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Abstract. We show that a function f : R → R of bounded variation satisfies

Var Mf ≤ C Var f

where Mf is the centered Hardy-Littlewood maximal function of f . Conse-
quently, the operator f 7→ (Mf)′ is bounded from W 1,1(R) to L1(R). This
answers a question of Haj lasz and Onninen in the one-dimensional case.

1. Introduction and main results

The centered Hardy-Littlewood maximal function of f : Rn → R is defined by

Mf(x) = sup
r>0

−

∫

B(x,r)

|f(y)| dy.

J. Kinnunen proved in [7] that the maximal operator f 7→ Mf is bounded in the
Sobolev space W 1,p(Rn) for 1 < p ≤ ∞ (see also [6, Theorem 1]). Since then,
regularity properties of the maximal function have been studied by many authors
[1], [2], [3], [4], [5], [6], [8], [9], [10], [11], [12].

Because Mf /∈ L1 whenever f is non-trivial, Kinnunen’s result fails for p = 1.
Still, one can ask whether the maximal function of f ∈ W 1,1 belongs locally to
W 1,1. In [6], the authors posed the following question.

Question 1.1 (Haj lasz and Onninen). Is the operator f 7→ |∇Mf | bounded from
W 1,1(Rn) to L1(Rn)?

In the present work, we show that the answer is positive for n = 1. The question
had been already answered positively in the non-centered one-dimensional case by
H. Tanaka [12]. This result was sharpened later by J. M. Aldaz and J. Pérez
Lázaro [2] who proved that, for an arbitrary f : R → R of bounded variation, its

non-centered maximal function M̃f is weakly differentiable and

Var M̃f ≤ Var f.

We prove that such an inequality holds for the centered maximal function as well.

Theorem 1.2. Let f : R→ R be a function of bounded variation. Then

VarMf ≤ C Var f

for a universal constant C.
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In this paper, we do not care how small the constant C may be. We note that
it is a plausible hypothesis that the inequality holds for C = 1, in the same way as
in the non-centered case (see also [3, Question B]).

Once Theorem 1.2 is proven, it is not difficult to derive the weak differentiability
of Mf . Note that Mf needs not to be continuous for an f of bounded variation,

and so M does not possess such strong regularity properties as M̃ . Anyway, for a
weakly differentiable f , everything is all right.

Corollary 1.3. Let f : R → R be a measurable function with Mf 6≡ ∞. If f is
locally AC on an open set U , then Mf is also locally AC on U .

Corollary 1.4. Let f ∈W 1,1(R). Then Mf is weakly differentiable and

‖(Mf)′‖1 ≤ C‖f‖1,1

for a universal constant C.

We do not know whether Mf is weakly differentiable for f ∈W 1,1(Rn) if n ≥ 2.
However, it is known that Mf is approximately differentiable a.e. [5].

2. A property of the maximal function

Throughout the whole proof of Theorem 1.2, a function f : R→ R of bounded
variation will be fixed. Without loss of generality, we will suppose that f ≥ 0.

During the proof, we will make efforts to show that f varies comparably withMf .
The basic tool for meeting of this objective is represented by Lemma 2.4. However,
despite of the length of its proof, the simple idea presented in the following remark
is behind.

Remark 2.1. Let two points p < r be such that Mf(p) < Mf(r) and p is regular
in the sense that Mf(p) ≥ f(p). Moreover, let there be a radius ω such that

−
∫ r+ω
r−ω

f = Mf(r) and p ∈ (r − ω, r). Then one can use −
∫ 2p−(r−ω)

r−ω
f ≤ Mf(p) to

compute that there is t ∈ (2p− (r − ω), r + ω) such that

f(t) − f(p)

ω
≥
Mf(r) −Mf(p)

r − p
.

Note that ω is close to t − p if p is close to r. Thus, the average increase of f
in (p, t) is comparable to the average increase of Mf in (p, r). (Notice also that
Mf(p+ω)−Mf(p)

ω ≥ Mf(r)−Mf(p)
r−p .)

We expected at first that this idea might lead to a simple proof of Theorem 1.2,
possibly with C = 1. Nevertheless, no simple proof was found at last.

We need to introduce some notation first.

Definition 2.2. • A peak is the system consisting of three points p < r < q
such that Mf(p) < Mf(r) and Mf(q) < Mf(r),

• the variation of a peak p = {p < r < q} is given by

varp = Mf(r) −Mf(p) +Mf(r) −Mf(q),

• the variation of a system P of peaks is

varP =
∑p∈Pvarp,

• a peak p = {p < r < q} is essential if supp<x<q f(x) ≤Mf(r) − 1
4 varp,
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• for the top r of an essential peak p < r < q, we define (see Lemma 2.3)

ω(r) = max
{
ω > 0 : −

∫ r+ω

r−ω

f = Mf(r)
}
.

Lemma 2.3. Let p < r < q be an essential peak. Then ω(r) is well defined.
Moreover,

r − ω(r) < p and q < r + ω(r).

Proof. We have

Mf(r) > lim
ω→∞

−

∫ r+ω

r−ω

f and Mf(r) > lim
ω↘0

−

∫ r+ω

r−ω

f,

as Mf(r) > Mf(p) ≥ limω→∞ −
∫ p+ω
p−ω f = limω→∞ −

∫ r+ω
r−ω f and

(r − ω, r + ω) ⊂ (p, q) ⇒ −

∫ r+ω

r−ω

f ≤Mf(r) −
1

4
varp.

It follows that ω(r) is well defined. Moreover, at least one of the points p, q belongs
to (r−ω(r), r+ω(r)). We may assume that p ∈ (r−ω(r), r+ω(r)). It remains to
realize that also q ∈ (r − ω(r), r + ω(r)).

Suppose that q ≥ r + ω(r). Since r − ω(r) < p, we can consider the interval
(r − ω(r), 2p− (r − ω(r))) centered at p. We have

−

∫ r+ω(r)

r−ω(r)

f = Mf(r) and −

∫ 2p−(r−ω(r))

r−ω(r)

f ≤Mf(p) < Mf(r),

and so

−

∫ r+ω(r)

2p−(r−ω(r))

f ≥Mf(r).

