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Setting of the problem

Let a domain Ω ⊂ Rn cross the hyperplane
Σ = {(x1, . . . , xn) : xn = 0}. In the cylinder QT = Ω× [0,T ]
consider the nonlinear parabolic equation

ωε(x)
∂u

∂t
= div (ωε(x)A(x , t, u,∇u)) , (1)

where

ωε(x) =

{
ε, xn > 0,

1, xn < 0,
ε > 0. (2)

and the flow A(x , t, u, ξ) is a Caratheodory function satisfying the
structure conditions

|A(x , t, u, ξ)| ≤ Λ|ξ|p−1, A(x , t, u, ξ) · ξ ≥ λ|ξ|p, (3)

where p = const > 2 and λ,Λ are positive constants, for all
(x , t) ∈ Rn × (0,∞) and ξ ∈ Rn.



The model equation is

ωε(x)
∂u

∂t
= div

(
ωε(x)|∇u|p−2∇u

)
. (4)

For any fixed ε this equation (and, of course, (1)) falls within the
framework of the theory developed by E. DiBenedetto in 1980’s for
degenerate parabolic equations of the p-Laplace type. So, for any
fixed positive ε we have at our disposal

1. Pointwise estimates of DiGiorgi-Moser
(-Ladyzhenskaya-Uraltseva-...) type: It is possible to estimate
the L∞ norm of a solution in a smaller cylinder via its Lp

norm in a larger cylinder.

2. (Hölderian) Estimates for the modulus of continuity of
solutions: solutions are Hölder continuous in the interior, and
up to the boundary if the boundary data is also Hölder
continuous.

3. (Intrinsic form of) the Harnack inequality. (DiBenedetto,
Gianazza, Vespri: 2007).



The problem:

Is it possible to obtain standard a priori estimates for
solutions of (1), independent of the (small) parameter ε?

It is easy that for any r on the set Q ∩ {|xn| > r} the model
equation (4) is reduced to the standard p-Laplace equation. Thus,
the main problem is to glue together estimates in {xn < −r} and
{xn > r} at the interface {xn = 0}.



The essence of this problem can be easily shown on the example of
the linear elliptic equation

div (ωεA∇u) = 0 (5)

with the uniformly elliptic matrix A. For the classical 2nd order
elliptic equation

div (A∇u) = 0 (6)

the standard methods are based on the energy estimates∫
BR

|∇(u − k)±|pξp dx ≤ C

∫
BR

(u − k)p±|∇ξ|p dx ,

where k ∈ R and ξ ∈ C∞0 (BR).



This estimate is obtained by using the test function (u − k)±ξ
p in

the definition of a solution∫
A∇u · ∇ϕdx = 0, ϕ ∈W 1,2

0 (BR)

and the Young inequality.

Following the same way, for equation (5), we obtain∫
BR

|∇(u − k)±|pξpωε dx ≤ C

∫
BR

(u − k)p±|∇ξ|pωε dx . (7)



From here, on the lower part of BR , B
(2)
R = BR ∩ {xn < 0}, we

obtain a “good” estimate∫
B

(2)
R

|∇(u − k)±|pξp dx ≤ C

∫
BR

(u − k)p±|∇ξ|pωε dx . (8)

On the upper part of BR , B
(1)
R = BR ∩ {xn < 0}, we can easily

obtain from here only a “bad” estimate

ε

∫
B

(1)
R

|∇(u − k)±|pξp dx ≤ C

∫
BR

(u − k)p±|∇ξ|pωε dx (9)

which becomes useless as ε goes to zero.



A related problem.
The problem described above can be considered as a model case
for a more difficult problem. Take the weight

ω(x) =

{
ω1(x), xn > 0,

ω2(x), xn < 0,
(10)

where both weights ω1 and ω2 belong to the Muckenhoupt class
Ap and are symmetric with respect to Σ. A standard example of
such weight is given by ωi (x) = |x |αi , −n < αi < p.
Assume, additionally, that

ω1(x)

ω1(Br )
≤ C

ω2(x)

ω2(Br )
, ∀x ∈ Br , (11)

for balls Br of radius r ≤ r0 centered on Σ. An easy consequence
of (11) is that

ω1(x) ≤ Cω2(x)

in the neighbourhood of Σ.



