AMG

AMG - EIS

AMG - ACS

Questions

Gene computation using algebraic multigrid

(Three multigrid schemes)

Ivana Pultarová

Faculty of Mathematics and Physics, Charles University Faculty of Civil Engineering, CTU in Prague

MORE Workshop, Liblice, November 2013

KORKARYKERKER POLO

AMG

AMG - EIS

AMG - ACS **Questions**

 $^{\bullet}$ AMG

2 AMG - EIS

3 AMG - ACS

4 Questions

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

Outline

AMG

AMG - EIS

AMG - ACS

Ouestions

1. Algebraic MG for SPD problems

Let us solve

 $Ax = b$,

 $A \in \mathcal{R}^{N \times N}$, SPD and sparse.

Iterative methods act as "smoothers": residual $r^n := b - Ax^n \ll x - x^n =: e^n$, error. Let (prolongation matrix) $P \in \mathcal{R}^{N \times N_c}$, $N_c < N$,

$$
P^T A P u_c^n = P^T r^n
$$

Vector

$$
x_{new}^n = x^n + Pu_c^n
$$

is a better approximation to *x* in *A*-norm than x^n ,

 $P^T A e^n = 0.$

We need *P ^TAP* sparse, thus *P* must contain many zeros,

$$
P^T = \left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 1 & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & 0 & 1 & 1 \end{array} \right).
$$

KORKARYKERKE POLO

AMG algorithm

KORKARYKERKE POLO

AMG

AMG - EIS

AMG - ACS

Ouestions

AMG cycle (input *y*, output \tilde{y})

- 1. *q*-times $\tilde{y} := (I A)y + b$
- 2. solve $P^{T}APu = P^{T}(b A\tilde{y})$ for *u*
- 3. prolong and add $\tilde{y} := \tilde{y} + Pu$

Step 2. can be solved in a multilevel fashion.

Residual based MG scheme. Stationary method.

Error matrix $(x^{n+1} - x = M(x^n - x))$ for two levels is

$$
M = (I - A)^{q} (I - P(P^{T}AP)^{-1}P^{T}A).
$$

Always

$$
\rho(M)\leq \rho(I-A)<1.
$$

[A. Brandt, Algebraic multigrid theory: The symmetric case, 1983] [J. H. Bramble, J. E. Pasciak, J. Xu, 1991]

AMG schemes

AMG

AMG - EIS

AMG - ACS

Ouestions

2. AMG - Exact interpolation scheme (EIS)

Exact interpolation scheme (EIS) in [A. Brandt, D. Ron, Multigrid solvers and multilevel optimization strategies, 2003]

Especially, in AMG for Markov chains:

 $Bx = x$

where *B* is nonnegative $B_{ij} \ge 0$ and $e^T B = e^T$, *e* is a vector of all ones. Coarse problem:

 $RBP(v)u = u$,

where reduction matrix *R* and prolongation matrix $P(y)$, $P(y) \neq R^T$ are, for example,

$$
R = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}, \qquad P(y) = \begin{pmatrix} 1/3 & 0 \\ 2/3 & 0 \\ 0 & 2/6 \\ 0 & 3/6 \\ 0 & 1/6 \end{pmatrix} \quad \text{for} \quad y = \begin{pmatrix} 2/12 \\ 4/12 \\ 2/12 \\ 3/12 \\ 1/12 \end{pmatrix}
$$

Full reconstruction matrix $P(y)$: there exists *v* that $P(y)v = y$, no residual is transfered between levels.

K ロ K K (日 K K B K X B K X B K K K K G K C K

.

AMG - EIS algorithm

KORKARYKERKE POLO

AMG

AMG schemes

 $AMG -$ EIS

AMG - ACS

Ouestions

AMG - EIS cycle (input \tilde{y})

- 1. *q* steps of basic iteration $y := T^q y$
- 2. solve $RAP(y)u = u$ for *u*
- 3. prolong $\tilde{y} := P(y)u$

Step 2. can be solved in a multilevel fashion. No residual is transfered.

Complete reconstruction of the approximation to *x* in every cycle. Non-stationary method $x^{n+1} - x = M(x^n)(x^n - x)$.

Error matrix for two level method is

$$
M(y) = T^{q} (I - P(y)R(B - xe^{T}))^{-1} (I - P(y)R).
$$

What about $\rho(M(y))$?

[W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, 1994]

AMG

AMG - **EIS**

AMG - ACS

Questions

AMG - EIS for Markov chains - error formula

Theorem. [P, 2012] Let $L \geq 2$ and let one pre- and post-smoothing step be in all levels up to the coarsest one, $m = 1, 2, \ldots, L - 1$. Let *T* commute with *B*. The error in $n + 1$ -th cycle is

$$
x^{n+1} - \hat{x} = M(x^n) (x^n - \hat{x}),
$$

where

$$
M(x^n) = T \prod_{k=2}^{L-1} (Q_k T)(I - Q_L Z)^{-1} \sum_{k=1}^{L-1} (Q_k - Q_{k+1}) J_{k-1}
$$

+
$$
T \sum_{m=1}^{L-2} \prod_{k=2}^m (Q_k T) \sum_{k=1}^m (Q_k - Q_{k+1}) J_{k-1},
$$

where $J_0 = T$, and for $k = 1, 2, ..., L-2$

$$
J_k = (T + \sum_{j=2}^k TQ_j(T - I))T, \qquad Q_k = P(x^n)_1 P(x^n)_2 R_2 R_1
$$

KORKARYKERKER POLO

where R_k and $P(y)_k$ maps from level k to level $k-1$ and vice versa.

Convergence / divergence

KORKARYKERKE POLO

AMG

AMG - EIS

 $AMG -$ ACS

Ouestions

Divergence in general, even in local sense.

Especially for "the most nonsymmetric matrices", e.g. \tilde{C}_4 = $\sqrt{ }$ $\overline{}$ 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 \setminus $\vert \cdot$

Theorem. [P., 2012] Consider $B = \tilde{C}_{4n}$, $L = 2$. Suppose 2*n* aggregation groups, each containing two elements. Let $T = \tilde{C}_{4n}$ and $q = n$. Then

 $\rho(M(x)) > n$.

Ordering according to strong connections. Let C_N be defined by $[C_N]_{k+1,k} = 1$, $[C_N]_{1,N} = 1$ and $[C_N]_{i,j} = 0$ otherwise, e.g.

$$
C_4 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).
$$

Theorem. [P., 2009] For any *N* there exists a choice of the aggregation groups and *q* such that $\limsup_{N\to\infty} \rho(M(x)) = 2$.

AMG

AMG - EIS

AMG - ACS

Questions

Fourier analysis

KORKARYKERKE POLO

Fourier analysis enables quantitative estimates and optimal choice of parameters. *B* must have some structure - circulant.

First results for *B* cyclic. $B = C_N$, where $[C_N]_{i+1,i} = 1$ and $[C_N]_{1,N} = 1$.

Theorem. [P, 2012] Let $B = C_N$, (then $\hat{x} = e/N$). $T = \alpha B + (1 - \alpha)I$, $\#G_i = 2$. Then spectrum of the error propagation matrix $J(\hat{x})$ is

$$
\sigma(M(\hat{x})) = \{0, v_0, v_1, \ldots, v_{n-1}\},\
$$

where
$$
v_k =
$$

\n
$$
\frac{1}{2} \left(\left(1 - e^{2\pi k i/N} \right) \left(1 - \alpha + \alpha e^{-2\pi k i/N} \right)^{\mu} + \left(1 + e^{2\pi k i/N} \right) \left(1 - \alpha - \alpha e^{-2\pi k i/N} \right)^{\mu} \right).
$$

Example. $N = 100$, $T = \alpha B + (1 - \alpha)I$, $\alpha = 0.8$ and $\mu + \nu \in \{1, 2, 3, 4\}$. Spectra of $M(x)$. (The solid lines represent reference unit cycles.)