On the other hand,

−

∫ r+ω(r)

2p−(r−ω(r))

f ≤ sup
2p−(r−ω(r))<x<r+ω(r)

f(x) ≤ sup
p<x<q

f(x) ≤Mf(r) −
1

4
varp,

which is a contradiction. �

Lemma 2.4. Let (x, y) be an interval of length L. Let a non-empty system pi =
{pi < ri < qi}, 1 ≤ i ≤ m, of essential peaks satisfy

x ≤ r1 < q1 ≤ p2 < r2 < q2 ≤ · · · ≤ pm−1 < rm−1 < qm−1 ≤ pm < rm ≤ y

and

25L < ω(ri) ≤ 50L, 1 ≤ i ≤ m.

Then there are s < u < v < t such that

x− 50L ≤ s, t ≤ y + 50L,

u− s ≥ 4L, v − u = L, t− v ≥ 4L

and

min{f(s), f(t)} − −

∫ v

u

f ≥
1

12

m∑

i=1

varpi.
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Proof. We divide the proof into three parts. In parts I. and II., we consider two
special cases and find appropriate numbers satisfying the improved inequality

(∗) min{f(s), f(t)} − −

∫ v

u

f ≥
1

4

m∑

i=1

varpi.
The general case is considered in part III.

I. Let us assume that the system consists of one peak p = {p < r < q}. First,
we find s and t such that

f(s) ≥Mf(r), x− 50L ≤ s ≤ 2q − (r + ω(r)),

f(t) ≥Mf(r), 2p− (r − ω(r)) ≤ t ≤ y + 50L.

Due to the symmetry, it is sufficient to find an s only. By Lemma 2.3, we can
consider the interval (2q − (r + ω(r)), r + ω(r)) centered at q. We have

−

∫ r+ω(r)

r−ω(r)

f = Mf(r) and −

∫ r+ω(r)

2q−(r+ω(r))

f ≤Mf(q) < Mf(r),

and so

−

∫ 2q−(r+ω(r))

r−ω(r)

f ≥Mf(r).

So, there is a point s ∈ (r − ω(r), 2q − (r + ω(r))) such that f(s) ≥ Mf(r). We
have x− 50L ≤ r − ω(r) ≤ s.

Now, we consider two possibilities.
(I.a) If q − p < 10L, then we have

s ≤ 2q − (r + ω(r)) < 2p+ 20L− r − 25L < p− 5L < p− L/2 − 4L,

and it can be shown similarly that q + L/2 + 4L ≤ t. We take

(u, v) =

{
(p− L/2, p+ L/2), Mf(p) ≤Mf(q),
(q − L/2, q + L/2), Mf(p) > Mf(q).

We obtain

min{f(s), f(t)} − −

∫ v

u

f ≥Mf(r) − min{Mf(p),Mf(q)} ≥
1

2
varp,

and (∗) is proven.
(I.b) If q − p ≥ 10L, then we use

s ≤ 2q − (r + ω(r)) < q, p < 2p− (r − ω(r)) ≤ t

(here, Lemma 2.3 is needed again). At the same time,

min{f(s), f(t)} ≥Mf(r) > Mf(r) −
1

4
varp ≥ sup

p<x<q
f(x),

and so s and t can not belong to (p, q). It follows that

s ≤ p, q ≤ t.

Let us realize that the choice

(u, v) =
(
(p+ q − L)/2, (p+ q + L)/2

)

works. Since u− p = (q − p− L)/2 = q − v, we have

u− s ≥ u− p ≥ 9L/2, t− v ≥ q − v ≥ 9L/2.
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One can verify (∗) by the computation

min{f(s), f(t)} − −

∫ v

u

f ≥Mf(r) − sup
p<x<q

f(x) ≥
1

4
varp.

II. Let us assume that the peaks are contained in the interval [x, y]. (I.e., x ≤ p1

and qm ≤ y.) For 1 ≤ i ≤ m+ 1, we define

ei =

{
pi, i = 1 or Mf(pi) ≤Mf(qi−1),
qi−1, i = m+ 1 or Mf(pi) > Mf(qi−1).

We work mainly with the modified system of peaksp̃i = {ei < ri < ei+1}, 1 ≤ i ≤ m.

We are going to prove that, for 1 ≤ i ≤ m, there are points si and ti such that

f(si) ≥Mf(ei+1) +
Mf(ri) −Mf(ei+1)

ei+1 − ri
· ω(ri), x− 50L ≤ si ≤ x− 23L,

f(ti) ≥Mf(ei) +
Mf(ri) −Mf(ei)

ri − ei
· ω(ri), y + 23L ≤ ti ≤ y + 50L.

Due to the symmetry, it is sufficient to find an si only. We consider the interval
(2ei+1 − (ri + ω(ri)), ri + ω(ri)) centered at ei+1. We have

−

∫ ri+ω(ri)

ri−ω(ri)

f = Mf(ri) and −

∫ ri+ω(ri)

2ei+1−(ri+ω(ri))

f ≤Mf(ei+1),

i.e.,
∫ ri+ω(ri)

ri−ω(ri)

f = 2ω(ri)·Mf(ri),

∫ ri+ω(ri)

2ei+1−(ri+ω(ri))

f ≤ 2
(
ri+ω(ri)−ei+1

)
·Mf(ei+1).

It follows that
∫ 2ei+1−(ri+ω(ri))

ri−ω(ri)

f ≥ 2ω(ri) ·Mf(ri) − 2
(
ri + ω(ri) − ei+1

)
·Mf(ei+1)

= 2(ei+1 − ri) ·Mf(ei+1) + 2ω(ri) ·
(
Mf(ri) −Mf(ei+1)

)
,

i.e.,

−

∫ 2ei+1−(ri+ω(ri))

ri−ω(ri)

f ≥Mf(ei+1) +
Mf(ri) −Mf(ei+1)

ei+1 − ri
· ω(ri).

