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Incompressible Linear Elasticity
First-Order System Formulation of Linear Elasticity

Displacement field u : Ω→ IRd

Stress tensor σ : Ω→ IRd×d

div σ + f = 0 in Ω

Aσ − ε(u) = 0 in Ω

u = 0 on ΓD

σ · n = t on ΓN

ε(u) =
∇u + ∇uT

2

Aσ =
1

2µ

(
σ − λ

λd + 2µ
(tr σ) I

)
A = C−1 if λ <∞

u ∈ H1
ΓD

(Ω)d

σ ∈ σN + HΓN
(div,Ω)d (σN ∈ H(div,Ω)d s.t. σN · n = t on ΓN)
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Incompressible Linear Elasticity
Displacement-Pressure (Galerkin) Formulation

Insert new variable p into material (2nd) eqn:

Aσ =
1

2µ

(
σ − λ

λd + 2µ
(tr σ) I

)
=

1

2µ
(σ − p I) = ε(u)

and combine this with momentum balance (1st) equation:

Determine ug ∈ H1
ΓD

(Ω)d , pg ∈ L2(Ω) such that

2µ (ε(ug ), ε(v))L2(Ω) + (p,div v)L2(Ω) = (f, v)L2(Ω) + 〈t, v〉L2(ΓN)

(div u, q)L2(Ω) =
1

λ
(p, q)L2(Ω)

holds for all v ∈ H1
ΓD

(Ω)d , q ∈ L2(Ω)

σg = 2µ ε(ug ) + pg I ∈ L2(Ω)d×d
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Incompressible Linear Elasticity
Hellinger-Reissner (Mixed) Formulation of Linear Elasticity

Determine σm ∈ σN + HΓN
(div,Ω)d , um ∈ L2(Ω)d and

γm ∈ L2(Ω)d×d ,skew such that

(Aσm, τ )L2(Ω) + (um,div τ )L2(Ω) + (γm, skew τ )L2(Ω) = 0

(div σm + f, v)L2(Ω) = 0

(skew σm,η)L2(Ω) = 0

holds for all τ ∈ HΓN
(div,Ω)d , v ∈ L2(Ω)d and η ∈ L2(Ω)d×d ,skew

skewτ =
1

2
(τ − τT )

L2(Ω)d×d ,skew = {τ ∈ L2(Ω)d×d : τ + τT = 0}

First-Order System Approaches to Hyperelastic Deformation Models Gerhard Starke 6/ 37



Incompressible Linear Elasticity
First-Order System Least Squares

Determine σls ∈ σN + HΓN
(div,Ω)d and uls ∈ H1

ΓD
(Ω)d such that

‖div σ + f‖2
L2(Ω) + ‖Aσ − ε(u)‖2

L2(Ω)

is minimized

Equivalently: σls ∈ σN + HΓN
(div,Ω)d and uls ∈ H1

ΓD
(Ω)d s.t.

(div σls + f,div τ )L2(Ω) + (Aσls − ε(uls),Aτ )L2(Ω) = 0

(Aσls − ε(uls), ε(v))L2(Ω) = 0

holds for all τ ∈ HΓN
(div,Ω)d and v ∈ H1

ΓD
(Ω)d

From now on: ( , ) instead of ( , )L2(Ω), ‖ ‖ instead of ‖ ‖L2(Ω)
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Incompressible Linear Elasticity
Approximation Properties for First-Order System Least Squares

Coercivity of the first-order system least squares bilinear form

B(u,σ; v, τ ) = (div σ,div τ ) + (Aσ − ε(u),Aτ − ε(v))

in H1
ΓD

(Ω)d × HΓN
(div,Ω)d with respect to

|||(v, τ )||| =
(
‖ε(v)‖2 + ‖div τ‖2 + ‖τ‖2

)1/2

holds uniformly for λ→∞ (Cai/St., 2004)

