

First-Order System Approaches to Hyperelastic Deformation Models

Gerhard Starke

Fakultät für Mathematik Universität Duisburg - Essen Essen, Germany

Joint work with Benjamin Müller (Fakultät für Mathematik, UDE)

MORE Workshop Liblice

November 26, 2013

Implicitly Constituted Materials: Modeling, Analysis and Computing

Overview

Variational Formulations for Incompressible Linear Elasticity

Computational Results and Motivation

Hyperelasticity as a First-Order System

Computational Experiments

Conclusions

Overview

Variational Formulations for Incompressible Linear Elasticity

Computational Results and Motivation

Hyperelasticity as a First-Order System

Computational Experiments

Conclusions

First-Order System Formulation of Linear Elasticity

Displacement field $\mathbf{u}: \Omega \to \mathbb{R}^d$ Stress tensor $\boldsymbol{\sigma}: \Omega \to \mathbb{R}^{d \times d}$

$$\begin{aligned} \operatorname{div} & \boldsymbol{\sigma} + \mathbf{f} = \mathbf{0} \text{ in } \Omega \\ \mathcal{A} & \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u}) = \mathbf{0} \text{ in } \Omega \\ \mathbf{u} &= \mathbf{0} \text{ on } \Gamma_D \\ \boldsymbol{\sigma} \cdot \mathbf{n} &= \mathbf{t} \text{ on } \Gamma_N \end{aligned} \qquad \qquad \begin{aligned} \boldsymbol{\varepsilon}(\mathbf{u}) &= \frac{\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla} \mathbf{u}^T}{2} \\ \mathcal{A} & \boldsymbol{\sigma} &= \frac{1}{2\mu} \left(\boldsymbol{\sigma} - \frac{\lambda}{\lambda d + 2\mu} (\operatorname{tr} \boldsymbol{\sigma}) \, \mathbf{I} \right) \\ \mathcal{A} & \boldsymbol{\sigma} &= \frac{1}{2\mu} \left(\boldsymbol{\sigma} - \frac{\lambda}{\lambda d + 2\mu} (\operatorname{tr} \boldsymbol{\sigma}) \, \mathbf{I} \right) \end{aligned}$$

$$\mathbf{u} \in H^1_{\Gamma_D}(\Omega)^d$$

 $\boldsymbol{\sigma} \in \boldsymbol{\sigma}^N + H_{\Gamma_N}(\operatorname{div}, \Omega)^d \ (\boldsymbol{\sigma}^N \in H(\operatorname{div}, \Omega)^d \text{ s.t. } \boldsymbol{\sigma}^N \cdot \mathbf{n} = \mathbf{t} \text{ on } \Gamma_N)$

Displacement-Pressure (Galerkin) Formulation

Insert new variable p into material (2nd) eqn:

$$\mathcal{A}\boldsymbol{\sigma} = \frac{1}{2\mu} \left(\boldsymbol{\sigma} - \frac{\lambda}{\lambda d + 2\mu} (\operatorname{tr} \boldsymbol{\sigma}) \, \mathbf{I} \right) = \frac{1}{2\mu} \left(\boldsymbol{\sigma} - \frac{\rho}{\rho} \, \mathbf{I} \right) = \varepsilon(\mathbf{u})$$

and combine this with momentum balance (1st) equation:

Determine $\mathbf{u}^g \in H^1_{\Gamma_D}(\Omega)^d$, $p^g \in L^2(\Omega)$ such that

$$2\mu \left(\varepsilon(\mathbf{u}^{g}), \varepsilon(\mathbf{v})\right)_{L^{2}(\Omega)} + (p, \operatorname{div} v)_{L^{2}(\Omega)} = (\mathbf{f}, \mathbf{v})_{L^{2}(\Omega)} + \langle \mathbf{t}, \mathbf{v} \rangle_{L^{2}(\Gamma_{N})}$$
$$(\operatorname{div} \mathbf{u}, q)_{L^{2}(\Omega)} = \frac{1}{\lambda} (p, q)_{L^{2}(\Omega)}$$

holds for all $\mathbf{v} \in H^1_{\Gamma_{\Omega}}(\Omega)^d$, $q \in L^2(\Omega)$

$$\sigma^g = 2\mu \, \varepsilon(\mathbf{u}^g) + p^g \, \mathbf{I} \in L^2(\Omega)^{d \times d}$$

Hellinger-Reissner (Mixed) Formulation of Linear Elasticity

Determine
$$\sigma^m \in \sigma^N + \mathcal{H}_{\Gamma_N}(\operatorname{div},\Omega)^d$$
, $\mathbf{u}^m \in L^2(\Omega)^d$ and $\gamma^m \in L^2(\Omega)^{d \times d, \operatorname{skew}}$ such that

$$\begin{split} (\mathcal{A}\boldsymbol{\sigma}^{m},\boldsymbol{\tau})_{L^{2}(\Omega)} + (\mathbf{u}^{m},\operatorname{div}\boldsymbol{\tau})_{L^{2}(\Omega)} + (\boldsymbol{\gamma}^{m},\operatorname{skew}\boldsymbol{\tau})_{L^{2}(\Omega)} &= 0\\ (\operatorname{div}\boldsymbol{\sigma}^{m} + \mathbf{f},\mathbf{v})_{L^{2}(\Omega)} &= 0\\ (\operatorname{skew}\boldsymbol{\sigma}^{m},\boldsymbol{\eta})_{L^{2}(\Omega)} &= 0 \end{split}$$

holds for all $\tau \in H_{\Gamma_N}(\text{div},\Omega)^d$, $\mathbf{v} \in L^2(\Omega)^d$ and $\boldsymbol{\eta} \in L^2(\Omega)^{d \times d, \text{skew}}$

$$\operatorname{skew} \boldsymbol{\tau} = \frac{1}{2} (\boldsymbol{\tau} - \boldsymbol{\tau}^T)$$

$$L^2(\Omega)^{d \times d, \text{skew}} = \{ \boldsymbol{\tau} \in L^2(\Omega)^{d \times d} : \boldsymbol{\tau} + \boldsymbol{\tau}^T = \mathbf{0} \}$$

First-Order System Least Squares

Determine $\sigma^{ls} \in \sigma^N + \mathcal{H}_{\Gamma_N}(\operatorname{div},\Omega)^d$ and $\mathbf{u}^{ls} \in \mathcal{H}^1_{\Gamma_D}(\Omega)^d$ such that

$$\|\operatorname{div} \boldsymbol{\sigma} + \mathbf{f}\|_{L^2(\Omega)}^2 + \|\mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u})\|_{L^2(\Omega)}^2$$

is minimized

Equivalently: $\sigma^{ls} \in \sigma^N + H_{\Gamma_N}(\operatorname{div}, \Omega)^d$ and $\mathbf{u}^{ls} \in H^1_{\Gamma_D}(\Omega)^d$ s.t.

$$(\operatorname{div} \boldsymbol{\sigma}^{ls} + \mathbf{f}, \operatorname{div} \boldsymbol{\tau})_{L^{2}(\Omega)} + (\mathcal{A}\boldsymbol{\sigma}^{ls} - \boldsymbol{\varepsilon}(\mathbf{u}^{ls}), \mathcal{A}\boldsymbol{\tau})_{L^{2}(\Omega)} = 0$$
$$(\mathcal{A}\boldsymbol{\sigma}^{ls} - \boldsymbol{\varepsilon}(\mathbf{u}^{ls}), \boldsymbol{\varepsilon}(\mathbf{v}))_{L^{2}(\Omega)} = 0$$

holds for all $au \in H_{\Gamma_N}(\operatorname{div},\Omega)^d$ and $\mathbf{v} \in H^1_{\Gamma_D}(\Omega)^d$

From now on: (,) instead of $(,)_{L^2(\Omega)}$, $\| \|$ instead of $\| \|_{L^2(\Omega)}$

Approximation Properties for First-Order System Least Squares

Coercivity of the first-order system least squares bilinear form

$$\mathcal{B}(\mathbf{u}, \boldsymbol{\sigma}; \mathbf{v}, \boldsymbol{\tau}) = (\operatorname{div} \boldsymbol{\sigma}, \operatorname{div} \boldsymbol{\tau}) + (\mathcal{A}\boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u}), \mathcal{A}\boldsymbol{\tau} - \boldsymbol{\varepsilon}(\mathbf{v}))$$

in $H^1_{\Gamma_D}(\Omega)^d \times H_{\Gamma_N}(\operatorname{div},\Omega)^d$ with respect to

$$|||(\mathbf{v}, \boldsymbol{\tau})||| = (\|\varepsilon(\mathbf{v})\|^2 + \|\operatorname{div} \boldsymbol{\tau}\|^2 + \|\boldsymbol{\tau}\|^2)^{1/2}$$

holds uniformly for $\lambda \to \infty$ (Cai/St., 2004)

⇒ Optimal order convergence:

$$|||(\mathbf{u} - \mathbf{u}_h^{ls}, \sigma - \sigma_h^{ls})||| \approx \inf_{\mathbf{v}_h, \boldsymbol{\tau}_h} |||(\mathbf{u} - \mathbf{v}_h, \sigma - \boldsymbol{\tau}_h)|||$$

for subspaces $\mathbf{V}_h \subset H^1_{\Gamma_D}(\Omega)^d$, $\mathbf{\Sigma}_h \subset H_{\Gamma_N}(\mathrm{div},\Omega)^d$

Finite Element Spaces and Approximation Properties

In comparison, for the displacement-pressure formulation:

$$|||(\mathbf{u}-\mathbf{u}_h^g,\mathbf{0})||| = \|\varepsilon(\mathbf{u}-\mathbf{u}_h^g)\| \approx \inf_{\mathbf{v}_h \in \mathbf{V}_h} \|\varepsilon(\mathbf{u}-\mathbf{v}_h)\|$$

(if an inf-sup stable Stokes finite element pair is used)

And, for the Hellinger-Reissner (mixed) formulation:

$$|||(\mathbf{0}, \boldsymbol{\sigma} - \boldsymbol{\sigma}_h^m)||| = \left(||\operatorname{div}\left(\boldsymbol{\sigma} - \boldsymbol{\sigma}_h^m\right)||^2 + ||\boldsymbol{\sigma} - \boldsymbol{\sigma}_h^m||\right)^{1/2}$$

$$\approx \inf_{\boldsymbol{\tau}_h \in \boldsymbol{\Sigma}_h} \left(||\operatorname{div}\left(\boldsymbol{\sigma} - \boldsymbol{\tau}_h\right)||^2 + ||\boldsymbol{\sigma} - \boldsymbol{\tau}_h||\right)^{1/2}$$

(if Σ_h is part of an inf-sup stable finite element combination)

$$\implies |||(\mathbf{u} - \mathbf{u}_h^{ls}, \boldsymbol{\sigma} - \boldsymbol{\sigma}_h^{ls})||| \approx |||(\mathbf{u} - \mathbf{u}_h^g, \boldsymbol{\sigma} - \boldsymbol{\sigma}_h^m)|||$$

Finite Element Spaces and Approximation Properties

Advantages and Disadvantages

Galerkin Mixed FOSLS							
	Galerkin		FOSLS				
	(\mathbf{u}^g, p^g)	(σ^m, \mathbf{u}^m)	(σ^{ls},u^{ls})				
	$(H^1)^d/L^2$	$H(\operatorname{div})^d/(L^2)^d$	$H(\operatorname{div})^d/(H^1)^d$				
# unknowns	+	-	-				
comp. condition	-	-	+				
momentum bal.	-	+	0				
nonlinear form.	+	-	+				
error estimation	0	0	+				
scaling issue	+	+	-				

Proper scaling of the individual terms in the Is functional

$$\|\operatorname{div} \boldsymbol{\sigma} + \mathbf{f}\|_{L^2(\Omega)}^2 + \|\mathcal{A}\boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u})\|_{L^2(\Omega)}^2$$

needed: depending on μ (physical units used), size of domain Ω

Computational Results and Motivation

Cook's Membrane

Finite element spaces based on a triangulation \mathcal{T}_h

 V_h : H^1 -conforming \mathcal{P}_2 elements

 Σ_h : H(div)-conforming \mathcal{RT}_1 elements

incompressible case

$$\lambda = \infty$$

Boundary conditions:

 $\mathbf{u} = \mathbf{0}$ at left

 $oldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{0}$ at top/bottom

$${m \sigma}\cdot{m n}=({\mathbf 0},\gamma)$$
 at right

Computational Results and Motivation

Cook's Membrane

First-Order System Least Squares does not satisfy momentum balance exactly but . . .

...approximates momentum balance at a higher rate!

St./Schröder/Schwarz (2012): Theory for a slight modification

Computational Results and Motivation

Cook's Membrane

When is accurate momentum balance important?

Overview

Variational Formulations for Incompressible Linear Elasticity

Computational Results and Motivation

Hyperelasticity as a First-Order System

Computational Experiments

Conclusions

Hyperelastic Material Models

Displacement field

Deformation gradient

Right Cauchy-Green strain tensor Left Cauchy-Green strain tensor

Stored energy function

Minimize the total energy

 $\mathbf{u}:\Omega\to\mathbb{R}^3$

$$F(u) = I + \nabla u$$

$$C(u) = F(u)^T F(u)$$

 $B(u) = F(u)F(u)^T$

$$\psi: \mathbb{R}^{3\times 3}_{\mathrm{sym}} \to \mathbb{R}$$

$$W(\mathbf{u}) = \int_{\Omega} \psi(\mathbf{C}(\mathbf{u})) dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{u} dx$$

among all admissible $\mathbf{u}:\Omega\to\mathbb{R}^3$

Hyperelastic Material Models

1st Piola-Kirchhoff stress tensor

$$\mathbf{P} = \partial_{\mathbf{F}} \psi(\mathbf{C}(\mathbf{u}))$$

First-order system:

Determine $\mathbf{u}:\Omega\to\mathbb{R}^3$, $\mathbf{P}:\Omega\to\mathbb{R}^{3\times3}$ such that

$$\operatorname{div} \mathbf{P} + \mathbf{f} = \mathbf{0}$$

$$\mathsf{P} - \partial_{\mathsf{F}} \psi(\mathsf{C}(\mathsf{u})) = \mathsf{0}$$

Hyperelastic Material Models

1st Piola-Kirchhoff stress tensor

$$\mathbf{P} = \partial_{\mathbf{F}} \psi(\mathbf{C}(\mathbf{u}))$$

First-order system:

Determine $\mathbf{u}: \Omega \to \mathbb{R}^3$, $\mathbf{P}: \Omega \to \mathbb{R}^{3\times 3}$ such that

$$\operatorname{div} \mathbf{P} + \mathbf{f} = \mathbf{0}$$

$$\mathbf{PF}(\mathbf{u})^{T} - \partial_{\mathbf{F}} \psi(\mathbf{C}(\mathbf{u})) \mathbf{F}(\mathbf{u})^{T} = \mathbf{0}$$

For example: Neo-Hooke material (with $J = \det \mathbf{F}$):

$$\psi_{NH}(\mathbf{C}) = \frac{\mu}{2} \operatorname{tr} \mathbf{C} + \frac{\lambda}{4} J^2 - \left(\frac{\lambda}{2} + \mu\right) \operatorname{In} J$$

$$\partial_{\mathbf{F}}\psi_{NH}(\mathbf{C}) = \mu \, \mathbf{F} + \left(\frac{\lambda}{2} \left(J^2 - 1\right) - \mu\right) \mathbf{F}^{-T}$$

Neo-Hooke model

$$\partial_{\mathbf{F}} \psi_{NH}(\mathbf{C}) \mathbf{F}^{T} = \mu \, \mathbf{F} \mathbf{F}^{T} + \left(\frac{\lambda}{2} \left(J^{2} - 1 \right) - \mu \right) \mathbf{I}$$

$$= \mu \, \mathbf{B} + \left(\frac{\lambda}{2} \left(J^{2} - 1 \right) - \mu \right) \mathbf{I} =: \mathcal{G}_{NH}(\mathbf{B})$$
with $J^{2} = \det(\mathbf{B})$

Determine $\mathbf{u}: \Omega \to \mathbb{R}^3$, $\mathbf{P}: \Omega \to \mathbb{R}^{3\times 3}$ such that

$$\label{eq:div} \begin{split} \operatorname{div} \mathbf{P} + \mathbf{f} &= \mathbf{0} \\ \mathbf{PF}(\mathbf{u})^T - \mathcal{G}_{\mathit{NH}}(\mathbf{B}(\mathbf{u})) &= \mathbf{0} \end{split}$$

Neo-Hooke model

$$\mathcal{G}_{NH}(\mathbf{B}) = \mu \left(\mathbf{B} - \mathbf{I}\right) + \frac{\lambda}{2} \left(J^2 - 1\right)\mathbf{I}$$
 with $J^2 = \det(\mathbf{B})$ $\mathcal{G}_{NH}'(\mathbf{B})[\mathbf{E}] = \mu \, \mathbf{E} + \frac{\lambda}{2} J^2(\mathbf{B}^{-T} : \mathbf{E})\mathbf{I}$

In particular: $\mathcal{G}'_{NH}(I)[E] = \mu E + \frac{\lambda}{2}(\text{tr}E)I$

Small strain limit: Linear elasticity system

$$\begin{split} \operatorname{div} P + f &= 0 \\ P - \underbrace{\mathcal{G}_{\textit{NH}}(I)}_{=0} + \mathcal{G}_{\textit{NH}}'(I) [\nabla u + (\nabla u)^{\mathcal{T}}] &= 0 \end{split}$$

Scaling the Stress-Strain Relation

$$\mathcal{G}_{NH}(\mathbf{B}) = \mu \left(\mathbf{B} - \mathbf{I}\right) + \frac{\lambda}{2} \left(J^2 - 1\right)\mathbf{I}$$

Existence of an inverse function $\mathbf{B} = \mathcal{G}_{NH}^{-1}(\mathbf{\Sigma})$ leads to a first-order system which remains valid in the incompressible limit

$$\lambda \to \infty : \quad \mathcal{G}'_{NH}(\mathbf{B})^{-1}[\mathbf{\Theta}] \to \frac{1}{\mu} \left(\mathbf{\Theta} - \frac{1}{\operatorname{tr}(\mathbf{B}^{-1})} (\mathbf{B}^{-T} : \mathbf{\Theta}) \mathbf{I} \right)$$

Determine $\mathbf{u}: \Omega \to \mathbb{R}^3$, $\mathbf{P}: \Omega \to \mathbb{R}^{3\times 3}$ such that

$$\operatorname{div} \mathbf{P} + \mathbf{f} = 0$$
$$\mathcal{A}(\mathbf{PF(u)}^T) - \mathbf{B(u)} = \mathbf{0}$$

where $\mathcal{A} = \mathcal{G}_{NH}^{-1}$ for $\lambda < \infty$ and \mathcal{A} is also well-defined for $\lambda = \infty$ Wriggers/Nonlinear FE Methods: Inversion based on $\widetilde{\mathcal{G}}(\mathbf{C}(\mathbf{u}))$

Scaling the Stress-Strain Relation

B. Müller/St./Schwarz/Schröder (2013):

For
$$\mathbf{u} \in W^{1,4}_{\Gamma_D}(\Omega)^3$$
, $\mathbf{P} \in W^4_{\Gamma_N}(\mathrm{div},\Omega)^3$ and $\mathbf{f} \in L^2(\Omega)$,

$$\mathcal{R}(\mathbf{P}, \mathbf{u}) = \begin{pmatrix} \operatorname{div} \mathbf{P} + \mathbf{f} \\ \mathcal{A}(\mathbf{PF}(\mathbf{u})^T) - \mathbf{B}(\mathbf{u}) \end{pmatrix} \in L^2(\Omega)^3 \times L^2(\Omega)^{3 \times 3}$$

Determine
$$\mathbf{u} \in W_{\Gamma_{\Omega}}^{1,4}(\Omega)^3$$
, $\mathbf{P} \in W_{\Gamma_{N}}^{4}(\operatorname{div},\Omega)^3$ such that

$$\mathcal{F}(\textbf{P},\textbf{u}) = \|\mathrm{div}\,\textbf{P} + \textbf{f}\|_{\mathit{L}^{2}(\Omega)}^{2} + \|\mathcal{G}_{\mathit{NH}}^{-1}(\textbf{PF}(\textbf{u})^{\mathsf{T}}) - \textbf{B}(\textbf{u})\|_{\mathit{L}^{2}(\Omega)}^{2}$$

is minimized.

Example

Auricchio/Beirão da Veiga/Lovadina/Reali (2010) Uniform volume force $\mathbf{f} = (0, \gamma), \gamma \in \mathbb{R}$, plane strain condition

Bdy conditions 1: $\mathbf{u} = \mathbf{0}$ left, right and below, $\mathbf{P} \cdot \mathbf{n} = \mathbf{0}$ on top

Bdy conditions 2: $\mathbf{u} \cdot \mathbf{n} = 0$ und $(\mathbf{P} \cdot \mathbf{n}) \cdot \mathbf{t} = 0$ left, right and below, $\mathbf{P} \cdot \mathbf{n} = \mathbf{0}$ on top

Exact solution (for $\lambda \to \infty$): $P(x_1, x_2) = \gamma(1 - x_2)I$, $u \equiv 0$

Singularities occur at critical load values $\gamma_k > 0, k = 1, 2, ...$ Numerical results: See poster by Benjamin Müller

Linearization

$$\mathcal{R}(\mathbf{P}+\mathbf{Q},\mathbf{u}+\mathbf{v}) \approx \mathcal{R}(\mathbf{P},\mathbf{u}) + \mathcal{J}(\mathbf{P},\mathbf{u})[\mathbf{Q},\mathbf{v}]$$
 where the derivative in direction $(\mathbf{Q},\mathbf{v}) \in W^4_{\Gamma_N}(\operatorname{div},\Omega)^3 \times W^{1,4}_{\Gamma_D}(\Omega)^3$ is given by

$$\mathcal{J}(P,Q)[Q,\nu] = \begin{pmatrix} \operatorname{div} Q \\ \mathcal{D}G^{-1}(PF(u)^{T})[Q,\nu] - (I + \nabla u)\nabla \nu^{T} - \nabla \nu (I + \nabla u)^{T} \end{pmatrix}$$

with

$$D\mathbf{G}^{-1}(\mathbf{PF}(\mathbf{u})^T)[\mathbf{Q},\mathbf{v}] = \mathbf{G}'(\mathbf{G}^{-1}(\mathbf{PF}(\mathbf{u})^T))^{-1}[\mathbf{QF}(\mathbf{u})^T + \mathbf{P}\nabla\mathbf{v}^T]$$

Variational formulation:

Find
$$(\mathbf{P}, \mathbf{u}) \in W_{\Gamma_N}^4(\operatorname{div}, \Omega)^3 \times W_{\Gamma_D}^{1,4}(\Omega)^3$$
 such that $(\mathcal{R}(\mathbf{P}, \mathbf{u}), \mathcal{J}(\mathbf{P}, \mathbf{u})[\mathbf{Q}, \mathbf{v}]) = 0$ for all $(\mathbf{Q}, \mathbf{v}) \in W_{\Gamma_N}^4(\operatorname{div}, \Omega)^3 \times W_{\Gamma_D}^{1,4}(\Omega)^3$

Overview

Variational Formulations for Incompressible Linear Elasticity

Computational Results and Motivation

Hyperelasticity as a First-Order System

Computational Experiments

Conclusions

Cook's membrane (plane strain): Traction force at right boundary:

incompressible case
$$(\lambda = \infty)$$

 $\mathbf{P} \cdot \mathbf{n} = (0, \gamma)^T$

Cook's membrane (plane strain): incompressible case $(\lambda = \infty)$ Traction force at right boundary: $\mathbf{P} \cdot \mathbf{n} = (0, \mu \gamma)^T$