It is clear now that an appropriate si ∈ (ri − ω(ri), 2ei+1 − (ri + ω(ri))) exists.
We just realize that x − 50L ≤ ri − ω(ri) ≤ si and si ≤ 2ei+1 − (ri + ω(ri)) ≤
2y − x− 25L = x− 23L.

Similarly as in part I., we consider two possibilities.
(II.a) Assume that

∣∣Mf(em+1) −Mf(e1)
∣∣ > 1

2

m∑

i=1

var p̃i.
We may assume moreover that Mf(em+1) > Mf(e1). We observe that f(sm) ≥
Mf(em+1) and that

f(tm) ≥Mf(em) +
Mf(rm) −Mf(em)

rm − em
· (rm − em) = Mf(rm) ≥Mf(em+1).
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We obtain

min{f(sm), f(tm)}−Mf(e1) ≥Mf(em+1)−Mf(e1) ≥
1

2

m∑

i=1

var p̃i ≥ 1

2

m∑

i=1

varpi.
The required properties including (∗) are satisfied for

s = sm, (u, v) = (e1 − L/2, e1 + L/2), t = tm.

(II.b) Assume that

∣∣Mf(em+1) −Mf(e1)
∣∣ ≤ 1

2

m∑

i=1

var p̃i.
We have

Mf(em+1) −Mf(e1) =

m∑

i=1

[(
Mf(ri) −Mf(ei)

)
−

(
Mf(ri) −Mf(ei+1)

)]
,

m∑

i=1

var p̃i =

m∑

i=1

[(
Mf(ri) −Mf(ei)

)
+

(
Mf(ri) −Mf(ei+1)

)]
,

and so the assumption can be written in the form
m∑

i=1

(
Mf(ri) −Mf(ei)

)
≥

1

4

m∑

i=1

var p̃i
and

m∑

i=1

(
Mf(ri) −Mf(ei+1)

)
≥

1

4

m∑

i=1

var p̃i.
Let j and k be such that

Mf(rj) −Mf(ej+1)

ej+1 − rj
= max

1≤i≤m

Mf(ri) −Mf(ei+1)

ei+1 − ri
,

Mf(rk) −Mf(ek)

rk − ek
= max

1≤i≤m

Mf(ri) −Mf(ei)

ri − ei
.

We have

f(sj) −Mf(ej+1) ≥
Mf(rj) −Mf(ej+1)

ej+1 − rj
· ω(rj)

≥
Mf(rj) −Mf(ej+1)

ej+1 − rj
· 25L

≥
Mf(rj) −Mf(ej+1)

ej+1 − rj
· 25

m∑

i=1

(ei+1 − ri)

= 25

m∑

i=1

Mf(rj) −Mf(ej+1)

ej+1 − rj
· (ei+1 − ri)

≥ 25

m∑

i=1

(
Mf(ri) −Mf(ei+1)

)

≥
25

4

m∑

i=1

var p̃i,
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and the same bound can be shown for f(tk) −Mf(ek). Hence,

min{f(sj), f(tk)} −Mf(e) ≥
25

4

m∑

i=1

var p̃i ≥ 25

4

m∑

i=1

varpi
for some e ∈ {ej+1, ek}. The required properties including (∗) are satisfied for

s = sj , (u, v) = (e− L/2, e+ L/2), t = tk.

III. In the general case, the system of peaks can be divided into three subsystemsP1 = {pi : pi < x}, P2 = {pi : x ≤ pi, qi ≤ y}, P3 = {pi : x ≤ pi, y < qi}.

Each of these systems consists of at most one peak or of peaks contained in [x, y].
Thus, by parts I. and II. of the proof, if the system is non-empty, then there are
appropriate numbers satisfying the improved inequality (∗). The numbers s < u <
v < t assigned to a Pk with

∑p∈Pk

varp ≥
1

3

m∑

i=1

varpi
work. �

3. Basic setting for the proof

We are going to introduce the remaining notation needed for proving Theo-
rem 1.2. Note that some notation was already introduced in Definition 2.2.

We recall that a function f of bounded variation with f ≥ 0 is fixed. We fix
further a system

a1 < b1 < a2 < b2 < · · · < aσ < bσ < aσ+1

such that

Mf(ai) < Mf(bi) and Mf(ai+1) < Mf(bi)

for 1 ≤ i ≤ σ.

Definition 3.1. • The system P consists of all peaks pi = {ai < bi < ai+1}
where 1 ≤ i ≤ σ,

• the system E consists of all essential peaks from P,
• L0 is given by 50L0 = max({ω(bi) : pi ∈ E} ∪ {0}),
• Ln is given by Ln = 2−nL0 for n ∈ N,
• the systems Enk , n ≥ 0, k ∈ Z, are defined byEnk =

{pi ∈ E : 25Ln < ω(bi) ≤ 50Ln, kLn ≤ bi < (k + 1)Ln
}
.

Lemma 3.2. We have

var(P \E) ≤ 2 Var f.

Proof. For every pi ∈ P \E, we choose xi with ai < xi < ai+1 such that

f(xi) ≥Mf(bi) −
1

4
varpi.

We take a small enough ε > 0 such that the intervals (ai − ε, ai + ε), 1 ≤ i ≤ σ+ 1,
are pairwise disjoint and do not contain any xj . For 1 ≤ i ≤ σ + 1, we choose
yi ∈ (ai − ε, ai + ε) so that

f(yi) ≤Mf(ai).
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For pi ∈ P \E, we have

|f(xi) − f(yi)| + |f(yi+1) − f(xi)| ≥ f(xi) − f(yi) + f(xi) − f(yi+1)

≥ 2
[
Mf(bi) −

1

4
varpi] −Mf(ai) −Mf(ai+1)

=
1

2
varpi,

and the lemma follows. �

To prove such a bound as in Lemma 3.2 for the peaks from E will not be so easy,
and this is why we call them essential. Our first step is the application of Lemma 2.4
on every non-empty Enk . It turns out that the system obtained directly from the
lemma is not convenient for our purposes and an additional property is needed. In
the following lemma, we show that there is a system with one of two additional
properties. Unfortunately, we will be able to handle only with one property at the
same time, and this will mean twice as much work for us.