Consider the parabolic equation

ω(x)ut = div
(
ω(x)|∇u|p−2∇u

)
, x ∈ Ω, t ∈ [0,T ],

or its elliptic analogue

div
(
ω(x)|∇u|p−2∇u

)
= 0, x ∈ Ω.

If we stay away from the interface Σ, the solutions enjoy all
standard properties like local boundedness, Hölder continuity, the
Harnack inequality. However, as soon as we touch the interface,
the standard scheme breaks.



For instance, it is easy to see that the weighted form of the
Sobolev inequality

1

ω(Br )

∫
Br

|v |pκω dx ≤ C

(
rp

ω(Br )

∫
Br

|∇v |pω dx

)κ
,

κ > 1, can not hold if ω2(Br )/ω1(Br )→ 0 as r → 0 for balls Br

centered on Σ.

Moreover, in the elliptic case it was established that the standard
form of the Harnack inequality does not hold in general, though
the Hölder continuity of solutions is present.



Previous results in this direction.

1. Elliptic equations with “partial Muckenhoupt” weights: Yu.
Alkhutov, V. Zhikov (2001,2003) - sup estimates and continuity of
solutions. A special form of the Harnack inequality was proved by
Yu. Alkhutov and E. Hrenova in 2011:

inf
BR

u > γ sup
B−
R

u, B−R = BR ∩ {−R < xn < −R/2}.

2. For the linear elliptic case

div (ωεA∇u) = 0. (12)

pointwise sup estimates and the Hölder continuity of solutions
were established by Yu. Alkhutov and S. Guseinov (2009).



3. The linear parabolic case

ωεut = div (ωεA∇u) (13)

was due to Yu. Alkhutov and V.A. Liskevich (2012). In the first of
their two joint papers they obtained local pointwise estimates

sup
QR/2

u ≤ C

(
1

|Q|

∫
QR

u2 dx dt

)1/2

, QR = BR × (t0 − R2, t0),

and continuity of solutions, which was followed by the second
paper where the uniform Nash-Aronson type upper bound for the
heat kernel was established:

Kε(x , y , t) ≤ c1t
−n/2e−c2|x−y |2/t .



The answer to the problem

is YES, at least what regards the pointwise estimates for the L∞

norm of solutions and estimates for the modulus of continuity: it is
possible to obtain these estimates uniform with respect to ε.

The Harnack inequality is the subject of my future work: first, it is
necessary to understand the form it takes here: the standard form
fails even in the elliptic case + add the interplay with the intrinsic
character of Harnack for nonlinear equations.



The main estimate

The main tool in the regularity theory is the classical energy
estimate (see, for instance, the book of DiBenedetto)∫

Ω
(u − k)2

±ξ
p dx

∣∣∣∣t=b

t=a

+

∫
Ω×(a,b)

|∇(u − k)±|pξp dx dt

≤ p

∫
Ω×(a,b)

(u − k)2
±ξ

p−1ξt dx dt

+C

∫
Ω×(a,b)

(u − k)p±|∇ξ|p dx dt

for any k ∈ R and any smooth cut-off function ξ vanishing on
∂Ω× (a, b). To obtain this estimate one multiplies the equation
formally by (u − k)±ξ

p, integrates by parts and uses the Young
inequality. Formal justification is by the Steklov averaging.



In our case, this estimate takes the form∫
Ω

(u − k)2
±ξ

pωε dx

∣∣∣∣t=b

t=a

+

∫
Ω×(a,b)

|∇(u − k)±|pξpωε dx dt

≤ p

∫
Ω×(a,b)

(u − k)2
±ξ

p−1ξtωε dx dt

+C

∫
Ω×(a,b)

(u − k)p±|∇ξ|pωε dx dt.



