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Introduction

Considering severe plastic deformation experiments as a motivation, the plastic behaviour of crystalline
solids is treated as a flow of a highly viscous, compressible material. Starting from classical single crystal
hypothesis we present a purely Eulerian set of equations describing flow of a plastic material. Numerical
simulations for a 2-turn equal channel angular extrusion are reported.

Motivations and Aims

Severe plastic deformation:

I large proportion of shear during deformation

I large strains (torsion experiment with multiple rotations)

I no major changes of shape and cross section

I changes of internal properties by grain refinement (UFG)

Aims:
I formulate a flow model of crystal plasticity (Eulerian

coordinates)

I provide consistent thermodynamic description

I observe the formation of a shear bands

I reach a steady state micro-structure

I validate by comparison with an experimental data

Fig. 1: HPT

Fig. 2: ECAE

Kinematics

Kröner decomposition F = FeFp

I Fe, the elastic distortion, stretch and rotation of the lattice

I Fp, the plastic distortion distortion of the lattice due to
formation of dislocations

det Fp = 1, det F = det Fe.

∇v = ḞF−1 = Ḟe(Fe)−1 + Fe(Ḟp(Fp)−1)(Fe)−1
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Fig. 3: the Kröner decomposition

The Cauchy Stress T

The Balance Equation
%v̇ − divT = 0

The Evolution of the Cauchy Stress

Ṫ + div vT + WT− TW = %C(D−Dp),

where % stands for the density, D = sym∇v and W = skew∇v.
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Slip rates ν(i) are governed by power law.
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Fig. 4: Scheme of 2-turn ECAE experiment

where resolved shear stresses τ (i) represent the Cauchy stress resolved on each slip system
τ (i) = s(i) · Tm(i) and τ̇c

(i) =
∑

j Hij |ν(j)|.
The second law of thermodynamics is satisfied

ξ = T : Dp =
∑

i

ν(i)T :
(

s(i) ⊗m(i)
)

=
N∑

i=1

ν(i)τ (i) =
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i

ν0|τ (i)|
(
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c

) 1
m
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the Evolution of Slip Systems

I Slip systems are changing with elastic stretches and rotations

s(i) = Fes
(i)
0 =⇒ ˙s(i) =


∇v −

∑

i

ν(i)s(i) ⊗m(i)


 s(i).

I We reformulate vectorial equations in therms of scalar unknowns (ϕ, s1, m1, s2, m2, s3, m3),

s(i) = si(cosϕi , sinϕi), m(i) = mi(− sinϕi , cosϕi).

ϕ̇ = (− sinϕ, cosϕ)T Ḟes2(cosϕ, sinϕ),

ṡi = (cosϕi , sinϕi)
T Ḟesi(cosϕi , sinϕi),

ṁi = (− sinϕi , cosϕi)
T Ḟemi(− sinϕi , cosϕi).

Scaled Model

I The unknowns are: velocity v, Cauchy stress T , density % and slip directions s(i),

%,t +div (%v) = 0,

R1%v̇ + divT = 0,

Ṫ + Tdiv v + WT− TW = %C(D−Dp),

ϕ̇ = (− sinϕ, cosϕ)T


∇v − R2

3∑

i=1

ν(i)s(i) ⊗m(i)


 s2(cosϕ, sinϕ)

I Characteristic values %0 = 3000 kg
m3 , V = 10−5m

s , L = 10−2m, ν0 = 10−3 1
s , Σ = 70MPa, R1 = %0V

2

LΣ ≈ 10−12,R2 = Lν0
V = 1

I Update of remaining variables mi , si , τ
(i)
c

2-turn Equal Channel Angular Extrusion/Numerical Treatment

I In time: One step finite difference
I In space: FE

I P1 − dis.: T, ν(i)

I P2: v
I P1: %, ϕ, si , mi

I Boundary conditions: Dirichlet inflow on Γ1,
perfect-slip on Γ2 and do-nothing condition on Γ3

