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Incompressible Linear Elasticity

First-Order System Formulation of Linear Elasticity

Displacement field u : O — R¢
Stress tensor o : () — RI*

Vu+ Vu’
&(u) =
dive+f=0in Q . 2 \
u=0onTp
o-n=tonly A=Clif A<

uc H}D(Q)d
o € o+ Hr,(div,Q) (eN € H(div,Q)¥ s.t. N -n=t on I'y)
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Incompressible Linear Elasticity

Displacement-Pressure (Galerkin) Formulation

Insert new variable p into material (2nd) eqgn:

1 A 1
AU:Z (G—M(tra)l) :E(a—pl):s(u)

and combine this with momentum balance (1st) equation:

Determine u® ¢ H}D(Q)d, pe € [?(Q) such that
211 (e(u®),e(v)) 12(q) + (P, div v) 2(0) = (F,v)12(0) + (E, V) 12(ry)
(divu, q)2q) = %(P, 9)2(9)
holds for all v & H! (2)7, g € [7(Q)
o8 =2ue(ug) + p& 1 € L2(Q)Id
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Incompressible Linear Elasticity

Hellinger-Reissner (Mixed) Formulation of Linear Elasticity

Determine o ¢ oV + Hr  (div,Q)9, u™ € [2(Q)? and
T [2(Q)9F 5k guch that

(Ao™, T)2(q) + (U™, div 7) 20y + (¥, skew T),2(q) = 0
(diV o +f, V)LZ(Q) =0
(skew o™, 1) 2(q) = 0

holds for all 7 € Hr, (div,Q)?, v € L2(Q)9 and i € L2(Q)dxdskew

skewr = 5(7‘ — TT)

L2(Q)d><d7skew _ {7_ c L2(Q)d><d s +TT _ 0}
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Incompressible Linear Elasticity
First-Order System Least Squares

Determine o € o/ + Hr, (div, Q)¢ and u” ¢ H%D(Q)d such that
Idiv & + f[[{2(q) + [l 4o — e(u)l|72(q)

is minimized

Equivalently: o € o™ + Hr (div, Q)7 and u” H}D(Q)d s.t.

(div & + f, div T)2(0) + (Ao’ — e(u®), AT) 20 =0
(Ac™ —e(u®),&(v))2(q) =0

holds for all 7 & Hr, (div,2)? and v € H} (2)¢

From now on: (, ) instead of (, );2(q), || || instead of || [|;2(q)
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Incompressible Linear Elasticity

Approximation Properties for First-Order System Least Squares

Coercivity of the first-order system least squares bilinear form
B(u,o;v, 1) = (div o, div 7) + (Ao — e(u), AT — g(v))

in HE (Q)9 < Hr, (div, Q)7 with respect to

. 1/2
v, 7)1 = (eI + lldiv 7% + [|7]2) "
holds uniformly for A — oo (Cai/St., 2004)
= Optimal order convergence:
lI(u— vy, o0 —ap)lll = Jnf [[[(u—vh, o =7l

for subspaces V), C HE (Q)7, =), C Hr, (div, Q)¢
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Incompressible Linear Elasticity
Finite Element Spaces and Approximation Properties

In comparison, for the displacement-pressure formulation:

[11(u =, 0)[1] = lle(u —up)| = inf lle(u— )|

(if an inf-sup stable Stokes finite element pair is used)
And, for the Hellinger-Reissner (mixed) formulation:
m 1; my||2 mi\1/2
1100, — oMl = (lldiv (& — o)[* + o — o }]])

_ . 1/2
~ |m;: (Hdlv (0 —7)|? + o — ThH) /

ThE
(if X4 is part of an inf-sup stable finite element combination)

= |[[[(u—u;.o—ap)lll = [ll(u—uf,o—of)
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Incompressible Linear Elasticity

Finite Element Spaces and Approximation Properties

Advantages and Disadvantages
Galerkin | Mixed FOSLS

(uf, %) | (o, um) (o, u)
(HYY?/L2 | H(div)/(L)? | H(div)¢/(H1)?
# unknowns + -

comp. condition | - - +
momentum bal. | - + o
nonlinear form. | + - +
error estimation | o o +
scaling issue + + -

Proper scaling of the individual terms in the Is functional
[div o + inQ(Q) + [ Ao — 5(U)Hi2(g)
needed: depending on p (physical units used), size of domain Q
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Computational Results and Motivation

Cook’'s Membrane

Finite element spaces based on a triangulation 7},

V,: H-conforming P> elements

>, H(div)-conforming R7; elements
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incompressible case

1A =00

| Boundary conditions:
{u=0 at left

o -n = 0 at top/bottom

1o -n=(0,7) at right
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Computational Results and Motivation

Cook’'s Membrane

First-Order System Least Squares does not satisfy momentum

balance exactly but ...

