

MOdelling REvisited + MOdel REduction ERC-GZ project LL1202 - MORE

Poster: Computer Analysis and Simulation of Strain Limiting Models With Linearized Strain

Vojtěch Kulvait

Charles University in Prague Faculty of Mathematics and Physics Mathematical Institute Tel.: +420-221-913-379 kulvv1am@karlin.mff.cuni.cz

November 26, 2013 / MORE Workshop Implicitly constituted materials: Modeling, analysis, and computing

Strain limitting model - motivation

Materials with strain limitting behavior (norm of strain is bounded):

- Soft tissues
- Polymers
- Brittle materials

Nomenclature

- T ... Chauchy stress
- u ... Displacement vector
- \boldsymbol{E} ... Green-St. Venant tensor $\boldsymbol{E} = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T + (\nabla \boldsymbol{u})^T \nabla \boldsymbol{u})$
- ε ... Linearized strain $\varepsilon = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)$

Implicit constitutive theory

• $\hat{\textbf{\textit{G}}}(\textbf{\textit{E}},\textbf{\textit{T}})=\textbf{\textit{0}}$, special explicit case $\textbf{\textit{E}}=\textbf{\textit{G}}(\textbf{\textit{T}})$

Strain limitting model

Proposed in [Rajagopal, 2010]

$$\boldsymbol{E} = \gamma \left(1 - \exp \frac{-\lambda \operatorname{tr} \boldsymbol{T}}{1 + \|\boldsymbol{T}\|} \right) \boldsymbol{I} + \frac{\boldsymbol{T}}{2\mu \left(1 + \kappa \|\boldsymbol{T}\|^{a} \right)^{\frac{1}{a}}}.$$
 (1)

Figure: One dimensional stress strain relation for $\mu=$ 1, a= 0.9 and $\kappa=$ 24.8.

Linearizing stress tensor

Small displacement gradient assumption

- Assuming $\|\nabla \boldsymbol{u}\|_{\infty} \ll 1$
- Under this assumption we can approximate Green-St. Venant strain tensor ${\pmb E}$ by linearized strain ${\pmb \varepsilon}$
- Neglecting term $((\nabla \mathbf{u})^T \nabla \mathbf{u})/2$
- $\|\nabla \textbf{\textit{u}}\|_{\infty} \ll 1$ is not always true for Hookean model applications (Linear Elastic Fracture Mechanics). Stress limitting model may fullfill the condition $\|\nabla \textbf{\textit{u}}\|_{\infty} \ll 1$ by proper setting of model parameters.
- Linearizing E does not mean to linearize constitutive relation.
- Strain limitting model is actively studied from the point of view of modeling, analysis and numerics.

System of equations for tensor T, tensor ε and vector u

$$\operatorname{div} \mathbf{T} = \mathbf{f}, \qquad \mathbf{T} = \mathbf{T}^{T}, \tag{2a}$$

$$\varepsilon = \mathbf{G}(\mathbf{T}),$$
 (2b)

$$\varepsilon = \frac{1}{2} \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right). \tag{2c}$$

System of equations for tensor T and tensor ε

$$div \mathbf{T} = \mathbf{f}, \tag{3a}$$

$$\varepsilon = \mathbf{G}(\mathbf{T}),$$
 (3b)

$$\varepsilon_{ij,kl} + \varepsilon_{kl,ij} - \varepsilon_{ik,il} - \varepsilon_{il,ik} = 0,$$
 $i,j,k,l \in 1,2,3.$ (3c)

Antiplane stress

In antiplane stress problem the only nonzero components of the stress tensor T are T_{13} and T_{23} . $T_{11} = T_{22} = T_{33} = T_{12} = 0$. We also assume that T_{23} and T_{13} depend only on x_1 and x_2 .

Problem formulation

V shaped cutout, variable α loaded (top and bottom) by shear force F.

Figure: Computational domain.

Aim is to compare linear elasticity model with nonlinear strain limiting model both with linearized strain tensor ε . For details see [Kulvait et al., 2013].

Stress distribution comparison

Figure: Comparison of T_{23} for linear (left) and nonlinear (right) model.

Strain distribution comparison

Figure: Comparison of ε_{23} linear (left) and nonlinear (right) model.

References I

Kulvait, V., Málek, J., and Rajagopal, K. (2013).

Anti-plane stress state of a plate with a v-notch for a new class of elastic solids.

International Journal of Fracture, 179(1-2):59-73.

Rajagopal, K. (2010).

On a new class of models in elasticity.

Mathematical and Computational Applications, 15(4):506-528.