Lemma 3.3. Let n ≥ 0 and k ∈ Z. If Enk is non-empty (i.e., varEnk > 0), then at
least one of the following two conditions takes place:

(A) There are s < α < β < γ < δ < t such that

(k − 50)Ln ≤ s, t ≤ (k + 51)Ln,

α− s ≥ Ln, β − α ≥ Ln, γ − β = 2Ln, δ − γ ≥ Ln, t− δ ≥ Ln

and

min{f(s), f(t)} − max
{
−

∫ β

α

f,−

∫ δ

γ

f
}
≥

1

24
varEnk .

(B) There are α < β < u < v < γ < δ such that

(k − 50)Ln ≤ α, δ ≤ (k + 51)Ln,

β − α ≥ Ln, u− β ≥ Ln, v − u ≥ Ln, γ − v ≥ Ln, δ − γ ≥ Ln

and

min
{
−

∫ β

α

f,−

∫ δ

γ

f
}
−−

∫ v

u

f ≥
1

24
varEnk .

Proof. Let s < u < v < t be points which Lemma 2.4 gives for Enk and x = kLn, y =
(k + 1)Ln. We define

α = u− 3Ln, β = u− 2Ln, γ = v + 2Ln, δ = v + 3Ln

and look whether the inequality

min
{
−

∫ β

α

f,−

∫ δ

γ

f
}
≥

1

2

(
min{f(s), f(t)} + −

∫ v

u

f
)

holds. If it holds, then (B) is satisfied. If it does not hold, then

−

∫

I

f ≤
1

2

(
min{f(s), f(t)} + −

∫ v

u

f
)

where I is one of the intervals (α, β), (γ, δ). This inequality is fulfilled also for
I = (u, v). Hence, (A) is satisfied for one of the choices

α′ = α, β′ = β, γ′ = u, δ′ = v,

α′ = u, β′ = v, γ′ = γ, δ′ = δ.

�
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Definition 3.4. We define

A =
{

(n, k) : Enk is non-empty and (A) from Lemma 3.3 is satisfied for (n, k)
}
,

An
K =

{
k ∈ Z : k = K mod 200, (n, k) ∈ A

}
, n ≥ 0, 0 ≤ K ≤ 199,

B =
{

(n, k) : Enk is non-empty and (B) from Lemma 3.3 is satisfied for (n, k)
}
,

BnK =
{
k ∈ Z : k = K mod 200, (n, k) ∈ B

}
, n ≥ 0, 0 ≤ K ≤ 199.

4. Dealing with group A

Proposition 4.1. Let 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199. Let η ∈ N ∪ {0} and let
n = 10η +N . Then there is a system

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

such that
u1 − x1 ≥ Ln, v1 − u1 ≥ Ln, x2 − v1 ≥ Ln, . . .

and
m∑

i=1

[
f(xi) + f(xi+1) − 2−

∫ vi

ui

f
]
≥

1

60

∑ {
varEok : o = N mod 10, o ≤ n, k ∈ Ao

K

}
.

To prove the proposition, we provide a method how to construct such a system
for η when a system for η − 1 is already constructed. We suppose that there is a
system

X1 < U1 < V1 < X2 < U2 < V2 < · · · < XM < UM < VM < XM+1

such that

U1 −X1 ≥ 1024Ln, V1 − U1 ≥ 1024Ln, X2 − V1 ≥ 1024Ln, . . .

and
M∑

I=1

[
f(XI) + f(XI+1) − 2−

∫ VI

UI

f
]

≥
1

60

∑ {
varEok : o = N mod 10, o ≤ n− 10, k ∈ Ao

K

}

(for η − 1 = −1, we consider M = 0 and X1 = anything). We want to construct a
system

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

such that
u1 − x1 ≥ Ln, v1 − u1 ≥ Ln, x2 − v1 ≥ Ln, . . .

and
m∑

i=1

[
f(xi)+f(xi+1)−2−

∫ vi

ui

f
]
≥

M∑

I=1

[
f(XI)+f(XI+1)−2−

∫ VI

UI

f
]
+

1

60

∑

k∈An
K

varEnk .
For every k ∈ An

K , let us consider such a system as in (A) from Lemma 3.3. If
we put sk = s, tk = t and choose a (αk, βk) ∈ {(α, β), (γ, δ)}, we obtain a system
sk < αk < βk < tk such that

(k − 50)Ln ≤ sk, tk ≤ (k + 51)Ln,

αk − sk ≥ Ln, βk − αk ≥ Ln, tk − βk ≥ Ln
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and

min{f(sk), f(tk)} − −

∫ βk

αk

f ≥
1

24
varEnk .

We require from the choice of (αk, βk) ∈ {(α, β), (γ, δ)} that

dist (XI , (αk, βk)) ≥ Ln, 1 ≤ I ≤M + 1.

For an interval (c, d) and a k ∈ Z, we will denote

(c, d) ⊥ k ⇔ dist
(
(c, d), ((k − 50)Ln, (k + 51)Ln)

)
≥ Ln.

Lemma 4.2. Let (U, V ) be an interval of length greater than 210Ln. Then there
are a subinterval (U ′, V ′) and a k with k = K mod 200 such that

• −
∫ V ′

U ′
f ≤ −

∫ V
U
f ,

• V ′ − U ′ ≥ 5Ln,
• U ′ = (k − 100)Ln or V ′ = (k + 100)Ln,
• (k − 105)Ln ≤ U ′ and V ′ ≤ (k + 105)Ln,
• (U ′, V ′) ⊥ l for every l 6= k with l = K mod 200.

Moreover, we can wish that −
∫ V ′

U ′
f ≥ −

∫ V
U f instead of the first property.

Proof. Let g and h be the uniquely determined integers with g = h = K mod 200
such that

(g − 105)Ln ≤ U < (g + 95)Ln and (h− 95)Ln < V ≤ (h+ 105)Ln.

