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1. Setting of the problem

Motivation : Drag reduction in microfluidics.

Issue: to make fluids flow through very small devices.
Minimizing the drag at the walls is important.

Many theoretical and experimental works.
[Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not
always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results are still debated.

Maths may help, notably through a homogenization approach.
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2. A simple model

2D rough channel: Q*=QUXYX UR*®

» Q : smooth part: R x (0,1).
> R : rough part, typical size ¢ < 1.
R = {x=(x1,x), 0>x2>cw(xi/e)}
w with values in (—1,0), and K-Lipschitz.
» Y : interface: R x {0}.
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Stationary Navier-Stokes, with given flow rate:

u-Vu—Au+Vp =0, xe€Q°,
divu=0, xe&Q°,

(NS°)
U’()‘QE = 07 / u = ¢7

with ¢ > 0, o vertical cross-section.
Homogenization problem, as € — 0.
Goal: To get rid the oscillations, that is to replace Q° by Q.

Question: What is the effective boundary condition at ¥ 7

Effective = regular in €.
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a) Zeroth order B.C. : Dirichlet (no slip)

Idea:

1

u- = Up

where up is the solution of Navier-Stokes in €2, with wall law

Solution: Poiseuille Flow :

up = UD(X2) = (6(]5X2(1 — Xg),O).

Theorem 1 :  For ¢ small enough, (NS®) has a unique solution u®

in H!

uloc

(Q°). Moreover,

lu® = upllpy, (@) < CVE,
Ce.

IN

" = uolli2,_ (a)
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The limit boundary condition is no slip.

Question: Can we do better ?

Can we detect slip at first order in ¢ 7

b) First order BC: Navier condition (slip condition)

Two ideas behind this Navier condition.
Idea 1: Ut = up + 6¢ev (%),

v = v(y): Boundary layer corrector. Cancels the trace of up at I,
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Defined on Q' := {y» > w(y1)}. Formally,

—Av+Vp=0, yeQ”
divv=0, yeQ?,
v(y) = (~w(y1),0), y€aQ”.

Idea 2: The boundary layer generates a non-zero mean flow

v—v>® =(a,0), asy, — +oo, for some a > 0.

(BL)
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Consequence: Formal expansion yields

¥~ up + 6¢c(a,0) +o(e) in L2

A better approximation should be the solution uy of NS in Q with
Navier boundary condition:

’uﬂz = 0, U1’z = Eaazul‘z.‘

Pb: To make these formal ideas rigorous !

The analysis of system (BL) is difficult.

> Well-posedness:
No tangential decay at infinity. Requires local bounds.
No Poincaré’s inequality.
No maximum principle, no Harnack's inequality.

» Behaviour as y» — +o00 7
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One easier setting: periodic roughness. [Achdou et al, Jager et al|
» Solvability: Variational formulation in a space of functions
periodic with respect to yi.

> y» — 400 : Fourier series in y;. Convergence at exponential
rate of v to some (a, 0).

General setting: much harder.
» Well-posedness holds for general w.
» Convergence of the boundary layer flow is false in general.

Requires some ergodicity properties. No speed of convergence
in general.



Example: w stationary ergodic process, with values in (—1,0),
uniformly lipschitz.

Theorem 2: There exists some a > 0 such that:

Ju® = UNHL%,OC(PxQ) = o(¢)

with
f|? =supE fl2dx d
17l oy = s Qﬂ{\xl—t\<1}‘ " du

Remarks:

» Almost sure estimates also available (weaker than L2, ).

» o(e) for Navier, instead of O(g) for Dirichlet.

> No rate in general. Rate in special cases:

- periodic : O(£3/?)

- stationary with strong decay of correlations: O(£%/2|In¢l).
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4. Real or apparent slip ?

Summary: Rigorous derivation of a Navier condition at X.

Question: Does it prove that roughness enhances slip ?

Not clear | The positivity of « is linked to the position of our
artificial boundary (namely above the humps).

If we keep the artificial boundary at x, = 0 and shift the
roughness, things change.

Example: periodic roughness. One can show [achdou et al, Jiger et ol

a(w+h) = a(w)—h, Vh,
sup—w < a(w).

In our setting : w <0, so o> 0.
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Only meaningful case: < w >= 0: same averaged flow rate in the
rough and smooth channels.

Problem: Find the maximizer and maximum of

d(w) = aw) — <w>
among all rough profiles w € W1°(T) (W1°(T?) in 3d ).
Proposition: Maximum slip coefficient is achieved for flat surfaces:

max a(w) =a(0) =0.

Conclusion: apparent slip, not real.
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5. Hydrophobic rough surfaces

Back to our microfluidics problem:

May rough walls generate substantial slip ?

Previous study: suggests the answer is no, starting from a Dirichlet
condition.

Closer look at some papers: cavitation phenomenon.

» Rough hydrophobic surfaces generate bubbles in their hollows.

» The fluid slips above hollows, sticks at bumps.

Suggestion: To consider a model with a flat boundary, alternating
zones of slip and no-slip, with arbitrary relative areas.
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Example: Q = T2 x R, (3d model).

» Stokes in 2, with some forcing.

» Boundary T? x {0} divided in ~ £72 square cells of side &:

C; =ce(k+C), C=[0,1>, kel0,et—-1]7?
with patches
P; = ek + P?), P°CC.

» B.C. is pure slip at U(C}, \ P§), no-slip at UP,,

Question : Averaged boundary condition ase — 0 7

Key: Volume fraction of no-slip: ¢° = |P¢| € [0, 1].
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Two main results:
1. One for patches: broadly, P¢ € C smooth open set.
2. One for riblets: P =[0,1] x I, [¢ subinterval.

"Theorem for patches"

> If ° >> €2, the limit condition is Dirichlet.
» If o << €2, the limit condition is pure slip.

> If ¢° ~ €2, the limit condition is Navier.

"Theorem for riblets": C > 0 arbitrary.

> If ¢° >> exp(—C/¢), the limit condition is Dirichlet.

» If ¢° << exp(—Ce), the limit condition is pure slip.
» If ¢° ~ exp(—C/e), the limit condition is Navier.
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Remarks:

» Significant slip is possible. But the relative area of the no-slip
zone needs to be very small (unrealistic 7).

» The riblet geometry is less efficient in improving slip.
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Remarks:

» Significant slip is possible. But the relative area of the no-slip
zone needs to be very small (unrealistic 7).

» The riblet geometry is less efficient in improving slip.

Proof: More or less already done ! Think of the simpler problem:

Auf =0in Q, Oyu*=1in U(C\P;), uv°=0in UPL.

Homogenization of the fractional Laplacian in domains with holes.

Allows to connect to the existing litterature [Cioranescu et al, 82,
[Allaire, 91], [Caffarelli-Mellet, 08].
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