
Half-homogeneous chainable continua with end
points

Jozef Bobok, Pavel Pyrih, Benjamin Vejnar∗†

Charles University, Faculty of Mathematics and Physics

November 20, 2012

Abstract

A point of a chainable continuum is called an end point if for every
positive epsilon there is an epsilon-chain such that only the first link
contains the point. We prove that up to homeomorphism there are
only two half-homogeneous chainable continua with two end points.
One of them is an arc and the second one is the quotient of an arc
of pseudo-arcs, where the two terminal continua are pushed to points.
This answers a question of the second and third author.

Moreover we prove that the two above mentioned continua are the
only half-homogeneous chainable continua with a nonempty finite set
of end points.
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1 Introduction

A continuum is a non-empty compact connected metrizable space. A con-
tinuum is said to be indecomposable if it can not be written as a union of
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two proper subcontinua. Otherwise a continuum is said to be decomposable.
A continuum is called hereditarily unicoherent if the intersection of any two
subcontinua is empty or connected. A point of a continuum is said to be a
cut point if its complement is not connected. An orbit of a topological space
X containing a point x ∈ X is the set of all points h(x), where h : X → X
is a homeomorphism. A continuum X is called 1

n
-homogeneous if it consists

of n orbits exactly, where n ∈ N. For n = 1 we just write homogeneous.
A chain is a finite sequence C = {C1, C2, . . . , Cn} of open sets in a metric

space such that Ci∩Cj 6= ∅ if and only if |i− j| ≤ 1. The elements of a chain
are called its links. If ε > 0 and the diameter of each link is less than ε, then
the chain is called an ε-chain. A continuum is chainable if for each ε > 0 it
can be covered by an ε-chain.

A continuous mapping f : X → Y between metric spaces is called an ε-
mapping if f is continuous and for every x ∈ X the diameter of f−1(f(x)) is
less than ε. A continuum X is called arc-like if for every ε > 0 there is an
ε-mapping of X onto an arc. It is a well known result that a nondegenerate
continuum is arc-like if and only if it is chainable.

Let X be a continuum and p, q ∈ X. The continuum X is called irre-
ducible between p and q if any subcontinuum containing p and q is equal to
X. A continuum is said to be irreducible if it is irreducible between some
two points.

Fact 1 (Section 5 in [Bi51, p. 660] or [Do08, p. 32]). For a point p of a non-
degenerate chainable continuum X the following conditions are equivalent.

a) Each nondegenerate subcontinuum of X containing p is irreducible be-
tween p and some other point.

b) If there are two subcontinua of X containing p, one of them contains
the other.

c) For each positive number ε, there is an ε-chain covering X such that
only the first link of the chain contains p.

d) For every ε > 0 there is a continuous mapping f of X onto [0, 1] such
that preimages of points have diameter less than ε and f(p) = 0.

Definition 2. A point p of a chainable continuum X is called an end point
if it satisfies one condition (or all conditions) from Fact 1.
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In Fact 1 we would like to emphasize especially the condition b), because
we will use it quite often. A classical example is an arc which contains two
end points, but it may happen that a chainable continuum contains more
than two end points. For example the sin(1/x)-continuum contains three
end points. In the pseudo-arc, every point is an end point by Theorem 16
from [Bi51]. On the other hand there are continua with no end points. In
[Do94] it is even shown that an arbitrary nonnegative integer can be the
number of end points of a chainable continuum.

Figure 1: An arc of pseudo-arcs.

An arc of pseudo-arcs (see Figure 1) is any chainable continuum A for
which there exists a continuous mapping g : A→ [0, 1] such that preimage of
each point is a pseudo-arc. It is known that up to homeomorphism there is
only one continuum with these properties. For more details see [BJ59] and
[Le85]. It is known that A is 1

2
-homogeneous and the two orbits in X are

g−1({0, 1}) and g−1((0, 1)) by Example 4.8 from [NPP06]. Moreover the first
orbit consists of precisely the end points of A.