We have g < h due to the assumption V − U > 210Ln. The system

U < (g + 100)Ln < (g + 300)Ln < · · · < (h− 100)Ln < V

is a partition of (U, V ) into intervals of length greater than 5Ln. We choose a
part the average value of f over which is less or equal to the average value of f
over (U, V ). (Respectively, greater or equal to the average value of f over (U, V )
if we want to prove the moreover statement.) Such a subinterval (U ′, V ′) and the
appropriate k with g ≤ k ≤ h and k = K mod 200 have the required properties. �

Claim 4.3. Let (U, V ) be an interval of length greater than 210Ln. Then at least
one of the following conditions is fulfilled:

(i) There is an interval (c, d) ⊂ (U, V ) with d − c ≥ Ln such that (c, d) ⊥ l for
every l ∈ An

K and

−−

∫ d

c

f ≥ −−

∫ V

U

f.

(ii) There are an interval (c, d) ⊂ (U, V ) with d − c ≥ Ln and a k ∈ An
K such

that (c, d) ⊥ l for every l ∈ An
K \ {k} and

−−

∫ d

c

f ≥ −−

∫ V

U

f +
1

120
varEnk .

(iii) There are a system

c < d < y < c′ < d′

with (c, d′) ⊂ (U − 1023Ln, V + 1023Ln) and

d− c ≥ Ln, y − d ≥ Ln, c′ − y ≥ Ln, d′ − c′ ≥ Ln
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and a k ∈ An
K such that (c, d′) ⊥ l for every l ∈ An

K \ {k} and

f(y) −−

∫ d

c

f −−

∫ d′

c′
f ≥ −−

∫ V

U

f +
1

120
varEnk .

Proof. Let (U ′, V ′) and k be as in Lemma 4.2. If k /∈ An
K , then (i) is fulfilled

for (c, d) = (U ′, V ′). So, let us assume that k ∈ An
K (and thus that we have

sk < αk < βk < tk for this k).
Let us assume moreover that U ′ = (k − 100)Ln (the procedure is similar when

V ′ = (k + 100)Ln, see below). We put

W = U ′ +
1

5
(V ′ − U ′).

We have W = 4
5U

′ + 1
5V

′ ≤ 4
5 (k− 100)Ln+ 1

5 (k+ 105)Ln = (k− 59)Ln ≤ sk− 9Ln
and βk ≤ tk ≤ (k + 51)Ln = U ′ + 151Ln. In particular,

sk −W ≥ Ln and βk ≤ V ′ + 1023Ln.

Further, we have

−

∫ W

U ′

f ≤ −

∫ V ′

U ′

f +
4

5
·

1

24
varEnk or −

∫ V ′

W

f ≤ −

∫ V ′

U ′

f −
1

5
·

1

24
varEnk .

If the second inequality takes place, then (ii) is fulfilled for (c, d) = (W,V ′). If the
first inequality takes place, then (iii) is fulfilled for

(c, d) = (U ′,W ), y = sk, (c′, d′) = (αk, βk).

So, the claim is proven under the assumption U ′ = (k−100)Ln. The proof under
the assumption V ′ = (k + 100)Ln can be done in a similar way. If we denote

W ′ = V ′ −
1

5
(V ′ − U ′),

then one can show that (ii) is fulfilled for (c, d) = (U ′,W ′) or (iii) is fulfilled for

(c, d) = (αk, βk), y = tk, (c′, d′) = (W ′, V ′).

�

Claim 4.4. There is a subset S ⊂ An
K for which there exists a system

y1 < c1 < d1 < y2 < c2 < d2 < · · · < yj < cj < dj < yj+1

such that

c1 − y1 ≥ Ln, d1 − c1 ≥ Ln, y2 − d1 ≥ Ln, . . . ,

l ∈ An
K \ S ⇒ (ci, di) ⊥ l, 1 ≤ i ≤ j,

l ∈ An
K \ S ⇒ dist (yi, (αl, βl)) ≥ Ln, 1 ≤ i ≤ j + 1,

and

j∑

i=1

[
f(yi) + f(yi+1)− 2−

∫ di

ci

f
]
≥

M∑

I=1

[
f(XI) + f(XI+1)− 2−

∫ VI

UI

f
]

+
1

60

∑

k∈S

varEnk .
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Proof. We apply Claim 4.3 on the intervals (UI , VI), 1 ≤ I ≤ M . We write the
inequalities from Claim 4.3 in a form more familiar for our purposes:

(i) f(XI) + f(XI+1) − 2−

∫ d

c

f ≥ f(XI) + f(XI+1) − 2−

∫ VI

UI

f,

(ii) f(XI) + f(XI+1) − 2−

∫ d

c

f ≥ f(XI) + f(XI+1) − 2−

∫ VI

UI

f +
1

60
varEnk ,

(iii)
[
f(XI) + f(y) − 2−

∫ d

c

f
]

+
[
f(y) + f(XI+1) − 2−

∫ d′

c′
f
]

≥ f(XI) + f(XI+1) − 2−

∫ VI

UI

f +
1

60
varEnk .

We define S as the set of those k’s which appeared in (ii) or (iii) for some I. One
can construct the desired system by inserting the systems which we obtained from
Claim 4.3 between XI ’s. �

To finish the proof of Proposition 4.1, it remains to show that, if a proper subset
S ⊂ An

K has such a system as in Claim 4.4, then S ∪ {k} where k ∈ An
K \ S has

also such a system.
So, let S and

y1 < c1 < d1 < y2 < c2 < d2 < · · · < yj < cj < dj < yj+1

be as in Claim 4.4 and let k ∈ An
K \ S. Let ι be the index such that yι belongs to

the connected component of R \
⋃j
i=1[ci, di] which covers ((k− 50)Ln, (k+ 51)Ln).

We intend to obtain the desired system for S ∪ {k} by replacing yι with

y < αk < βk < y′

where

y =

{
yι, yι ≤ αk − Ln and f(yι) ≥ f(sk),
sk, otherwise,

y′ =

{
yι, yι ≥ βk + Ln and f(yι) ≥ f(tk),
tk, otherwise.