While in the “lower” part Q(2) = Q × {xn < 0} it yields a good
estimate∫

Ω(2)
(u − k)2

±ξ
p dx

∣∣∣∣
t=b

+

∫
Ω(2)×(a,b)

|∇(u − k)±|pξp dx dt

≤ p

∫
Ω×(a,b)

(u − k)2
±ξ

p−1ξtωε dx dt

+C

∫
Ω×(a,b)

(u − k)p±|∇ξ|pωε dx dt

+

∫
Ω

(u − k)2
±ξ

p dx

∣∣∣∣
t=a

,



on the “upper” part of the cylinder we have from here only

ε

∫
Ω(1)

(u − k)2
±ξ

p dx

∣∣∣∣
t=b

+ ε

∫
Ω(1)×(a,b)

|∇(u − k)±|pξp dx dt

≤ p

∫
Ω×(a,b)

(u − k)2
±ξ

p−1ξtωε dx dt

+C

∫
Ω×(a,b)

(u − k)p±|∇ξ|pωε dx dt

+

∫
Ω

(u − k)2
±ξ

p dx

∣∣∣∣
t=b

,

which degenerates at small values of ε.



Instead of this estimate we use another one. Denote the even
continuation of u from Q(2) across Σ to Q(1) by ũ. An additional
assumption here is that the symmetric reflection of Q(2) across Σ
covers Q(1). Let

v =

{
max(u, ũ) in Q(1),

u in Q((2).

Denote the even continuation of the cut-off function ξ from Q(2)

to Q(1) across Σ by ξ̂.
Moreover, let the cut-off function ξ vanish on the parabolic
boundary of Q or u < k on the lower base of the cylinder Q.



Then

sup
a≤t≤b

∫
Ω

(v − k)2
+ξ

p dx +

∫
Q
|∇(v − k)+|pξp dx dt

≤ C

∫
Q

(u − k)2
+(|ξ|+ |ξ̂t |) dx dt

+C

∫
Q

(u − k)p+(|∇ξ|p + |∇ξ̂|p)dx dt

(14)

with the constant C independent of ε and the solution.
A similar estimate holds for ()+ replaced by ()− with max replaced
by min in the definition of v .



The proof follows Alkhutov, Liskevich 2012 and is by a choice of
the test-function (modulo the Steklov averaging process)

ϕ =
(
(u − k)+ − (min(u, ũ)− k)3

+(u − k)−2
+

)
ξp.

It is easy that ϕ is not zero only on the set where {u > ũ}, which
is contained in the upper part of the cylinder Q(1) = Q ∩ {xn > 0}.
Thus, one gets rid of ε. Further manipulations rely on the fact that
ũ is a solution to an equation of the same type

ũt = divB(x , t, ũ,∇ũ),

where

(B(. . . , ξ1, . . . , ξn−1, ξn))i = (A(. . . , ξ1, . . . , ξn−1,−ξn))i ,

i = 1, . . . , n − 1,

(B(. . . , ξ1, . . . , ξn−1, ξn))n = − (A(. . . , ξ1, . . . , ξn−1,−ξn))n .



In the model case ũ satisfies just the same equation with ωε
reflected across Σ.

In the end we obtain

sup

∫
Ω∩{u>ũ}

(u − k)2
+ξ

p dx +

∫
Q∩{u>ũ}

|∇(u − k)+|pξp dx dt

≤ C

∫
Q∩{u>ũ}

[
(u − k)2

+ξ
p−1|ξt |+ (u − k)p+|∇ξ|p

]
dx dt

+C

∫
Q∩{u>ũ}

|∇(ũ − k)+|pξp + C

∫
Ω∩{u>ũ}

(ũ − k)2
+ξ

p dx .

(15)



It remains to use the “good” estimate for u in Q(2) to complete
the proof.
Having obtained estimate (15), the rest of the proof follows the
standard DiBenedetto’s scheme.

The only difference is that we have to use only such cut-off
functions ξ that vanish on the lower base of the cylinder. It leads
to the cylinders we used in the proof being asymmetric with
respect to Σ. They have the structure BR × (a, b), where
|BR ∩ {xn > 0}| = α|BR | with some small positive constant α.