I Material parameters: Young’s modulus
E = 1000τ0, Poisson’s ratio νpois = 0.35 and rate
sensitivity parameter m = 0.05 (1/m = 20)
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Fig. 5: Scheme of 2-turn ECAE experiment

I Initial values: v(x , 0) = 0, T(x , 0) = 0, τc(x , 0) = τ0,
%(x , 0) = 1, ϕ(x , 0) = 0 and mi(x , 0) = si(x , 0) = 1, ∀i ∈ {1, 2, 3}

I Slip systems: i ∈ {1, 2, 3} as follows ϕ1 = ϕ + φ, ϕ2 = ϕ and ϕ3 = ϕ− φ, where φ = 54.7◦

I Elasticity C(D−Dp) = λ(tr (D−Dp))I + 2µ(D−Dp)

I Hardening matrix Hij = H = H0sech
2
(
H0νacc
τs−τ0

)

I Newton-Ralphson method, analytic jacobian by automatic differentiation (FEniCS)

I For now direct linear solver of the fully coupled discrete system

I Boundary conditions by Nitsche’s method (ZTn · n, v · n)Γ2
+ (Tn · n, zv · n)Γ2

+ β
h (v · n, zv · n)Γ2

, β = 10

Main obstacles proper finite elements, power law with large exponent, boundary conditions

Discrete Formulation

Finite element spaces:

Vh = {vh ∈ W 1,2(Ω;R2); v|Γ1
= (0,−1), v|K ∈ P2(K )2 ∀K ∈ Th},

Rh = {%h ∈ W 1,2(Ω;R); %h|Γ1
= 1, %h|K ∈ P1(K ) ∀K ∈ Th},

Th = {Th ∈ W 1,2(Ω;R2×2
sym ); Th|K ∈ P1(K )2×2 ∀K ∈ Th},

Nh = {νh ∈ L2(R); νh|1 ∈ P1(K ) ∀K ∈ Th},
Ah = {ϕh ∈ W 1,2(Ω;R); ϕh|Γ1

= 0, ϕh|K ∈ P1(K ) ∀K ∈ Th}.

We aim to solve the following problem.
Find (vh, %h,Th, ν1h, ν2h, ν3h, ϕh) ∈ Vh × Rh × Th × Nh × Nh × Nh × Ah, s.t.

(%h,t , z%) + (vh∇%h, z%) + (%hdiv (vh), z%) = 0 ∀z% ∈ Rh0,

R1 (%hv̇h, zv) + (Th,∇(zv)) + (Thn · n, zv · n)Γ2
+
β

h
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= 0 ∀zv ∈ Vh0,(
Ṫh + Thdiv vh + WhTh − ThWh,ZT

)
−
(
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)
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s2h(cosϕh, sinϕh), zϕ

)
= 0 zϕ ∈ Ah,

The Results of Numerical Simulations

Simulations were conducted on a mesh consists of 21289 vertices (41974 cells) in software package FEniCS.

Fig. 6: Computed variables: velocity magnitude (top-left), accumulated slip (top-right),
density (bottom-left), lattice rotation (bottom-right)

Conclusions

I We derived the model of crystal plasticity, which includes compressible linear elasticity.

I Stretches and rotations of the slip systems were taken into account.

I We formulated the finite element discretization scheme, which was used to solve fully coupled problem.

I Performed numerical simulations show capabilities of the method applied.

I Presented approach is purely Eulerian and its main advantage is the ability to capture high strains.

I In the future we plan to abandon the plane strain assumption and compute 3D model including
the full set of the slip systems, however it will require the use of parallel computing.

http://more.karlin.mff.cuni.cz
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The Results of Numerical Simulations

Simulations were conducted on a mesh consists of 21289 vertices (41974 cells) in software package FEniCS.

Fig. 6: Computed variables: velocity magnitude (top-left), accumulated slip (top-right),
density (bottom-left), lattice rotation (bottom-right)

Conclusions

I We derived the model of crystal plasticity, which includes compressible linear elasticity.

I Stretches and rotations of the slip systems were taken into account.

I We formulated the finite element discretization scheme, which was used to solve fully coupled problem.