For every l 6= k with l = K mod 200, we have

dist
(
((k − 50)Ln, (k + 51)Ln), ((l − 50)Ln, (l + 51)Ln)

)
≥ 99Ln ≥ Ln,

and thus

l ∈ An
K \ (S ∪ {k}) ⇒ (αk, βk) ⊥ l,

l ∈ An
K \ (S ∪ {k}) ⇒ dist (y, (αl, βl)) ≥ Ln and dist (y′, (αl, βl)) ≥ Ln.

Let us prove the inequality for the modified system. We note that, if j ≥ 1, then
the left side of the inequality for the original system can be written in the form

f(y1) − 2−

∫ d1

c1

f + 2f(y2) − 2−

∫ d2

c2

f + · · · + 2f(yj) − 2−

∫ dj

cj

f + f(yj+1).



ON THE VARIATION OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 13

We need to show that the modification of the system increased this quantity at
least by 1

60 varEnk . What we need to show is

when 1 < ι < j + 1: 2f(y) − 2−

∫ βk

αk

f + 2f(y′) ≥ 2f(yι) +
1

60
varEnk ,

when 1 = ι < j + 1: f(y) − 2−

∫ βk

αk

f + 2f(y′) ≥ f(yι) +
1

60
varEnk ,

when 1 < ι = j + 1: 2f(y) − 2−

∫ βk

αk

f + f(y′) ≥ f(yι) +
1

60
varEnk ,

when 1 = ι = j + 1: f(y) − 2−

∫ βk

αk

f + f(y′) ≥
1

60
varEnk .

These inequalities, even with 1
12 instead of 1

60 , follow from

f(y) −−

∫ βk

αk

f ≥
1

24
varEnk , f(y′) −−

∫ βk

αk

f ≥
1

24
varEnk ,

f(y) ≥ f(yι) or f(y′) ≥ f(yι)

(f(y) ≥ f(yι) is implied by yι ≤ αk − Ln and f(y′) ≥ f(yι) is implied by yι ≥
βk + Ln).

The proof of Proposition 4.1 is completed.

Corollary 4.5. For 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199, we have
∑ {

varEnk : n = N mod 10, k ∈ An
K

}
≤ 60 Var f.

Proof. Let η be large enough such that

Ao
K 6= ∅ ⇒ o ≤ n

where n = 10η +N . Let

x1 < u1 < v1 < x2 < u2 < v2 < · · · < xm < um < vm < xm+1

be the system which Proposition 4.1 gives for N,K and η. For 1 ≤ i ≤ m, let
wi ∈ (ui, vi) be chosen so that

f(wi) ≤ −

∫ vi

ui

f.

We compute

Var f ≥
m∑

i=1

[
|f(wi) − f(xi)| + |f(xi+1) − f(wi)|

]

≥

m∑

i=1

[
f(xi) − f(wi) + f(xi+1) − f(wi)

]

≥
m∑

i=1

[
f(xi) + f(xi+1) − 2−

∫ vi

ui

f
]

≥
1

60

∑{
varEok : o = N mod 10, o ≤ n, k ∈ Ao

K

}

=
1

60

∑{
varEok : o = N mod 10, k ∈ Ao

K

}
.

�



14 ONDŘEJ KURKA

5. Dealing with group B

Proposition 5.1. Let 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199. Let η ∈ N ∪ {0} and let
n = 10η +N . Then there is a system

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

such that

ψ1 − ϕ1 ≥ Ln, s1 − ψ1 ≥ Ln, t1 − s1 ≥ Ln, ϕ2 − t1 ≥ Ln, . . .

and
m∑

i=1

[
−

∫ ψi

ϕi

f + −

∫ ψi+1

ϕi+1

f − 2−

∫ ti

si

f
]
≥

1

60

∑ {
varEok : o = N mod 10, o ≤ n, k ∈ BoK

}
.

To prove the proposition, we provide a method how to construct such a system
for η when a system for η − 1 is already constructed. We suppose that there is a
system

Φ1 < Ψ1 < S1 < T1 < Φ2 < Ψ2 < S2 < T2 < · · · < SM < TM < ΦM+1 < ΨM+1

such that

Ψ1−Φ1 ≥ 1024Ln, S1−Ψ1 ≥ 1024Ln, T1−S1 ≥ 1024Ln, Φ2−T1 ≥ 1024Ln, . . .

and
M∑

I=1

[
−

∫ ΨI

ΦI

f + −

∫ ΨI+1

ΦI+1

f − 2−

∫ TI

SI

f
]

≥
1

60

∑ {
varEok : o = N mod 10, o ≤ n− 10, k ∈ BoK

}

(for η − 1 = −1, we consider M = 0,Φ1 = anything and Ψ1 = Φ1 + 1024Ln). We
want to construct a system

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

such that

ψ1 − ϕ1 ≥ Ln, s1 − ψ1 ≥ Ln, t1 − s1 ≥ Ln, ϕ2 − t1 ≥ Ln, . . .

and
m∑

i=1

[
−

∫ ψi

ϕi

f+−

∫ ψi+1

ϕi+1

f−2−

∫ ti

si

f
]
≥

M∑

I=1

[
−

∫ ΨI

ΦI

f+−

∫ ΨI+1

ΦI+1

f−2−

∫ TI

SI

f
]

+
1

60

∑

k∈Bn
K

varEnk .
For every k ∈ BnK , let us consider such a system as in (B) from Lemma 3.3. We

obtain a system αk < βk < uk < vk < γk < δk such that

(k − 50)Ln ≤ αk, δk ≤ (k + 51)Ln,

βk − αk ≥ Ln, uk − βk ≥ Ln, vk − uk ≥ Ln, γk − vk ≥ Ln, δk − γk ≥ Ln

and

min
{
−

∫ βk

αk

f,−

∫ δk

γk

f
}
−−

∫ vk

uk

f ≥
1

24
varEnk .