Let us consider the quotient of A which is obtained using an upper semi-
continuous decomposition {g−1(0), g−1(1)} ∪ {{x} : x ∈ g−1((0, 1))}. Any
continuum homeomorphic to this quotient will be called an arcless-arc. It
follows that an arcless-arc is a 1

2
-homogeneous chainable continuum with two

end points.
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In Problem 8 of [PV13] the second and third author of this paper settled
the following problem.

Problem 3. Does there exist a 1
2
-homogeneous chainable continuum with

exactly two end points which is neither an arc nor an arcless-arc?

We prove that there is no such continuum. Moreover we show that any
1
2
-homogeneous chainable continuum with a finite nonempty set of end points

contains just two end points and thus it is either an arc or an arcless-arc.

2 Tools

In this section we cite several known results that will be used in proofs in the
Main results section. Most of the facts are given without proof, but there is
always a reference to the source.

Fact 4 (Boundary Bumping Theorem 5.4 from [Na92, p. 73]). Let X be a
continuum, G an open proper subset of G and p a point in G. Then the
closure of the component of p in U is a continuum intersecting the boundary
of G.

Fact 5 (Theorem 12.1 from [Na92, p. 230]). Every nondegenerate subcon-
tinuum of a chainable continuum is chainable.

Fact 6 (Theorem 12.2 from [Na92, p. 230]). Every chainable continuum is
hereditarily unicoherent.

Definition 7. A continuum T is said to be a weak triod provided that there
exist three subcontinua of T whose intersection is nonempty, whose union is
T and none of which is contained in the union of the two remaining.

Fact 8 (Corollary 12.7 from [Na92, p. 233]). A chainable continuum does
not contain a weak triod.

Fact 9 (Theorem 6.17 from [Na92, p. 96]). A continuum containing exactly
two non cut points is an arc.

Fact 10 ([Bi59]). A nondegenerate homogeneous chainable continuum is a
pseudo-arc.
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Fact 11 (Theorem 16 from [Bi51] or Theorem 3.13 from [Le99, p. 44]). Let
X be a chainable continuum each point of which is an end point. Then X is
a pseudo-arc.

Fact 12 (Effros theorem [Ef65], [vM04]). Suppose that a Polish group acts
transitively on a Polish space. Then the group acts microtransitively.

Fact 13. Let X be a continuum with a compatible metric ρ and let G be an
open subset of X. Suppose that for every pair of points c and d of G there is
a homeomorphism h : X → X such that h(c) = d. Then for every ε > 0 and
for every c ∈ G there is δ > 0 such that whenever ρ(c, d) < δ then there is a
homeomorphism h : X → X such that h(c) = d and ρ(e, h(e)) < ε for every
e ∈ X.

Proof. The group of homeomorphisms of a compact space with the topology
of uniform convergence is completely metrizable by Corollary 1.3.11 from
[vM01, p. 35]. The open set G is a Polish space. Thus by Fact 12 we get the
desired result.

Fact 14 (Theorem 3.4 from [Bo13]). Let X be a 1
2
-homogeneous continuum.

If X is indecomposable, then each of the two orbits is uncountable.

Lemma 15. Let X be a chainable continuum and let E be a finite subset
of the set of end points of X. Then the space X \ E is connected.

Proof. Suppose for contradiction that X \E is not connected. Since X \E is
nonempty there are two disjoint nonempty open sets U and V in X \E whose
union is X \E. Clearly U as well as V are open in X. We see that the closure
of U∪V is the whole continuum X and thus the union of closures of U and V
is X. Since X is connected we get that there is a point e ∈ E which lies in the
closure of U and also in the closure of V . There exist sequences {un}∞n=1 ⊆ U
and {vn}∞n=1 ⊆ V which converge to the point e. For any n ∈ N we denote by
Kn (resp. Ln) the closure of the component of the point un (resp. vn) in U
(resp. V ). By the Boundary Bumping Theorem (Fact 4) any continuum Kn

(resp. Ln) intersects boundary of U (resp. V ) which is a subset of E. Since
the set E is finite we may suppose without loss of generality that there is a
point a ∈ E (resp. b ∈ E) such that a ∈ Kn (resp. b ∈ Ln) for every n ∈ N.
Let K (resp. L) be the closure of

⋃
{Kn : n ∈ N} (resp.

⋃
{Ln : n ∈ N}).

Clearly K and L are continua because they are closures of connected sets.
Moreover e ∈ K ∩L, K ⊆ X \ V and L ⊆ X \U and thus K ∩L ⊆ E. Since
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e is an end point we get by b) in Fact 1 that K ⊆ L or L ⊆ K. This is a
contradiction with the fact that K ∩ L is a subset of E which is a finite set
and K as well as L are nondegenerate continua.

Remark 16. Let us note that Lemma 15 need not to be true if the set E of
some end points is infinite. If X is a pseudo-arc (each point of which is an
end point) and E is a suitable set for which X \ E is not connected we get
a counterexample.

Fact 17 (Theorem 10 from [BJ59]). Suppose that A and A′ are arcs of
pseudo-arcs and denote by E (resp. E ′) the set of all end points of A (resp.
A′). Then any homeomorphism of E onto E ′ can be extended to a homeo-
morphism of A onto A′.

Lemma 18. Let X be a continuum for which there exists a continuous
mapping f : X → [0, 1] such that f−1(0) and f−1(1) are one point sets and
f−1(c) is a pseudo-arc for any c ∈ (0, 1). Then X is an arcless-arc.

Proof. Let us denote by a (resp. b) the only point for which f(a) = 0 (resp.
f(b) = 1). Let g : A → [0, 1] be an onto continuous mapping of an arc of
pseudo-arcs such that preimages of points are pseudo-arcs. Let {In}∞n=1 be
a sequence of nondegenerate compact intervals in (0, 1) whose union is (0, 1)
such In+1 ∩ (I1 ∪ · · · ∪ In) is a one point set. We denote An = g−1(In) and
Xn = f−1(In) for n ∈ N. Every continuum An as well as Xn is an arc of
pseudo-arcs. With the use of Fact 17 we can find by induction a sequence of
homeomorphisms {hn : An → Xn}∞n=1 such that whenever c ∈ Im ∩ In then
hm(x) = hn(x) for any x ∈ Am ∩ An and m,n ∈ N.

We define a mapping h : A → X. For any x ∈ X \ {a, b} there is n ∈ N
such that x ∈ An and we define h(x) as hn(x). Moreover we define h(x) = a
for every x ∈ g−1(0) and h(x) = b for x ∈ g−1(1). It is easily verified
that h is a well defined continuous mapping. Since h is one-to-one on the set
A\(g−1(0)∪g−1(1)) and it sends all points of the set g−1(0) to the point a and
all points of the set g−1(1) to the point b we get that X is an arcless-arc.

Fact 19 (Theorem 4.2 from [Do08]). The set of end points of a chainable
continuum is a Gδ-set.

3 Main results

Theorem 20. Let X be a chainable 1
2
-homogeneous continuum with exactly

two end points. Then X is either an arc or an arcless-arc.
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Proof. Let us denote by a and b the two distinct end points of X.
For any c ∈ X we denote by Ac the intersection of all subcontinua of X

which contain points a and c. Similarly we denote by Bc the intersection of
all subcontinua of X which contain b and c. It follows that Ac as well as Bc

is a continuum because any chainable continuum is hereditarily unicoherent
by Fact 6. We denote Lc = Ac ∩ Bc. Every space Lc is a continuum by the
same reason. We call the sets Lc levels.

Claim 1. The sets {a, b} and X \ {a, b} are orbits in X.

Since X is 1
2
-homogeneous there are exactly two orbits. The end points

{a, b} of X form one of them and hence its complement X \ {a, b} is the
second one.

