MOdelling REvisited + MOdel REduction ERC-OZ project LL1202 - MORE

Tracking the trajectory in finite precision CG computations

T. Gergelits, Z. Strakoš

Department of Numerical Mathematics Faculty of Mathematics and Physics, Charles University in Prague

November 26, 2013

$$Ax = b, \quad A \in \mathbb{F}^{N \times N} \text{ HPD}, \quad b \in \mathbb{F}^N, \quad \mathbb{F} \text{ is } \mathbb{R} \text{ or } \mathbb{C}$$

$$Ax = b, \quad A \in \mathbb{F}^{N \times N} \text{ HPD}, \quad b \in \mathbb{F}^N, \quad \mathbb{F} \text{ is } \mathbb{R} \text{ or } \mathbb{C}$$

Short recurrences

$$Ax = b, \quad A \in \mathbb{F}^{N \times N} \text{ HPD}, \quad b \in \mathbb{F}^N, \quad \mathbb{F} \text{ is } \mathbb{R} \text{ or } \mathbb{C}$$

Short recurrences ⇒ loss of orthogonality

$$Ax = b, \quad A \in \mathbb{F}^{N \times N} \text{ HPD}, \quad b \in \mathbb{F}^N, \quad \mathbb{F} \text{ is } \mathbb{R} \text{ or } \mathbb{C}$$

Short recurrences \Longrightarrow loss of orthogonality \Longrightarrow delay of convergence

Comparison of trajectory of approximation vectors

Trajectory of approximations x_k generated by FP CG computations follows closely the trajectory of the exact CG approximations $\bar{x}_{\bar{k}}$.

Concluding remarks & work in progress

Observed "stability" (or inertia) of computed Krylov subspaces represents remarkable phenomenon.

Concluding remarks & work in progress

Observed "stability" (or inertia) of computed Krylov subspaces represents remarkable phenomenon.

Thank you for your kind attention

Want to know MORE? Visit the poster session this evening!