Reduction of least squares functional for $\gamma = 0.1$:

	dim Π_h	$dim\; \mathbf{V}_h$	$\mathcal{F}(\mathbf{P}_h, \mathbf{u}_h)$ (order)	$\ \operatorname{div} \mathbf{P}_h\ ^2$
I=0	897	310	1.688e-1	6.598e-4
I=1	3640	1188	7.414e-2 (1.187)	1.416e-4 (2.220)
I=2	14664	4648	3.454e-2 (1.102)	3.200e-5 (2.146)
<i>l</i> = 3	58864	18384	1.625e-2 (1.088)	7.021e-6 (2.188)
<i>l</i> = 4	235872	73120	7.547e-3 (1.106)	1.415e-6 (2.311)

```
Auricchio/Beirão da Veiga/Lovadina/Reali (2010)
```

Minimize $W(\mathbf{u}_h)$ with respect to $\mathbf{u}_h \in \mathbf{V}_h$ and handle incompressibility by introducing a pressure-like variable $p = \lambda(J^2 - 1)$ approximated by $p_h \in \Pi_h$

Used combinations:

 $V_h = \text{conforming } \mathcal{P}_2, \; \Pi_h = \text{discontinuous } \mathcal{P}_0$

 $\mathbf{V}_h = \text{conforming } \mathcal{P}_2$, $\mathbf{\Pi}_h = \text{discontinuous } \mathcal{P}_1$ (unstable)

 $V_h = \text{conforming } \mathcal{P}_2, \ \Pi_h = \text{continuous } \mathcal{P}_1 \ (\text{Taylor-Hood})$

and

 $V_h = \text{conforming } \mathcal{P}_2, \; \Sigma_h = RT_1 \; \text{(First-order system least squares)}$

Cook's membrane (plane strain): Traction force at right boundary:

incompressible case $\mathbf{P} \cdot \mathbf{n} = (0, \mu \gamma)^T$

Behavior of approximation to u_2 at right upper tip for $\gamma = 0.1$:

Reverse Cook's membrane: Traction force at right boundary:

incompressible case
$$(\lambda = \infty)$$

 $\mathbf{P} \cdot \mathbf{n} = (0, \gamma)^T$, $\gamma < 0$

Cook's membrane (plane strain): incompressible case $(\lambda = \infty)$ Traction force at right boundary: $\mathbf{P} \cdot \mathbf{n} = (0, \mu \gamma)^T$

Reduction of least squares functional for $\gamma = -0.1$:

	dim Π_h	$dim\; \mathbf{V}_h$	$\mathcal{F}(\mathbf{P}_h, \mathbf{u}_h)$ (order)	$\ \operatorname{div} \mathbf{P}_h\ ^2$
I=0	897	310	2.326e-1	8.943e-4
I=1	3640	1188	9.542e-2 (1.285)	1.599e-4 (2.484)
I=2	14664	4648	4.042e-2 (1.239)	2.790e-5 (2.519)
<i>l</i> = 3	58864	18384	1.694e-2 (1.255)	4.325e-6 (2.689)
<i>l</i> = 4	235872	73120	6.796e-3 (1.318)	5.335e-7 (3.019)

3D Cook's Membrane

3D Cook's Membrane

Plot of the normal components of the stress tensor on the left clamped boundary

(see poster by Benjamin Müller)

Overview

Variational Formulations for Incompressible Linear Elasticity

Computational Results and Motivation

Hyperelasticity as a First-Order System

Computational Experiments

Conclusions

Conclusions

- ► First-order system least squares methods in solid mechanics provide simultaneous approximation of displacements and stresses
- ▶ Produces accurate results for local evaluations of stress and traction forces important in connection to damage simulations
- ► Generalizable to nonlinear solid-mechanical models in a natural way as well as, in principle, to implicit constitutive laws
- ► Local evaluation of least squares functional may be used as an a posteriori error estimator (see poster by Benjamin Müller)