Again, for an interval (c, d) and a k ∈ Z, we denote

(c, d) ⊥ k ⇔ dist
(
(c, d), ((k − 50)Ln, (k + 51)Ln)

)
≥ Ln.



ON THE VARIATION OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 15

Claim 5.2. Let (S, T ) be an interval of length greater than 210Ln. Then at least
one of the following conditions is fulfilled:

(i) There is an interval (c, d) ⊂ (S, T ) with d − c ≥ Ln such that (c, d) ⊥ l for
every l ∈ BnK and

−−

∫ d

c

f ≥ −−

∫ T

S

f.

(ii) There are an interval (c, d) ⊂ (S, T ) with d− c ≥ Ln and a k ∈ BnK such that
(c, d) ⊥ l for every l ∈ BnK \ {k} and

−−

∫ d

c

f ≥ −−

∫ T

S

f +
1

120
varEnk .

(iii) There are a system

c < d < µ < ν < c′ < d′

with (c, d′) ⊂ (S − 500Ln, T + 500Ln) and

d− c ≥ Ln, µ− d ≥ Ln, ν − µ ≥ Ln, c′ − ν ≥ Ln, d′ − c′ ≥ Ln

and a k ∈ BnK such that (c, d′) ⊥ l for every l ∈ BnK \ {k} and

−

∫ ν

µ

f −−

∫ d

c

f −−

∫ d′

c′
f ≥ −−

∫ T

S

f +
1

120
varEnk .

Proof. This can be proven in the same way as Claim 4.3. �

The main difference between proofs of Propositions 4.1 and 5.1 is that we need
one more analogy of Claim 4.3 because there are intervals (ΦI ,ΨI) instead of points
XI . Even, two versions of this analogy are provided. Both versions are written at
once in the manner that the inequalities belonging to the second version are written
in square brackets (this concerns also the proof of the claim).

Claim 5.3. Let (Φ,Ψ) be an interval of length greater than 210Ln. Then at least
one of the following conditions is fulfilled:

(i*) There is an interval (µ, ν) ⊂ (Φ,Ψ) with ν −µ ≥ Ln such that (µ, ν) ⊥ l for
every l ∈ BnK and

−

∫ ν

µ

f ≥ −

∫ Ψ

Φ

f.

(ii*) There are an interval (µ, ν) ⊂ (Φ,Ψ) with ν − µ ≥ Ln and a k ∈ BnK such
that (µ, ν) ⊥ l for every l ∈ BnK \ {k} and

−

∫ ν

µ

f ≥ −

∫ Ψ

Φ

f +
1

120
varEnk [

resp. −

∫ ν

µ

f ≥ −

∫ Ψ

Φ

f +
1

60
varEnk ]

.

(iii*) There are a system

µ < ν < c < d < µ′ < ν′

with (µ, ν′) ⊂ (Φ − 500Ln,Ψ + 500Ln) and

ν − µ ≥ Ln, c− ν ≥ Ln, d− c ≥ Ln, µ′ − d ≥ Ln, ν′ − µ′ ≥ Ln

and a k ∈ BnK such that (µ, ν′) ⊥ l for every l ∈ BnK \ {k} and

−

∫ ν

µ

f −−

∫ d

c

f + −

∫ ν′

µ′

f ≥ −

∫ Ψ

Φ

f +
1

120
varEnk
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[
resp. −

∫ ν

µ

f − 2−

∫ d

c

f + 2−

∫ ν′

µ′

f ≥ −

∫ Ψ

Φ

f +
1

60
varEnk

and 2−

∫ ν

µ

f − 2−

∫ d

c

f + −

∫ ν′

µ′

f ≥ −

∫ Ψ

Φ

f +
1

60
varEnk ]

.

Proof. By Lemma 4.2, there are a subinterval (Φ′,Ψ′) and a k with k = K mod 200
such that

• −
∫ Ψ′

Φ′
f ≥ −

∫ Ψ

Φ f ,
• Ψ′ − Φ′ ≥ 5Ln,
• Φ′ = (k − 100)Ln or Ψ′ = (k + 100)Ln,
• (k − 105)Ln ≤ Φ′ and Ψ′ ≤ (k + 105)Ln,
• (Φ′,Ψ′) ⊥ l for every l 6= k with l = K mod 200.

If k /∈ BnK , then (i*) is fulfilled for (µ, ν) = (Φ′,Ψ′). So, let us assume that k ∈ BnK
(and thus that we have αk < βk < uk < vk < γk < δk for this k).

We provide the proof under the assumption Φ′ = (k−100)Ln only (the procedure
is similar when Ψ′ = (k + 100)Ln). We put

Θ = Φ′ +
1

5
(Ψ′ − Φ′).

We have Θ = 4
5Φ′+ 1

5Ψ′ ≤ 4
5 (k−100)Ln+ 1

5 (k+105)Ln = (k−59)Ln ≤ αk−9Ln ≤
uk − 9Ln and δk ≤ (k + 51)Ln = Φ′ + 151Ln. In particular,

uk − Θ ≥ Ln and δk ≤ Ψ′ + 500Ln.

Further, we have

−

∫ Θ

Φ′

f ≥ −

∫ Ψ′

Φ′

f −
4

5
·

1

24
varEnk or −

∫ Ψ′

Θ

f ≥ −

∫ Ψ′

Φ′

f +
1

5
·

1

24
varEnk

[
resp. −

∫ Θ

Φ′

f ≥ −

∫ Ψ′

Φ′

f −
8

5
·

1

24
varEnk or −

∫ Ψ′

Θ

f ≥ −

∫ Ψ′

Φ′

f +
2

5
·

1

24
varEnk ]

.

If the second inequality takes place, then (ii*) is fulfilled for (µ, ν) = (Θ,Ψ′). If the
first inequality takes place, then (iii*) is fulfilled for

(µ, ν) =

{
(Φ′,Θ), −

∫ Θ

Φ′
f ≥ −

∫ βk

αk
f,

(αk, βk), −
∫ Θ

Φ′
f < −

∫ βk

αk
f,

(c, d) = (uk, vk), (µ′, ν′) = (γk, δk).

