\mu
$$

Remarks:

- Almost sure estimates also available (weaker than L_{uloc}^2).
- \blacktriangleright $o(\varepsilon)$ for Navier, instead of $O(\varepsilon)$ for Dirichlet.
- \triangleright No rate in general. Rate in special cases:
	- periodic : O(*ε* 3*/*2)
	- stationary with strong decay of correlations: O(*ε* 3*/*2 | ln *ε*|).

Summary: Rigorous derivation of a Navier condition at Σ . Question: Does it prove that roughness enhances slip ?

Not clear ! The positivity of α is linked to the position of our artificial boundary (namely above the humps).

If we keep the artificial boundary at $x_2 = 0$ and shift the roughness, things change.

Example: periodic roughness. One can show [Achdou et al, Jäger et al]

$$
\alpha(\omega + h) = \alpha(\omega) - h, \quad \forall h,
$$

\n
$$
\sup -\omega \leq \alpha(\omega).
$$

In our setting : *ω <* 0*,* so *α >* 0.

Only meaningful case: $\langle \omega \rangle = 0$: same averaged flow rate in the rough and smooth channels.

Problem: Find the maximizer and maximum of

$$
\tilde{\alpha}(\omega) \ := \ \alpha(\omega) - \ < \omega >
$$

among all rough profiles $\omega \in W^{1,\infty}(\mathbb{T})$ $\, (W^{1,\infty}(\mathbb{T}^2)$ in 3d).

Proposition: Maximum slip coefficient is achieved for flat surfaces:

$$
\max_{\omega} \tilde{\alpha}(\omega) = \tilde{\alpha}(0) = 0.
$$

Conclusion: apparent slip, not real.

5. Hydrophobic rough surfaces

Back to our microfluidics problem:

May rough walls generate substantial slip ?

Previous study: suggests the answer is no, starting from a Dirichlet condition.

Closer look at some papers: cavitation phenomenon.

- \triangleright Rough hydrophobic surfaces generate bubbles in their hollows.
- \blacktriangleright The fluid slips above hollows, sticks at bumps.

Suggestion: To consider a model with a flat boundary, alternating zones of slip and no-slip, with arbitrary relative areas.

Example: $\Omega = \mathbb{T}^2 \times \mathbb{R}_+$ (3d model).

 \triangleright Stokes in Ω, with some forcing.

 \blacktriangleright Boundary $\mathbb{T}^2 \times \{0\}$ divided in $\sim \varepsilon^{-2}$ square cells of side ε :

$$
C_k^{\varepsilon} := \varepsilon (k + C), \quad C = [0,1[^2, \quad k \in [[0,\varepsilon^{-1} - 1]]^2
$$

with patches

$$
P_k^{\varepsilon} = \varepsilon (k + P^{\varepsilon}), \quad P^{\varepsilon} \subset C.
$$

► B.C. is *pure slip at* \cup $(C_k^{\varepsilon} \setminus P_k^{\varepsilon})$, *no-slip at* $\cup P_k^{\varepsilon}$,

Question : Averaged boundary condition as *ε* → 0 ?

Key: Volume fraction of no-slip: $\phi^{\varepsilon} = |P^{\varepsilon}| \in [0,1].$

Two main results:

- 1. One for *patches*: broadly, $P^{\varepsilon} \in C$ smooth open set.
- 2. One for *riblets*: $P^{\varepsilon} = [0,1] \times I^{\varepsilon}$, I^{ε} subinterval.

"Theorem for patches"

- \blacktriangleright If $\phi^{\varepsilon} >> \varepsilon^2$, the limit condition is Dirichlet.
- \blacktriangleright If $\phi^\varepsilon << \varepsilon^2$, the limit condition is pure slip.
- \blacktriangleright If $\phi^{\varepsilon} \sim \varepsilon^2$, the limit condition is Navier.

"Theorem for riblets": C *>* 0 arbitrary.

- **►** If ϕ^{ε} >> exp($-C/\varepsilon$), the limit condition is Dirichlet.
- **►** If ϕ^{ε} << exp($-C\varepsilon$), the limit condition is pure slip.
- **►** If $\phi^{\varepsilon} \sim \exp(-C/\varepsilon)$, the limit condition is Navier.

Remarks:

- \triangleright Significant slip is possible. But the relative area of the no-slip zone needs to be very small (unrealistic ?).
- \blacktriangleright The riblet geometry is less efficient in improving slip.

Remarks:

- \triangleright Significant slip is possible. But the relative area of the no-slip zone needs to be very small (unrealistic ?).
- \triangleright The riblet geometry is less efficient in improving slip.

Proof: More or less already done ! Think of the simpler problem:

$$
\Delta u^\varepsilon=0 \text{ in } \Omega, \quad \partial_\nu u^\varepsilon=1 \text{ in } \cup (C_k\setminus P_k^\varepsilon), \quad u^\varepsilon=0 \text{ in } \cup P_k^\varepsilon.
$$

Homogenization of the fractional Laplacian in domains with holes.

Allows to connect to the existing litterature [Cioranescu et al, 82], [Allaire, 91], [Caffarelli-Mellet, 08].