AMG AMG - **EIS** AMG - ACS **Questions**

Numerical example - Genetics

Matrix of transitions of genes (with a perturbation 10^{-5}), $N = 1200$.

Left: original *B* Middle: reordered *B* Right: $\sigma(B)$

Table: Number of IAD cycles and solution times for obtaining the accuracy 10^{-6} .

 $\alpha = 0.8$ in the iteration matrix $T = \alpha T + (1 - \alpha)I$: Fourier analysis: Three steps of basic iteration are the best (among $\{1,\ldots,4\}$ for

AMG

AMG - EIS

AMG - ACS

Questions

P. Vaněk and R. Kužel, 2013, "evolving coarse space multigrid" for eigenvalue problem (of nuclear reaction) and possibly for other nonlinear problems.

3. AMG - Adaptive coarse space (ACS)

Special matrix $P(y)$ - current approximation is augmented to P , for example,

$$
P(y) = [y|P] = \begin{pmatrix} y_1 & 1 & 0 \\ y_2 & 1 & 0 \\ y_3 & 0 & 1 \\ y_5 & 0 & 1 \\ y_5 & 0 & 1 \end{pmatrix} \in \mathcal{R}^{N \times (N_c + 1)}.
$$

Solve

 $A(x) = f(x)$.

Coarse problem:

$$
(P(u)z, A(P(u)u_c) - f(P(u)u_c)) = 0, \text{ for all } z \in \mathcal{R}^{N_c+1}
$$

K ロ K K (日 K K B K X B K X B K K K K G K C K

in some scalar product.

AMG AMG - EIS

AMG - ACS

Questions

The problem: $A(x) = f(x)$.

AMG - ACS cycle (input *y*, output \tilde{y})

- 1. *q*-times $y := S(y)y$ for the underlying problem
- 2. solve (approximatelly) $P(y)^T A (P(y)u) = P(y)^T f (P(y)u)$ for *u*
- 3. prolong $\tilde{y} := P(y)u$

Step 2. can be solved in a multilevel fashion.

Error matrix only for linear problems

$$
M(y) = (I - A)^q \left(I - P(y) (P(y)^T A P(y))^{-1} P(y)^T A \right) = M \left(I - \frac{1}{y^T A H y} y y^T A H \right)
$$

AMG - ACS algorithm

KORKARYKERKE POLO

where

$$
H = I - P(P^T A P)^{-1} P^T A.
$$

Then

$$
\rho(M(y))\leq \rho(M)<1.
$$

AMG - ACS - Example

KORKARYKERKE POLO

AMG AMG - EIS

AMG - ACS

AMG schemes

Equation, $a > 0$,

$$
\frac{d^2u}{dx^2} + u(a - u) = f, \quad u(0) = 0, \quad u(1) = a,
$$

Ouestions

finite difference discretization

$$
Au + B(u) = f(u).
$$

Let $P(y) = [y|P]$.

AMG - ACS cycle (input *y*, output \tilde{y}) 1. solve $(q\text{-times}) y := A^{-1}(f(y) - B(y))$ 2. set $u = (1, 0, \dots, 0)^T$ and iterate *r*-times $u := (P(y)^T A P(y))^{-1} P^T(y) (f(P(y)u) - B(P(y)u))$ for *u* 3. prolong $\tilde{y} := P(y)u$

AMG AMG - EIS

AMG - ACS

Questions

Table: Number of AMG - ACS cycles; (stationary iterations: 141)

20

$N_2 =$	1000	500	400	200	100	40	20
1 coarse step	Q	24	31	54	79	107	120
3 coarse steps	17	32	37	58	81	107	121
30 coarse steps	18	32	37	58	81	107	121
*	72	16	10	29	53	87	108

Table: Time; (stationary iterations: 11.5)

Questions

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

AMG schemes

AMG

AMG - EIS

AMG - ACS

Questions

AMG - EIS for Markov chains

Main question:

Does local convergence always imply global convergence ?

AMG - ACS

Analysis of local / global convergence for

- eigenvalue problem

- other nonlinear problems.