The inequalities in (iii*) follow from

−

∫ ν

µ

f ≥ −

∫ Θ

Φ′

f ≥ −

∫ Ψ

Φ

f −
4

5
·

1

24
varEnk [

resp. · · · −
8

5
·

1

24
varEnk ]

,

−

∫ ν

µ

f −−

∫ d

c

f ≥
1

24
varEnk , −

∫ ν′

µ′

f −−

∫ d

c

f ≥
1

24
varEnk .

�

Claim 5.4. There is a subset T ⊂ BnK for which there exists a system

µ1 < ν1 < c1 < d1 < µ2 < ν2 < c2 < d2 < · · · < cj < dj < µj+1 < νj+1

such that

ν1 − µ1 ≥ Ln, c1 − ν1 ≥ Ln, d1 − c1 ≥ Ln, µ2 − d1 ≥ Ln, . . . ,
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l ∈ BnK \ T ⇒ (ci, di) ⊥ l, 1 ≤ i ≤ j,

l ∈ BnK \ T ⇒ (µi, νi) ⊥ l, 1 ≤ i ≤ j + 1,

and
j∑

i=1

[
−

∫ νi

µi

f +−

∫ νi+1

µi+1

f − 2−

∫ di

ci

f
]
≥

M∑

I=1

[
−

∫ ΨI

ΦI

f +−

∫ ΨI+1

ΦI+1

f − 2−

∫ TI

SI

f
]

+
1

60

∑

k∈T

varEnk .
We note that, if j ≥ 1 and M ≥ 1, then the inequality can be written in the

form

−

∫ ν1

µ1

f − 2−

∫ d1

c1

f + 2−

∫ ν2

µ2

f − 2−

∫ d2

c2

f + · · · + 2−

∫ νj

µj

f − 2−

∫ dj

cj

f + −

∫ νj+1

µj+1

f

≥ −

∫ Ψ1

Φ1

f − 2−

∫ T1

S1

f + 2−

∫ Ψ2

Φ2

f − · · · − 2−

∫ TM

SM

f + −

∫ ΨM+1

ΦM+1

f +
1

60

∑

k∈T

varEnk .
Proof. If M = 0, then we can put T = ∅, j = 0 and find a suitable interval (µ1, ν1)
of length Ln. So, let us assume that M ≥ 1.

We apply Claim 5.2 on the intervals (SI , TI), 1 ≤ I ≤ M , and Claim 5.3 on the
intervals (ΦI ,ΨI), 1 ≤ I ≤M + 1, (the first version for 1 < I < M + 1, the second
version for I = 1, I = M + 1). We write the inequalities from Claim 5.2 in a form
more familiar for our purposes:

(i) −2−

∫ d

c

f ≥ −2−

∫ TI

SI

f,

(ii) −2−

∫ d

c

f ≥ −2−

∫ TI

SI

f +
1

60
varEnk ,

(iii) −2−

∫ d

c

f + 2−

∫ ν

µ

f − 2−

∫ d′

c′
f ≥ −2−

∫ TI

SI

f +
1

60
varEnk .

Concerning the inequalities from Claim 5.3, we moreover specify which inequality
will be applied for I:

(i*) 1 < I < M + 1 : 2−

∫ ν

µ

f ≥ 2−

∫ ΨI

ΦI

f,

I = 1 or I = M + 1 : −

∫ ν

µ

f ≥ −

∫ ΨI

ΦI

f,

(ii*) 1 < I < M + 1 : 2−

∫ ν

µ

f ≥ 2−

∫ ΨI

ΦI

f +
1

60
varEnk ,

I = 1 or I = M + 1 : −

∫ ν

µ

f ≥ −

∫ ΨI

ΦI

f +
1

60
varEnk ,

(iii*) 1 < I < M + 1 : 2−

∫ ν

µ

f − 2−

∫ d

c

f + 2−

∫ ν′

µ′

f ≥ 2−

∫ ΨI

ΦI

f +
1

60
varEnk ,

I = 1 : −

∫ ν

µ

f − 2−

∫ d

c

f + 2−

∫ ν′

µ′

f ≥ −

∫ ΨI

ΦI

f +
1

60
varEnk ,

I = M + 1 : 2−

∫ ν

µ

f − 2−

∫ d

c

f + −

∫ ν′

µ′

f ≥ −

∫ ΨI

ΦI

f +
1

60
varEnk .



18 ONDŘEJ KURKA

We define T as the set of those k’s which appeared in (ii), (iii), (ii*) or (iii*) for
some I. One can construct the desired system by collecting the systems which we
obtained from Claims 5.2 and 5.3. �

To finish the proof of Proposition 5.1, it remains to show that, if a proper subset
T ⊂ BnK has such a system as in Claim 5.4, then T ∪ {k} where k ∈ BnK \ T has
also such a system.

So, let T and

µ1 < ν1 < c1 < d1 < µ2 < ν2 < c2 < d2 < · · · < cj < dj < µj+1 < νj+1

be as in Claim 5.4 and let k ∈ BnK \T . Let ι be the index such that (µι, νι) is covered

by the same connected component of R \
⋃j
i=1[ci, di] as ((k − 50)Ln, (k + 51)Ln).

We intend to obtain the desired system for T ∪ {k} by replacing µι < νι with

µ < ν < uk < vk < µ′ < ν′

where

(µ, ν) =

{
(µι, νι), νι ≤ uk − Ln and −

∫ νι

µι
f ≥ −

∫ βk

αk
f,

(αk, βk), otherwise,

(µ′, ν′) =

{
(µι, νι), µι ≥ vk + Ln and −

∫ νι

µι
f ≥ −

∫ δk

γk
f,

(γk, δk), otherwise.

For every l 6= k with l = K mod 200, we have

dist
(
((k − 50)Ln, (k + 51)Ln), ((l − 50)Ln, (l + 51)Ln)

)
≥ 99Ln ≥ Ln,

and thus

l ∈ BnK \ (T ∪ {k}) ⇒ (uk, vk) ⊥ l,

l ