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Outline of the talk ...

• PDEs with random data

• Stochastic Galerkin and h–p adaptivity:

• estimates of the error reduction

• A proof-of-concept implementation:

• efficient linear algebra

• the IFISS MATLAB Toolbox
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elliptic PDEs with random data

Let (Ω,F ,P) be a complete probability space. We consider the

following generic operator equation

A(ξ)u(ξ) = f(ξ) ⇐⇒ A(y)u(y) = f(y) ∀y ∈ Γ

where ξ = (ξ1, ξ2, . . .) is a vector of bounded real-valued random

variables ξm : Ω → Γm ⊂ R with Γ =
∞∏

m=1
Γm.
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elliptic PDEs with random data

Let (Ω,F ,P) be a complete probability space. We consider the

following generic operator equation

A(ξ)u(ξ) = f(ξ) ⇐⇒ A(y)u(y) = f(y) ∀y ∈ Γ

where ξ = (ξ1, ξ2, . . .) is a vector of bounded real-valued random

variables ξm : Ω → Γm ⊂ R with Γ =
∞∏

m=1
Γm.

The multivariate random variable ξ generates a distribution π

satisfying π(G) = P(ξ−1(G)) for G ∈ B(Γ), which is also a

probability measure (by definition). Thus, the observations y of ξ

belong to Γ and (Γ,B(Γ), π) is a probability space.
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weak formulation | energy estimates

Define the solution space V := L2
π(Γ;H), where H is a separable

Hilbert space with norm ‖ · ‖H . The natural norm on V is

‖ · ‖V :=
(∫

Γ ‖ · ‖2H dπ(y)
)1/2

.

The weak formulation is to find u ∈ V such that

B(u, v) = F (v) ∀ v ∈ V, (⋆)

with B(u, v) :=

∫

Γ
〈A(y)u(y), v(y)〉dπ(y)

F (v) :=

∫

Γ
〈f(y), v(y)〉dπ(y).

If (⋆) is well posed then the energy norm ‖u‖B = (B(u, u))1/2 is

equivalent to the (natural) norm ‖u‖V .
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model problem | steady-state diffusion

Let D ⊂ R
d (d = 2, 3). Suppose that the diffusion coefficient

a = a(x, ξ) : D × Ω → R is a second-order correlated random field

that is a function of a multivariate random variable ξ = (ξ1, ξ2, . . .).

One possible PDE problem is: find the function u(x,y) satisfying

−∇ · (a(x,y)∇u(x,y)) = f(x), x ∈ D, y ∈ Γ,

u(x,y) = 0, x ∈ ∂D, y ∈ Γ,
(M)

where Γ :=
∞∏

m=1
[−1, 1], with the series representation

a(x,y) = a0(x) +
∞∑

m=1

am(x) ym, x ∈ D, y ∈ Γ.

The parameter-free term a0(x) typically represents
∫

Γ a(x,y)dπ(y);

the mean coefficient at a given point x ∈ D.
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model problem | spatial formulation

Define the (mean) solution space H := H1
0 (D).

For all y ∈ Γ we define the operator A(y) ∈ L(H1
0 (D),H−1(D)) by

〈A(y)v,w〉 :=
∫

D
a(x,y)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D).

Next, using the series expansion, we can write A(y) as the sum

A(y) = A0 +
∞∑

m=1
ymAm for all y ∈ Γ

with Am satisfying

〈Amv,w〉 =

∫

D
am(x)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D)

〈A0v,w〉 =

∫

D
a0(x)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D).
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model problem | well posedness

〈Amv,w〉 =

∫

D
am(x)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D)

〈A0v,w〉 =

∫

D
a0(x)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D)

The weak formulation of (M) is well posed if a0 ∈ L∞(D) is

uniformly bounded away from zero, that is,

∃αmin
0 , αmax

0 > 0 such that αmin
0 ≤ a0(x) ≤ αmax

0 a.e. in D,

and that for am(x) ∈ L∞(D), m ∈ N, there exists a constant τ so

that

τ :=
1

αmin
0

∞∑

m=1

‖am‖L∞(D) < 1.
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model problem | energy estimates