™ L

el [div o + f[{2(q) + Ao — ()20 7
1t L 7

[[div o + f||72q

10° 10

|
10°

... approximates momentum balance at a higher rate!

St./Schroder/Schwarz (2012): Theory for a slight modification
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Computational Results and Motivation

Cook’'s Membrane

When is accurate momentum balance important?

35
30F
251

20+

15l tangential traction force
n x (o - n) along left boundary
(by different methods)
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Overview

Hyperelasticity as a First-Order System
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Hyperelasticity as a First-Order System
Hyperelastic Material Models

Displacement field u:Q—R3
Deformation gradient F(u)=1+Vu
Right Cauchy-Green strain tensor C(u) = F(u)TF(u)
Left Cauchy-Green strain tensor B(u) = F(u)F(u)"
Stored energy function ¥ R3S R

sym

Minimize the total energy

W(u)

/Q (C(u)) dx — / £ u dx

JQ

among all admissible u : O — R?
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Hyperelasticity as a First-Order System
Hyperelastic Material Models
1st Piola-Kirchhoff stress tensor P = 0ry(C(u))

First-order system:
Determine u : Q2 — R3, P : Q — R**3 such that

divP+f=0
P — 9ky(C(u)) =0

First-Order System Approaches to Hyperelastic Deformation Models Gerhard Starke 16/ 37



Hyperelasticity as a First-Order System
Hyperelastic Material Models
1st Piola-Kirchhoff stress tensor P = 0ry(C(u))

First-order system:
Determine u - 2 — R3, P : Q — R**3 such that

divP+f=0
PF(u)™ — 9gy(C(u))F(u)" =0

For example: Neo-Hooke material (with J = det F):

_H A (A
1/)/\/H(C)—2tlc+4./ <2+,U> In J

0F@NH(C) =uF+ </2\ (J2 — 1) — ,u) F7
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Hyperelasticity as a First-Order System

Neo-Hooke model

OrnH(C)FT = uFFT + A (S =1)—p)l
2
=uB+ (; (2 —-1)— u) I =: Gnr(B)
with J? = det(B)

Determine u : Q — R>, P : Q — R**3 such that

divP+f=0
PF(U)T — QNH(B(u)) = 0
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Hyperelasticity as a First-Order System

Neo-Hooke model
A 2
Gun(B) =1 (B~ 1)+ 5 (2~ 1)l
with J? = det(B)

Gin(B)E] = 1 E + 3 2(BT - E)

A
In particular: Gnu(DIE] = ,uEJrE(trE)I

Small strain limit: Linear elasticity system

divP+f=0
P — Gnu(l) +Gun(D[Vu+ (Vu) ] =0
~——

=0
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Hyperelasticity as a First-Order System

Scaling the Stress-Strain Relation

Gi(B) = (B — 1) + 5 (£~ 1)l

Existence of an inverse function B = G, /,(X) leads to a first-order
system which remains valid in the incompressible limit

A oot Giy(B) O] — /11 <e - H(Bll)(B—T ; e)|>

Determine u: Q2 — R3, P : Q — R**3 such that
divP+f=0
APF(u)") —=B(u) =0

where A = g,g,%, for A < 0o and A is also well-defined for A = oo
Wriggers/Nonlinear FE Methods: Inversion based on G(C(u))
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Hyperelasticity as a First-Order System

Scaling the Stress-Strain Relation

B. Miiller/St./Schwarz/Schroder (2013):
For ue W*(Q)%, P e WE (div, Q)% and f € L2(Q),

divP +f

R(P,u) = ( A(PE(w)T) — B(u) ) € 1(Q)® x 17(Q)>

Determine u € W *(Q)3, P € W (div,Q)? such that
I'p My

F(P,u) = ||div P + f[|72(q) + |G (PF(u) ") — B(u)|[72(

is minimized.
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Hyperelasticity as a First-Order System
Example
Auricchio/Beirdo da Veiga/Lovadina/Reali (2010)
Uniform volume force f = (0.~), v € R, plane strain condition

Bdy conditions 1:

u = 0 left, right and below,
] P-n=20ontop

Bdy conditions 2:

of { un=0und (P-n)-t=0
1 left, right and below,

| P-n=0ontop

1 Exact solution (for A — 00):

T ] P(x1,x2) =7(1—x)l,u=0
Singularities occur at critical load values v, > 0,k =1,2,...
Numerical results: See poster by Benjamin Miiller
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Hyperelasticity as a First-Order System

Linearization
R(P+Q,u+v)~R(P,u)+ 7(P,u)[Q, v] where the derivative
in direction (Q.v) € W (div,Q)® x W"(Q)* is given by
div Q
J(P.Q)IQ,v] = (DGl(PF(u)T)[Q, V] — (14 V)W — Wu(l + Vu)T>
with
DG~!(PF(u)")[Q,v] = G'(G™*(PF(u) ")) [QF(u)" + PVV']
Variational formulation:

Find (P.u) € W (div, Q)° x W ¥(Q)* such that
(R(P,u), 7(P,u)[Q,v]) =0 for all
(Q.v) € W (div, Q) x W (Q)®
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Overview

Computational Experiments
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Computational Experiments

Cook’'s membrane (plane strain):

Traction force at right boundary:

incompressible case (\ =

P-n=(0,
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Computational Experiments

Cook’'s membrane (plane strain):

incompressible case (A = o)

Traction force at right boundary: P-n=(0,uy)7
Reduction of least squares functional for v = 0.1:
dim M, dim V, | F(Pp, up) (order) | [|divPy|?
=0 897 310 | 1.688e-1 6.598e-4
| = 3640 1188 | 7.414e-2 (1.187) | 1.416e-4 (2.220)
| = 14664 4648 | 3.454e-2 (1.102) | 3.200e-5 (2.146)
| = 58864 18384 | 1.625e-2 (1.088) | 7.021e-6 (2.188)
| =4 | 235872 73120 | 7.547¢-3 (1.106) | 1.415e-6 (2.311)
First-Order System Approaches to Hyperelastic Deformation Models Gerhard Starke
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Computational Experiments

Auricchio/Beirdo da Veiga/Lovadina/Reali (2010)

Minimize W (uy) with respect to u, € Vj, and handle
incompressibility by introducing a pressure-like variable
p = A(J? — 1) approximated by pj, € I,

Used combinations:

V, = conforming P», My = discontinuous Py

V}, = conforming P, M, = discontinuous P; (unstable)
V), = conforming P, Iy, = continuous P; (Taylor-Hood)

and

V}, = conforming P,, X, = RTy (First-order system least squares)
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Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P-n=(0,uy)7
Behavior of approximation to w» at right upper tip for v = 0.1:
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Computational Experiments

Cook’s membrane (plane strain):

incompressible case

Traction force at right boundary: P-n=(0,uy)7
Tangential traction at left boundary at refinement level 1 (v = 0.1)
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Computational Experiments
Reverse Cook's membrane: incompressible case (A = o0)
Traction force at right boundary: P-n=(0,7)",v<0
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Computational Experiments

Cook’'s membrane (plane strain):

incompressible case (A = o)

Traction force at right boundary: P-n=(0,uy)7
Reduction of least squares functional for v = —0.1:
dim M, dim V, | F(Pp, up) (order) | [|divPy|?
/=0 897 310 | 2.326e-1 8.943e-4
| = 3640 1188 | 9.542e-2 (1.285) | 1.599e-4 (2.484)
| = 14664 4648 | 4.042¢-2 (1.239) | 2.790e-5 (2.519)
| = 58864 18384 | 1.694e-2 (1.255) | 4.325e-6 (2.689)
| =4 | 235872 73120 | 6.796e-3 (1.318) | 5.335e-7 (3.019)
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Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P-n=(0,uy)"
Behavior of approximation to wu» at right upper tip for v = —0.1:
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Computational Experiments

Cook’'s membrane (plane strain): incompressible case
Traction force at right boundary: P-n=(0,uy)T"
Tangential traction at left boundary at refinem. level (7 = —0.1)
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Computational Experiments
3D Cook's Membrane
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Computational Experiments

3D Cook’'s Membrane

Plot of the normal components of the stress tensor on the left clamped boundary

(see poster by Benjamin Miiller)
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Conclusions
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Conclusions

» First-order system least squares methods in solid mechanics
provide simultaneous approximation of displacements and stresses

» Produces accurate results for local evaluations of stress and
traction forces important in connection to damage simulations

» Generalizable to nonlinear solid-mechanical models in a natural
way as well as, in principle, to implicit constitutive laws

» Local evaluation of least squares functional may be used as an a
posteriori error estimator (see poster by Benjamin Miiller)
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