Claim 2. For any homeomorphism h : X → X and c ∈ X we obtain Lh(c) =
h(Lc).

Suppose first that h(a) = a and thus h(b) = b. Since Ac is the least
continuum containing a and c and h is a homeomorphism we get that h(Ac)
is the least continuum containing a = h(a) and h(c) and thus h(Ac) = Ah(c).
By the same reason h(Bc) = Bh(c). Thus we get that

h(Lc) = h(Ac ∩Bc) = h(Ac) ∩ h(Bc) = Ah(c) ∩Bh(c) = Lh(c).

If h(a) 6= a we get that h(a) = b and thus h(b) = a. By a similar argument
as in the first case we obtain that h(Ac) = Bh(c) and h(Bc) = Ah(c). Hence

h(Lc) = h(Ac ∩Bc) = h(Ac) ∩ h(Bc) = Bh(c) ∩ Ah(c) = Lh(c).

Claim 3. Any two levels Lc and Ld for c, d ∈ X \ {a, b} are homeomorphic.

For c, d ∈ X \ {a, b} there is a homeomorphism h : X → X such that
h(c) = d by Claim 1. Using Claim 2 we get that h(Lc) = Lh(c) = Ld. Thus
restriction of h to the level Lc is a homeomorphism of Lc onto Ld.

Claim 4. The space X \ {a, b} is connected.

Since a and b are end points of X we get by Lemma 15 that X \ {a, b} is
connected.

Claim 5. For any pair c, d ∈ X\{a, b} there is a homeomorphism h : X → X
such that h(a) = a, h(b) = b and h(c) = d.
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Let us consider a compatible metric ρ on the space X. We let ε = ρ(a, b)
and we denote by H the set of all homeomorphisms h : X → X such that
d(e, h(e)) < ε for every e ∈ X. By the choice of ε we get that h(a) = a and
h(b) = b for any h ∈ H. By Fact 13 applied to G = X \{a, b} we obtain that
for every c ∈ X \ {a, b} there is a neighborhood Nc of the point c such that
for any d ∈ Nc there is a homeomorphism h ∈ H such that h(c) = d.

Since X \ {a, b} is connected by Claim 4 we get that for a fixed pair of
points c and d in X \ {a, b} there is a finite sequence of points c1, . . . , cn ∈
X \ {a, b} such that c1 = c, cn = d and ci+1 ∈ Nci for any i < n. Thus for
every i < n there is a homeomorphism hi ∈ H such that hi(ci) = ci+1. Now
it is enough to define h = hn−1 ◦ · · · ◦ h2 ◦ h1. Clearly h(c) = d, h(a) = a and
h(b) = b.

Claim 6. Level Lc doesn’t contain neither a nor b for c ∈ X \ {a, b}.

By the Boundary Bumping Theorem (Fact 4) there is a nondegenerate
continuum K ⊆ X which contains a and omit b. We denote by d any point
in K different from a. By Claim 5 there is a homeomorphism h : X → X
for which the points a and b are fixed and for which h(d) = c. Continuum
h(K) contains a and c and doesn’t contain b. Thus we get that Lc ⊆ Ac ⊆
h(K) ⊆ X \{b}. By the same reason we obtain that Bc ⊆ X \{a} and finally
Lc = Ac ∩Bc ⊆ X \ {a, b}.

Claim 7. Let L = {Lc : c ∈ X}. Then L forms a partition of X.

Suppose for contradiction that there are points c, d ∈ X such that Lc ∩
Ld 6= ∅ and Lc 6= Ld. By Claim 6 we obtain that Lc, Ld ⊆ X \ {a, b}. Using
Zorn’s lemma we will prove, that there is a minimal level which is a subset
of Lc ∩ Ld. We denote by S the system of all levels contained in Lc ∩ Ld.
Clearly S is nonempty because there is a point x ∈ Lc∩Ld and thus the level
Lx = Ax ∩Bx is a subset of Ac ∩Bc ∩Ad ∩Bd = Lc ∩ Ld. Thus Lx ∈ S. For
any nonempty chain E ⊆ S we denote by K the intersection of E . The space
K is a continuum because it is an intersection of a chain of continua. There
is a set E ⊆ X such that E = {Le : e ∈ E}. We fix some x ∈ K. Clearly

Lx = Ax ∩Bx ⊆
⋂
e∈E

Ae ∩
⋂
e∈E

Be =
⋂
e∈E

Le =
⋂
E .

Hence any chain is bounded from below. By Zorn’s lemma there is a minimal
level Lm ∈ S. We get that Lm ⊆ Lc ∩ Ld and since Lc 6= Ld we obtain that
Lm is either a proper subset of Lc or a proper subset of Ld. Without loss
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of generality we may suppose the first case holds. Since Lc ⊆ X \ {a, b},
we obtain by Claim 1 that there is a homeomorphism h : X → X such that
h(c) = m. By Claim 2 we get that Lm = h(Lc). Since Lm is a proper subset
of Lc we get also that h(Lm) is a proper subset of h(Lc). Thus the level
Lh(m) = h(Lm) is a proper subset of Lm. This contradicts minimality of the
level Lm. Thus L is a partition of the continuum X.

Claim 8. Every level Lc is a homogeneous continuum.

Since La and Lb are one-point sets, they are clearly homogeneous. Next
suppose that c ∈ X \ {a, b} and let d ∈ Lc be an arbitrary point. Since
X \ {a, b} is an orbit in X by Claim 1 there is a homeomorphism h : X →
X such that h(c) = d. By Claim 2 we have that Ld = h(Lc). Moreover
Lc ∩ Ld 6= ∅ and thus by Claim 7 we obtain that Lc = Ld. If we restrict
homeomorphism h to the level Lc we obtain a homeomorphism onto Lc such
that h(c) = d. Thus Lc is a homogeneous continuum.

Claim 9. Every level Lc is either a point or a pseudo-arc.

Suppose that Lc is nondegenerate. Then Lc is a chainable continuum by
Fact 5 and it is homogeneous by Claim 8. It follows that it is a pseudo-arc
by Fact 10.

Claim 10. We define a binary relation � on L by Lc � Ld if and only if
Ac ⊆ Ad for c, d,∈ X. We claim that the relation � is an order.

The relation � is clearly reflexive and transitive. It remains to verify that
it is antisymmetric. Thus suppose for contradiction that we have c, d ∈ X
such that Lc � Ld and Ld � Lc, but Lc 6= Ld. By the definition of � we get
that Ac = Ad. Since L is a partition by Claim 7, we get that Lc∩Ld = ∅. Let
us denote by B the union of Bc and Bd. Clearly B is a continuum because
Bc ∩Bd contains a common point b. But B ∩ Ac = B ∩ Ad = Lc ∪ Ld is not
connected. This is a contradiction with Fact 6 which provides the hereditarily
unicoherence of X .

Claim 11. The pair (L,�) is a linearly ordered set.

We take any Lc and Ld in L. Continuum Ac as well as Ad contain the
end point a. Thus by b) in Fact 1 we get that Ac ⊆ Ad or Ad ⊆ Ac. Thus
Lc � Ld or Ld � Lc.

Claim 12. Suppose that Lc � Ld and Lc 6= Ld for some c, d ∈ X. Then
Ac ∩Bd = ∅.
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Suppose not. Then there is a point e ∈ Ac ∩ Bd. Since Ac ⊆ Ad we
get that e ∈ Ad ∩ Bd = Ld and hence Le = Ld by Claim 7. We get that
Ac is a proper subset containing the end point a and the point d which is a
contradiction with the minimality of Ad.

Claim 13. The family L is an upper semi-continuous decomposition of X.

Suppose that U is an open set containing a set Lc ∈ L. We would like
to show that there is an open set V ⊆ U which contains Lc such that any
level intersecting V is a subset of U . Suppose that this is not true. Then
for every n ≥ 1 there is a level Lc(n) which intersects 1

n
neighborhood of Lc

and it intersects also X \ U . Without loss of generality we may suppose
that Lc(n) � Lc and by Claim 11 we may suppose that Lc(n) � Lc(n+1) for
every n. By compactness of X \ U , there is a point d ∈ X \ U whose every
neighborhood intersects infinitely many levels Lc(n). Clearly Lc 6= Ld because
c /∈ Ld.

We distinguish two cases. First suppose that Lc � Ld. We get that
Lc(n) ⊆ Ac(n) ⊆ Ac. Since Ac is closed we get that d ∈ Ac and thus Ad ⊆ Ac
which means Ld � Lc. This is a contradiction.

Suppose that Ld � Lc. Then Ad is disjoint with Bc by Claim 12 and
thus there is some N ≥ 1 for which Ld � Lc(N) and Ld 6= Lc(N) (otherwise
Lc(n) ⊆ Ad for every n and thus c(n) could not converge to the point c ∈ Lc).
Then Bc(N) contains any level Lc(n) for n ≥ N . But Bc(N) is a closed set
disjoint with Ad by Claim 12. Hence Lc(N) is a subset of Bc(N) for n ≥ N
and thus we get a contradiction with the assumption that any neighborhood
of d intersects infinitely many levels Lc(n).

Thus the family L is an upper semi-continuous decomposition.

Claim 14. The levels La and Lb are not cut points of the decomposition
space L.

The point {a} is not a cut point of L because its complement in L is a
continuous image under the quotient mapping of the set X \ {a} which is
connected by Lemma 15.

Claim 15. Ac ∪Bc = X for any c ∈ X.

Suppose not. Then there is a point d ∈ X such that d ∈ X \ (Ac ∪ Bc).
Since a is an end point we get that eiter Ac ⊆ Ad or Ad ⊆ Ac. Without loss
of generality we may suppose that Ac ⊆ Ad. Then Bd ⊆ Bc. Thus d ∈ Bc

which is a contradiction with the choice of the point d.
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Claim 16. Any level Lc is a cut point of the decomposition space L for
c ∈ X \ {a, b}.

We define open sets U = X \ Bc and V = X \ Ac. Since Ac ∪ Bc = X
by Claim 15 we get that X \ Lc = U ∪ V . Since a ∈ U and b ∈ V we get
that X \ Lc is a disjoint union of two nonempty open sets and thus it is not
connected. Thus Lc is a cutpoint of L.

Claim 17. The decomposition space L is an arc.

By Claim 13 we know that L is an upper semi-continuous decomposition
and thus L is a continuum. Using Claim 14 and Claim 16 we get that L
contains exactly two points which are not cut points and thus by Fact 9 we
obtain that L is an arc.

Claim 18. X is either an arc or an arcless-arc.

By Claim 9 and Claim 3 there are two possible cases. Suppose first that
Lc is a one-point set for every c ∈ X. Then L is a decomposition into
singletons and thus X is homeomorphic to the decomposition space L which
is an arc by Claim 17.

Now suppose that Lc is a pseudo-arc for every c ∈ X \ {a, b}. The
quotient mapping f : X → L satisfies assumptions of Lemma 18 and thus X
is an arcless-arc.

Corollary 21. A continuum is an arcless-arc if and only if it is a chainable
1
2
-homogeneous continuum with exactly two end points, but which is not an

arc.

Now we will study chainable continua with exactly one end point. It is
obvious that if we try to find such a continuum which is homogeneous, the
only one is a degenerate continuum. In the next theorem we prove that there
is no possibility if we are looking for a 1

2
-homogeneous one.

Proposition 22. There is no chainable 1
2
-homogeneous continuum with one

end point.

Proof. Suppose for contradiction that X is a chainable 1
2
-homogeneous con-

tinuum with one end point a. Thus the orbits of X are {a} and X \ {a}.
By Fact 14 we get that X has to be decomposable. Thus there are proper
subcontinua A and B of X such that X = A ∪ B. If a ∈ A ∩ B then by b)
in Fact 1 we get A ⊆ B or B ⊆ A which is a contradiction. Thus the end
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point a is an element of exactly one of the sets A and B. Without loss of
generality we may suppose that a ∈ A and a /∈ B. Then a ∈ X \ B ⊆ A
and hence a is in the interior of A. Let us fix any point c in the interior of A
distinct from a. Now for any point d ∈ X \ {a} there is a homeomorphism
h : X → X for which h(c) = d and of course h(a) = a. Thus the point d is
contained in the interior of h(A) which is a proper subcontinuum containing
a. Hence ⋃

{intB : a ∈ B,B ( X,B is a continuum} = X.

Since X is compact there is a finite family B1, . . . , Bn of proper subcontinua
of X such that a ∈ Bi for every i ≤ n and⋃

{intBi : i ≤ n} = X.

Since continua containing the end point a are comparable by b) in Fact 1,
there exists i ≤ n such that the interior of Bi is equal to X. Hence Bi = X
which is a contradiction with the choice of Bi as a proper subcontinuum of
X. Thus there is no continuum X with the given properties.

Proposition 23. There is no chainable 1
2
-homogeneous continuum with ex-

actly n end points for an integer n ≥ 3.

Proof. Suppose for contradiction that there is such a continuum. Denote by
E the set of all end points of X. Similarly as in Theorem 20 we can define
for every c ∈ X level Lc as an intersection of all continua containing a and
some of the end points e ∈ E.

We can prove straightforward generalizations of Claims 1.–6. We fix three
distinct points a, b, c ∈ E. Now we fix any point x ∈ X\E. Let A,B and C be
subcontinua of X containing the point x such that a ∈ A, b ∈ B and c ∈ C.
Since X is hereditarily unicoherent by Fact 6 we can assume that A, B and C
are minimal continua with these properties. By the natural generalization of
the proof of Claim 6 of Theorem 20 we get that a ∈ A\(B∪C), b ∈ B\(A∪C)
and c ∈ C \ (A∪B). Thus A∪B∪C is a weak triod which is a contradiction
with Fact 8.

Corollary 24. Let X be a 1
2
-homogeneous chainable continuum. Then the

set of end points of X is either empty, or contains exactly two points, or it
is infinite.

Proof. The result follows immediately by Proposition 22 and Proposition 23.
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4 Questions

We have just described all 1
2
-homogeneous chainable continua with a nonempty

finite set of end points. It is natural to ask for the case when the set of end
points is either empty or infinite. If there are no end points it is hard to
say something constructive. On the other hand if we suppose that X is a
1
2
-homogeneous chainable continuum whose set of end points E is infinite

we can distinguish three cases. If E = X we get that X is a pseudo-arc by
Fact 11 which is contradiction with 1

2
-homogeneity. If E is a proper dense

subset of X we can observe that E is a homogeneous dense Gδ set by Fact 19,
but we don’t know how to proceed further. If the closure of E is a proper
subset of X we can easily prove using 1

2
-homogeneity that E is a closed set

with an empty interior. Moreover since E is a homogeneous compact subset
of a chainable continuum we get that components of E are either points or
pseudo-arcs and consequently E is homeomorphic either to a Cantor space or
to the product of a finite set and a pseudo-arc or to the product of a Cantor
space and a pseudo-arc (by Theorem 1 from [Le83]).

Question 1. Does there exist a 1
2
-homogeneous chainable continuum without

end points?

Question 2. Does there exist a 1
2
-homogeneous chainable continuum with

infinitely many end points which is not an arc of pseudo-arcs?

The most ambitious question of this paper follows.

Question 3. What are the 1
2
-homogeneous chainable continua?

We know three of them, namely an arc, an arc of pseudo-arcs and an
arcless-arc.
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