Define V := L2
π(Γ;H

1
0 (D)) and let ‖u‖H := ‖∇u‖. Using the series

expansion, the weak formulation of (M) is to find u ∈ V such that

B0(u, v) +
∞∑

m=1

Bm(u, v) = F (v) ∀ v ∈ V (⋆)

with

B0(u, v) :=

∫

Γ
〈A0u(y), v(y)〉dπ(y),

Bm(u, v) :=

∫

Γ
〈Amu(y), v(y)〉 ym dπ(y) ∀m ∈ N.

Note that (B(u, u))1/2 = ‖u‖B = ‖u‖V is equivalent to the B0 norm:

there exist positive constants λ < 1 < Λ such that

λB(v, v) ≤ B0(v, v) ≤ ΛB(v, v) ∀ v ∈ V. (B0)
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stochastic Galerkin | approximation spaces

Given the isometric isomorphism: V = L2
π(Γ,H) ∼ H ⊗ L2

π(Γ). It is

naturala to take a tensor product approximation

X ⊗PP =: VXP ⊂ V, with components:

• X ⊂ H corresponding to finite element discretization on D;

• PP ⊂ L2
π(Γ) corresponding to polynomial discretization on Γ;

e.g., taking the set of tensor product polynomials associated

with a finite subset P of the index set I of finitely supported

sequences

I :=
{
ν = (ν1, ν2, . . .) ∈ N

N

0 ; # supp ν <∞
}
,

where supp ν := {m ∈ N; νm 6= 0} for any ν ∈ N
N
0 .

a
see e.g., C. Schwab & C. Gittelson, Sparse tensor discretizations of high-dimensional parametric

and stochastic PDEs, Acta Numer. 20 (2011).
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stochastic Galerkin | error estimation I

B(u, v) = F (v) ∀v ∈ V (⋆)

B(uXP, v) = F (v) ∀v ∈ VXP = X ⊗ PP.

Thus e := u− uXP ∈ V satisfies

B(e, v) = F (v)−B(uXP, v)
︸ ︷︷ ︸

= 0 ∀v∈VXP

∀v ∈ V.
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stochastic Galerkin | error estimation I

B(u, v) = F (v) ∀v ∈ V (⋆)

B(uXP, v) = F (v) ∀v ∈ VXP = X ⊗ PP.

Thus e := u− uXP ∈ V satisfies

B(e, v) = F (v)−B(uXP, v)
︸ ︷︷ ︸

= 0 ∀v∈VXP

∀v ∈ V.

This motivates the estimator e∗ ∈ V ∗
XP satisfying

B(e∗, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗
XP = X∗ ⊗ PP∗

where V ∗
XP is an enriched finite-dimensional subspace of V so that

X∗ = X ⊕ Y, X ∩ Y = {0}; PP∗ = PP ⊕ PQ, PP ∩ PQ = {0}.
⇐⇒ V ∗

XP := VXP ⊕ VXQ
︸︷︷︸

X⊗PQ

⊕ VYP
︸︷︷︸

Y⊗PP

⊕ VYQ
︸︷︷︸

Y⊗PQ

.
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stochastic Galerkin | error estimation II

The first error estimator e∗ ∈ V ∗
XP satisfies

B(e∗, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗
XP, with

V ∗
XP := VXP ⊕ (X ⊗PQ)⊕ (Y ⊗ PP)⊕ (Y ⊗PQ).
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stochastic Galerkin | error estimation II

The first error estimator e∗ ∈ V ∗
XP satisfies

B(e∗, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗
XP, with

V ∗
XP := VXP ⊕ (X ⊗PQ)⊕ (Y ⊗ PP)⊕ (Y ⊗PQ).

A second estimator e∗0 is obtained by exploiting the series structure

of (⋆): find e∗0 ∈ V ∗
XP such that

B0(e
∗
0, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗

XP.