I Performed numerical simulations show capabilities of the method applied.

I Presented approach is purely Eulerian and its main advantage is the ability to capture high strains.

I In the future we plan to abandon the plane strain assumption and compute 3D model including
the full set of the slip systems, however it will require the use of parallel computing.
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Introduction

Considering severe plastic deformation experiments as a motivation, the plastic behaviour of crystalline
solids is treated as a flow of a highly viscous, compressible material. Starting from classical single crystal
hypothesis we present a purely Eulerian set of equations describing flow of a plastic material. Numerical
simulations for a 2-turn equal channel angular extrusion are reported.

Motivations and Aims

Severe plastic deformation:

I large proportion of shear during deformation

I large strains (torsion experiment with multiple rotations)

I no major changes of shape and cross section

I changes of internal properties by grain refinement (UFG)

Aims:
I formulate a flow model of crystal plasticity (Eulerian

coordinates)

I provide consistent thermodynamic description

I observe the formation of a shear bands

I reach a steady state micro-structure

I validate by comparison with an experimental data

Fig. 1: HPT

Fig. 2: ECAE

Kinematics

Kröner decomposition F = FeFp

I Fe, the elastic distortion, stretch and rotation of the lattice

I Fp, the plastic distortion distortion of the lattice due to
formation of dislocations

det Fp = 1, det F = det Fe.

∇v = ḞF−1 = Ḟe(Fe)−1 + Fe(Ḟp(Fp)−1)(Fe)−1

F

Fp
Fe

reference
configuration

natural
configuration

current
configuration

. X
. x = χ(X,t)

Fig. 3: the Kröner decomposition

The Cauchy Stress T

The Balance Equation
%v̇ − divT = 0

The Evolution of the Cauchy Stress

Ṫ + div vT + WT− TW = %C(D−Dp),

where % stands for the density, D = sym∇v and W = skew∇v.
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Fig. 4: Scheme of 2-turn ECAE experiment

where resolved shear stresses τ (i) represent the Cauchy stress resolved on each slip system
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the Evolution of Slip Systems

I Slip systems are changing with elastic stretches and rotations

s(i) = Fes
(i)
0 =⇒ ˙s(i) =


∇v −

∑

i

ν(i)s(i) ⊗m(i)


 s(i).

I We reformulate vectorial equations in therms of scalar unknowns (ϕ, s1, m1, s2, m2, s3, m3),

s(i) = si(cosϕi , sinϕi), m(i) = mi(− sinϕi , cosϕi).

ϕ̇ = (− sinϕ, cosϕ)T Ḟes2(cosϕ, sinϕ),

ṡi = (cosϕi , sinϕi)
T Ḟesi(cosϕi , sinϕi),
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T Ḟemi(− sinϕi , cosϕi).

Scaled Model

I The unknowns are: velocity v, Cauchy stress T , density % and slip directions s(i),
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2-turn Equal Channel Angular Extrusion/Numerical Treatment

I In time: One step finite difference
I In space: FE

I P1 − dis.: T, ν(i)

I P2: v
I P1: %, ϕ, si , mi

I Boundary conditions: Dirichlet inflow on Γ1,
perfect-slip on Γ2 and do-nothing condition on Γ3

I Material parameters: Young’s modulus
E = 1000τ0, Poisson’s ratio νpois = 0.35 and rate
sensitivity parameter m = 0.05 (1/m = 20)
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The Results of Numerical Simulations

Simulations were conducted on a mesh consists of 21289 vertices (41974 cells) in software package FEniCS.
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Conclusions

I We derived the model of crystal plasticity, which includes compressible linear elasticity.

I Stretches and rotations of the slip systems were taken into account.

I We formulated the finite element discretization scheme, which was used to solve fully coupled problem.

I Performed numerical simulations show capabilities of the method applied.

I Presented approach is purely Eulerian and its main advantage is the ability to capture high strains.

I In the future we plan to abandon the plane strain assumption and compute 3D model including
the full set of the slip systems, however it will require the use of parallel computing.
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