=⇒ Optimal order convergence:

|||(u− uls
h ,σ − σls

h )||| h inf
vh,τ h

|||(u− vh,σ − τ h)|||

for subspaces Vh ⊂ H1
ΓD

(Ω)d , Σh ⊂ HΓN
(div,Ω)d
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Incompressible Linear Elasticity
Finite Element Spaces and Approximation Properties

In comparison, for the displacement-pressure formulation:

|||(u− ug
h , 0)||| = ‖ε(u− ug

h)‖ h inf
vh∈Vh

‖ε(u− vh)‖

(if an inf-sup stable Stokes finite element pair is used)

And, for the Hellinger-Reissner (mixed) formulation:

|||(0,σ − σm
h )||| =

(
‖div (σ − σm

h )‖2 + ‖σ − σm
h ‖
)1/2

h inf
τ h∈Σh

(
‖div (σ − τ h)‖2 + ‖σ − τ h‖

)1/2

(if Σh is part of an inf-sup stable finite element combination)

=⇒ |||(u− uls
h ,σ − σls

h )||| h |||(u− ug
h ,σ − σ

m
h )|||
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Incompressible Linear Elasticity
Finite Element Spaces and Approximation Properties

Advantages and Disadvantages
Galerkin Mixed FOSLS
(ug , pg ) (σm,um) (σls ,uls)
(H1)d/L2 H(div)d/(L2)d H(div)d/(H1)d

# unknowns + - -

comp. condition - - +

momentum bal. - + ◦
nonlinear form. + - +

error estimation ◦ ◦ +

scaling issue + + -

Proper scaling of the individual terms in the ls functional

‖div σ + f‖2
L2(Ω) + ‖Aσ − ε(u)‖2

L2(Ω)

needed: depending on µ (physical units used), size of domain Ω
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Computational Results and Motivation
Cook’s Membrane

Finite element spaces based on a triangulation Th
Vh: H1-conforming P2 elements
Σh: H(div)-conforming RT1 elements

incompressible case
λ =∞

Boundary conditions:
u = 0 at left
σ · n = 0 at top/bottom
σ · n = (0, γ) at right
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Computational Results and Motivation
Cook’s Membrane

First-Order System Least Squares does not satisfy momentum
balance exactly but . . .

‖div σ + f‖2
L2(Ω) + ‖Aσ − ε(u)‖

2
L2(Ω)

‖div σ + f‖2
L2(Ω)

. . . approximates momentum balance at a higher rate!

St./Schröder/Schwarz (2012): Theory for a slight modification
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Computational Results and Motivation
Cook’s Membrane

When is accurate momentum balance important?

tangential traction force
n× (σ · n) along left boundary
(by different methods)
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Hyperelasticity as a First-Order System
Hyperelastic Material Models

Displacement field u : Ω→ IR3

Deformation gradient F(u) = I + ∇u

Right Cauchy-Green strain tensor C(u) = F(u)TF(u)
Left Cauchy-Green strain tensor B(u) = F(u)F(u)T

Stored energy function ψ : IR3×3
sym → IR

Minimize the total energy

W (u) =

∫
Ω
ψ(C(u)) dx −

∫
Ω

f · u dx

among all admissible u : Ω→ IR3
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Hyperelasticity as a First-Order System
Hyperelastic Material Models

1st Piola-Kirchhoff stress tensor P = ∂Fψ(C(u))

First-order system:
Determine u : Ω→ IR3, P : Ω→ IR3×3 such that

div P + f = 0

P− ∂Fψ(C(u)) = 0
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Hyperelasticity as a First-Order System
Hyperelastic Material Models

1st Piola-Kirchhoff stress tensor P = ∂Fψ(C(u))

First-order system:
Determine u : Ω→ IR3, P : Ω→ IR3×3 such that

div P + f = 0

PF(u)T − ∂Fψ(C(u))F(u)T = 0

For example: Neo-Hooke material (with J = det F):

ψNH(C) =
µ

2
tr C +

λ

4
J2 −

(
λ

2
+ µ

)
ln J

∂FψNH(C) = µ F +

(
λ

2
(J2 − 1)− µ

)
F−T
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Hyperelasticity as a First-Order System
Neo-Hooke model

∂FψNH(C)FT = µ FFT +

(
λ

2
(J2 − 1)− µ

)
I

= µ B +

(
λ

2
(J2 − 1)− µ

)
I =: GNH(B)

with J2 = det(B)

Determine u : Ω→ IR3, P : Ω→ IR3×3 such that

div P + f = 0

PF(u)T − GNH(B(u)) = 0
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Hyperelasticity as a First-Order System
Neo-Hooke model

GNH(B) = µ (B− I) +
λ

2
(J2 − 1)I

with J2 = det(B)

G′NH(B)[E] = µ E +
λ

2
J2(B−T : E)I

In particular: G′NH(I)[E] = µE+
λ

2
(trE)I

Small strain limit: Linear elasticity system

div P + f = 0

P− GNH(I)︸ ︷︷ ︸
=0

+G′NH(I)[∇u + (∇u)T ] = 0
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Hyperelasticity as a First-Order System
Scaling the Stress-Strain Relation

GNH(B) = µ (B− I) +
λ

2
(J2 − 1)I

Existence of an inverse function B = G−1
NH(Σ) leads to a first-order

system which remains valid in the incompressible limit

λ→∞ : G′NH(B)−1[Θ]→ 1

µ

(
Θ− 1

tr(B−1)
(B−T : Θ)I

)

Determine u : Ω→ IR3, P : Ω→ IR3×3 such that

div P + f = 0

A(PF(u)T )− B(u) = 0

where A = G−1
NH for λ <∞ and A is also well-defined for λ =∞

Wriggers/Nonlinear FE Methods: Inversion based on G̃(C(u))

First-Order System Approaches to Hyperelastic Deformation Models Gerhard Starke 20/ 37



Hyperelasticity as a First-Order System
Scaling the Stress-Strain Relation

B. Müller/St./Schwarz/Schröder (2013):

For u ∈W 1,4
ΓD

(Ω)3, P ∈W 4
ΓN

(div,Ω)3 and f ∈ L2(Ω),

R(P,u) =

(
div P + f

A(PF(u)T )− B(u)

)
∈ L2(Ω)3 × L2(Ω)3×3

Determine u ∈W 1,4
ΓD

(Ω)3, P ∈W 4
ΓN

(div,Ω)3 such that

F(P,u) = ‖div P + f‖2
L2(Ω) + ‖G−1

NH(PF(u)T )− B(u)‖2
L2(Ω)

is minimized.
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Hyperelasticity as a First-Order System
Example

Auricchio/Beirão da Veiga/Lovadina/Reali (2010)
Uniform volume force f = (0, γ), γ ∈ IR, plane strain condition

Bdy conditions 1:
u = 0 left, right and below,
P · n = 0 on top

Bdy conditions 2:
u · n = 0 und (P · n) · t = 0
left, right and below,
P · n = 0 on top

Exact solution (for λ→∞):
P(x1, x2) = γ(1− x2)I, u ≡ 0

Singularities occur at critical load values γk > 0, k = 1, 2, . . .
Numerical results: See poster by Benjamin Müller
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Hyperelasticity as a First-Order System
Linearization

R(P + Q,u + v) ≈ R(P,u) + J (P,u)[Q, v] where the derivative

in direction (Q, v) ∈W 4
ΓN

(div,Ω)3 ×W 1,4
ΓD

(Ω)3 is given by

J (P,Q)[Q, v] =

(
div Q

DG−1(PF(u)T )[Q, v]− (I + ∇u)∇vT −∇v(I + ∇u)T

)
with
DG−1(PF(u)T )[Q, v] = G′(G−1(PF(u)T ))−1[QF(u)T + P∇vT ]

Variational formulation:

Find (P,u) ∈W 4
ΓN

(div,Ω)3 ×W 1,4
ΓD

(Ω)3 such that
(R(P,u),J (P,u)[Q, v]) = 0 for all
(Q, v) ∈W 4

ΓN
(div,Ω)3 ×W 1,4

ΓD
(Ω)3
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Computational Experiments

Cook’s membrane (plane strain): incompressible case (λ =∞)
Traction force at right boundary: P · n = (0, γ)T
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Computational Experiments

Cook’s membrane (plane strain): incompressible case (λ =∞)
Traction force at right boundary: P · n = (0, µγ)T

Reduction of least squares functional for γ = 0.1:

dim Πh dim Vh F(Ph,uh) (order) ‖divPh‖2

l = 0 897 310 1.688e-1 6.598e-4
l = 1 3640 1188 7.414e-2 (1.187) 1.416e-4 (2.220)
l = 2 14664 4648 3.454e-2 (1.102) 3.200e-5 (2.146)
l = 3 58864 18384 1.625e-2 (1.088) 7.021e-6 (2.188)
l = 4 235872 73120 7.547e-3 (1.106) 1.415e-6 (2.311)
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Computational Experiments

Auricchio/Beirão da Veiga/Lovadina/Reali (2010)

Minimize W (uh) with respect to uh ∈ Vh and handle
incompressibility by introducing a pressure-like variable
p = λ(J2 − 1) approximated by ph ∈ Πh

Used combinations:
Vh = conforming P2, Πh = discontinuous P0

Vh = conforming P2, Πh = discontinuous P1 (unstable)
Vh = conforming P2, Πh = continuous P1 (Taylor-Hood)

and

Vh = conforming P2, Σh = RT1 (First-order system least squares)
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Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P · n = (0, µγ)T

Behavior of approximation to u2 at right upper tip for γ = 0.1:

P2/P0

P2/Pcontin.
1 (Taylor-Hood)

P2/Pdiscont.
1 (unstable)

FOSLS (RT1/P2)

First-Order System Approaches to Hyperelastic Deformation Models Gerhard Starke 28/ 37



Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P · n = (0, µγ)T

Tangential traction at left boundary at refinement level 1 (γ = 0.1)

P2/P0

P2/Pcontin.
1 (Taylor-Hood)

FOSLS (RT1/P2)
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Computational Experiments
Reverse Cook’s membrane: incompressible case (λ =∞)
Traction force at right boundary: P · n = (0, γ)T , γ < 0
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Computational Experiments

Cook’s membrane (plane strain): incompressible case (λ =∞)
Traction force at right boundary: P · n = (0, µγ)T

Reduction of least squares functional for γ = −0.1:

dim Πh dim Vh F(Ph,uh) (order) ‖divPh‖2

l = 0 897 310 2.326e-1 8.943e-4
l = 1 3640 1188 9.542e-2 (1.285) 1.599e-4 (2.484)
l = 2 14664 4648 4.042e-2 (1.239) 2.790e-5 (2.519)
l = 3 58864 18384 1.694e-2 (1.255) 4.325e-6 (2.689)
l = 4 235872 73120 6.796e-3 (1.318) 5.335e-7 (3.019)
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Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P · n = (0, µγ)T

Behavior of approximation to u2 at right upper tip for γ = −0.1:

FOSLS (RT1/P2)
P2/Pdiscont.

1 (unstable)
P2/Pcontin.

1 (Taylor-Hood)
P2/P0
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Computational Experiments

Cook’s membrane (plane strain): incompressible case
Traction force at right boundary: P · n = (0, µγ)T

Tangential traction at left boundary at refinem. level (γ = −0.1)

P2/Pcontin.
1 (Taylor-Hood)

P2/P0

FOSLS (RT1/P2)
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Computational Experiments

3D Cook’s Membrane
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Computational Experiments

3D Cook’s Membrane
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Plot of the normal components of the stress tensor on the left clamped boundary   

(see poster by Benjamin Müller)
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Conclusions

I First-order system least squares methods in solid mechanics
provide simultaneous approximation of displacements and stresses

I Produces accurate results for local evaluations of stress and
traction forces important in connection to damage simulations

I Generalizable to nonlinear solid-mechanical models in a natural
way as well as, in principle, to implicit constitutive laws

I Local evaluation of least squares functional may be used as an a
posteriori error estimator (see poster by Benjamin Müller)
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