This leads to efficient linear algebra—the associated system matrix

is block diagonal with each block representing a deterministic

problem associated with the A0 component of the operator A(y).

Note that using the norm equivalence (B0) gives

√
λ ‖e∗0‖B0

≤ ‖e∗‖B ≤
√
Λ ‖e∗0‖B0

. (B∗
0)
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stochastic Galerkin | error estimation III

The second error estimator e∗0 ∈ V ∗
XP satisfies

B0(e
∗
0, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗

XP, with

V ∗
XP := VXP ⊕ (X ⊗PQ)⊕ (Y ⊗ PP)⊕ (Y ⊗PQ).
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stochastic Galerkin | error estimation III

The second error estimator e∗0 ∈ V ∗
XP satisfies

B0(e
∗
0, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗

XP, with

V ∗
XP := VXP ⊕ (X ⊗PQ)⊕ (Y ⊗ PP)⊕ (Y ⊗PQ).

A third energy estimate η is obtained by exploiting the structure of

the space V ∗
XP: This is given by

η :=
(
2 ‖ēXQ‖2B0

+ ‖ēYP‖2B0
+ 2 ‖ēYQ‖2B0

)1/2
,

where the contributing estimators ēXQ ∈ VXQ, ēYP ∈ VYP and

ēYQ ∈ VYQ satisfy

B0(ēXQ, v) = F (v)−B(uXP, v) ∀ v ∈ VXQ,

B0(ēYP, v) = F (v)−B(uXP, v) ∀ v ∈ VYP, (‡)
B0(ēYQ, v) = F (v)−B(uXP, v) ∀ v ∈ VYQ.
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Since 〈A0·, ·〉 defines an inner product in H and X ∩ Y = {0}, there

exists a constant γ ∈ [0, 1) such thata

|〈A0uX , vY 〉| ≤ γ 〈A0uX , uX〉1/2 〈A0vY , vY 〉1/2 ∀uX ∈ X, ∀ vY ∈ Y.

Note that for any finite index set P ⊂ I, the finite-dimensional

subspaces VXP, VYP ⊂ V are such that the following strengthened

Cauchy–Schwarz inequality holds:

|B0(u, v)| ≤ γ ‖u‖B0
‖v‖B0

∀u ∈ VXP, ∀ v ∈ VYP.

This allows us to establish the following equivalence between the

estimator e∗0 ∈ V ∗
XP and the componentwise estimate η :

1√
5
η ≤ ‖e∗0‖B0

≤ 1
√

1− γ2
η.

a
see, for example, V. Eijkhout & P. Vassilevski, The role of the strengthened Cauchy–Buniakowskiı̆–

Schwarz inequality in multilevel methods, SIAM Review 33 (1991).
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error reduction indicators

Recall

η :=
(
2 ‖ēXQ‖2B0

+ ‖ēYP‖2B0
+ 2 ‖ēYQ‖2B0

)1/2

with ēXQ ∈ X ⊗ PQ, ēYP ∈ Y ⊗ PP and ēYQ ∈ Y ⊗ PQ.

The construction of η also gives information regarding the error

reduction that would result by enriching the approximation either

spatially or parametrically:

√
λ ‖ēYP‖B0

≤ ‖uX∗P − uXP‖B ≤
√
Λ

√

1− γ2
‖ēYP‖B0

,

√
λ ‖ēXQ‖B0

≤ ‖uXP∗ − uXP‖B ≤
√
Λ ‖ēXQ‖B0

.

Here, λ, Λ are the constants in (B0) and γ ∈ [0, 1) is the constant in

the strengthened Cauchy–Schwarz inequality.

This opens the door to h–p adaptivity . . .
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model problem | example

We solve the steady-state diffusion problem (⋆) with

x = (x1, x2) ∈ D := [−1, 1]2, with data f(x) = 1
8(2− x21 − x22) and

a(x,y) = 1
︸︷︷︸

a0=E[a]

+ σ
√
3

∞∑

m=1

√

λm ϕm(x) ym.

Here y ∈ Γ =
∏∞

m=1[−1, 1] and {(λm, ϕm)}∞m=1 are the eigenpairs of

the integral operator associated with the correlation function

C[a](x,x′) = exp
(
−1

2‖x− x′‖ℓ1
)
, x, x′ ∈ [−1, 1]2.

The problem (⋆) is well posed as long as σ is small enough: our

reference value is σ⋆ = 0.2.
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model problem | example

We solve the steady-state diffusion problem (⋆) with

x = (x1, x2) ∈ D := [−1, 1]2, with data f(x) = 1
8(2− x21 − x22) and

a(x,y) = 1
︸︷︷︸

a0=E[a]

+ σ
√
3

∞∑

m=1

√

λm ϕm(x) ym.

Here y ∈ Γ =
∏∞

m=1[−1, 1] and {(λm, ϕm)}∞m=1 are the eigenpairs of

the integral operator associated with the correlation function

C[a](x,x′) = exp
(
−1

2‖x− x′‖ℓ1
)
, x, x′ ∈ [−1, 1]2.

The problem (⋆) is well posed as long as σ is small enough: our

reference value is σ⋆ = 0.2. The Galerkin approximation is given by

tensor product of the Q1 approximation space Xh defined on a

uniform partition h of D with the subspace PM,p of polynomials of

total degree p in the first M parameters ym, m = 1, . . . ,M .
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model problem | sample solution
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model problem | detail spaces
The detail spaces Yh and QM,p are chosen so that

Xh/2 = Xh ⊕ Yh and PM,p+1 = PM,p ⊕QM,p,

respectively. Thus, Yh spans the set of bilinear bubble functions

corresponding to the edge midpoints and element centroids of the

original mesh h (defined locally, see below)

❞

1

❞2

❞
3

❞4 ❞5

whereas QM,p spans M -variate polynomials of total degree equal

to p+ 1. This gives a decomposition of the error estimate η with

V ∗
XP := VXP ⊕ (Xh ⊗QM,p)⊕ (Yh ⊗ PM,p)⊕ (Yh ⊗QM,p).
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spatial error estimation | example

Compute the harmonic function

u(x1, x2) =
2(1 + x2)

(3 + x1)2 + (1 + x2)2

by solving ∇2u = 0 on a uniform subdivision of D = [−1, 1]× [−1, 1]

with boundary data g obtained by Q1 interpolation of u on ∂D.

Global Effectivity Index : Xη := η(uh)/‖∇(u− uh)‖

Grid ‖∇(u− uh)‖ η(uh) Xη

4× 4 5.032× 10−2 4.954× 10−2 0.9845

8× 8 2.516× 10−2 2.511× 10−2 0.9980

16× 16 1.258× 10−2 1.257× 10−2 0.9992

32× 32 6.291× 10−3 6.288× 10−2 0.9995
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model problem | error estimation

V ∗
XP := VXP ⊕ (Xh ⊗QM,p)⊕ (Yh ⊗ PM,p)⊕ (Yh ⊗QM,p).

The smart choice of the detail space Yh gives rise to local problems

defined on all elements K ∈ h.

For example, we compute ēYP|K ∈ Yh
∣
∣
K
⊗PM,p satisfying

B0,K(ēYP|K , v) = FK(v)

+

∫

Γ

∫

K
∇ ·

(
a(x,y)∇uXP(x,y)

)
v(x,y)dxdπ(y)

− 1
2

∫

Γ

∫

∂K\∂D
a(s,y)

[[
∂uXP

∂n

]]

v(s,y)dsdπ(y),

for all v ∈ Yh|K ⊗PM,p.

