On Kelvin-Voigt viscoelastic solid model with an implicit constitutive relation for the viscous part

Viktor Vialov
Faculty of Mathematics and Physics,
Charles University in Prague

24-27 November 2013

Kelvin-Voigt viscoelastic solid model

$$\rho_0 \frac{dv}{dt} = \operatorname{div} \mathbf{T}. \tag{1}$$

$$T = T_e + S \tag{2}$$

$$T_{e} = A(x)Du \tag{3}$$

$$G(S, Dv) = 0 (4)$$

Kelvin-Voigt viscoelastic solid model

$$\rho_0(x)\partial_t v(t,x) - \operatorname{div} \mathbf{S}(t,x) - \operatorname{div} \mathbf{A}(x)\mathbf{D}u(t,x) = 0$$
 (5)

$$\partial_t u(t,x) = v(t,x) \tag{6}$$

$$(\mathbf{D}v(t,x),\mathbf{S}(t,x))\in\mathcal{A} \text{ for a.a. in } (0,T)\times\Omega$$
 (7)

- initial conditions
- periodic boundary conditions

Results

- Existence of the weak solution globally in time
- Regularity in the case of "appropriate" data
- Local regularity by time in the sense of Nikolskii spaces

On Kelvin-Voigt viscoelastic solid model with an implicit constitutive relation for the viscous part

Thank you!