In the standard case on of the instruments used in the proof is the
following asserion:

Let u be a solution in the cylinder BR × [0,T ] and
|{u(·, 0) > k} ∩ BR | > α|BR |. There exist constants β, δ ∈ (0, 1)
and a positive constant θ such that |{u(·, t) > δk} ∩ BR | > β|BR |
for any 0 ≤ t ≤ θk2−pRp.

In our case, this estimate is replaced by the following one.

Let u be a solution in the cylinder BR × [0,T ] and
|{u(·, 0) > k} ∩ BR | > α|BR |. Assume that
|BR ∩ {xn > 0}| ≤ α

8 |BR |. There exist constants δ ∈ (0, 1) and
θ > 0 such that |{u(·, t) > δk} ∩ BR | > α

2 |BR |.



To prove the Hölder continuity it is sufficient to obtain the
reduction of oscillation in the following basic situation.

Lemma
Let u be a solution to (1) in the cylinder Q = BR × [−T , 0],
satisfying 0 ≤ u ≤ 1 in Q. Then there exist N ∈ N, α ∈ (0, 1) and
δ ∈ (0, 1) such that

ess osc
BαR×[−1,0]

u ≤ 1− δ

provided that T > 2N. The constants N, α, δ are independent of u
and ε.



The remaining instruments in the proof are the following:

Lemma (De Giorgi type lemma)

Let u be a solution to (1) in the cylinder Q = BR × [−T , 0]. Let
µ+ ≥ ess supQ u, µ− ≤ ess infQ u, ω ∈ µ+ − µ−. For any
a ∈ (0, 1) and σ ∈ (0, 1) there exists a positive number
ε = ε(a, σ,TR−pωp−2) such that u < µ+ − aω in BσR × [−T/2, 0]
provided that |{u > µ+ − ω} ∩ Q| < ε|Q|. Analogously,
u > µ− + aω in BσR × [−T/2, 0] provided that
|{u < µ− + ω} ∩ Q| < ε|Q| with the same ε.



Lemma
Let u be a solution to (1) in the cylinder Q = BR × [t0, t1].
Assume that u(·, t0) > µ− + ω a.e. on BR , where

µ+ ≥ ess sup
Q

u, µ− ≤ ess inf
Q

u, ω ∈ µ+ − µ−.

For any σ, a ∈ (0, 1) there exists θ = θ(a, σ, data) such that
u > µ− + aω a.e. in the cylinder Q ′ = BσR × [t0, t0 + θω2−pRp].
If u(·, t0) < µ+ − ω on BR , then u < µ+ − aω on Q ′.



Lemma (Telescopic argument)

Let u be a solution to (1) in the cylinder
Q = BR × [t0, t0 + 2θω2−pRp], ω > 0. Assume that
|{u(·, t) > µ− + ω} ∩ BσR | > α|BσR |, α, σ ∈ (0, 1). For any j ∈ N
the following estimate holds:

|{u < µ− + 2−jω} ∩ Q ′| ≤ C (α, σ)j1/p−1|Q ′|,
Q ′ = BσR × [t0 + θω2−pRp, t0 + 2θω2−pRp].

provided that θ > 2(p−2)j .



Directions of further work.

1. Complete the proof for the singular case p < 2.

2. Obtain the Harnack inequality.

3. Consider the “partial Muckenhoupt weight” scenario.

4. p = p(x)?

5. L1 estimates?

6. The “cross” interface (chessboard type structure).



An example of a “cross”-type interface on the plane was
considered by Alkhutov and Zhikov: the equation(

aij(x)ω(x)uxj
)
xj

= 0

where

ω(x) =

{
|x |−α, x1x2 > 0,

|x |α, x1x2 < 0,
0 < α < 2.

The feature of this weight is that it is irregular, i.e. smooth
functions are not dense in the Soboloev space associated with this
equation. Correspondingly, one can speak about two types of
solutions: H-solutions and W-solutions. While the former are
continuous, the latter are not if they are not H-solutions.



Acknowledgements.

This work was supported by RFBR grants nos. 11-01-00989-a and
12-01-00058-a, and by the Ministry of Science and Education of
the Russian Federation grant No 14.B.37.21.0362.



Thank You.