The coefficient matrix associated with this local problem is the

Kronecker product of a 5× 5 (stiffness) matrix and an identity matrix

of dimension |P | = dim(PM,p) =
(p+M)!
p!M ! .
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example | effectivity I

We compute a reference solution uref for the case M = 3, σ⋆ = 0.2,

using a 512× 512 grid with p⋆ = 7.

fixed polynomial degree: p = 2

effectivity Index : Xη := η(uXP)/‖uref − uXP‖B

Grid ‖uref − uXP‖B η(uXP) Xη

8× 8 1.841× 10−2 1.888× 10−2 0.98

16× 16 8.712× 10−3 9.450× 10−3 0.92

32× 32 4.339× 10−3 4.775× 10−3 0.91

64× 64 2.350× 10−3 2.488× 10−3 0.94

128× 128 1.519× 10−3 1.429× 10−3 1.06
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example | effectivity II

We compute a reference solution uref for the case M = 3, σ⋆ = 0.2,

using a 512× 512 grid with p⋆ = 7.

fixed spatial grid: 64× 64

effectivity Index : Xη := η(uXP)/‖uref − uXP‖B

p ‖uref − uXP‖B η(uXP) Xη

1 6.222× 10−3 4.898× 10−3 1.27

2 2.350× 10−3 2.488× 10−3 0.94

3 2.077× 10−3 2.353× 10−3 0.88

4 2.065× 10−3 2.348× 10−3 0.88

5 2.064× 10−3 2.347× 10−3 0.88

Liblice 2013 – p. 21/29



error reduction | decreasing h

M = 3, σ⋆ = 0.2, fixed polynomial degree: p = 2
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error reduction | increasing p

M = 3, σ⋆ = 0.2, fixed spatial grid: 64× 64
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What have we achieved?

• computable estimates of the error reduction: these
exploit the tensor product structure of the approximation
spaces .

• Efficient linear algebra: CPU time for the error
estimation is commensurate with the CPU time taken to
solve the original problem...
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But, is the linear algebra done efficiently (or not)?
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A(y) = A0 + σ
∞∑

m=1
ymAm

Xh = span {φj(x)}nx

j=1 , PM,p = span {ψk(y)}ny

k=1

The Galerkin approximation is given by tensor product of the Q1

approximation space Xh defined on a uniform partition h of D with

the subspace PM,p of polynomials of total degree p in the first M

parameters ym, m = 1, . . . ,M .
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A(y) = A0 + σ
∞∑

m=1
ymAm

Xh = span {φj(x)}nx

j=1 , PM,p = span {ψk(y)}ny

k=1

The Galerkin approximation is given by tensor product of the Q1

approximation space Xh defined on a uniform partition h of D with

the subspace PM,p of polynomials of total degree p in the first M

parameters ym, m = 1, . . . ,M .

Discrete system

Au = f ⇐⇒
(
I ⊗K0 + σ

∑M
m=1Gm ⊗Km

)
u = f (S)

[Gm]rs = 〈 ym ψr(y)ψs(y)〉

• The dimension of the system (S) is n := nx × ny.

• An effective solver for (S) is preconditioned MINRES with a

block-diagonal preconditioner : P = I ⊗K0.
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Sample performance | decreasing h

M = 5 random variables

cubic polynomial approximation p = 3

EST_MINRES tolerance is 10−13

1/h 32 64 128 256

n 60,984 236,600 931,896 3, 698, 744

σ

µ
= 0.1 # iterations 13 13 13 13

total solve time 1.0s 4.8s 19.6s 60.6s

σ

µ
= 0.2 # iterations 18 18 18 18

total solve time 1.2s 6.7s 24.5s 84.9s

σ

µ
= 0.3 # iterations 24 24 24 24

total solve time 1.6s 9.2s 35.6s 114.7s
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What have we achieved?

• Efficient linear algebra: convergence rate is
independent of n := nx × ny.

• Convergence deteriorates as σ is increased. The critical
eigenvalue is computed on the fly using EST_MINRES.
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What’s next?

• ♥ including local refinement in space

♥♥ designing a practical adaptive strategy

♥♥♥ stopping criteria for the solver (EST_MINRES)
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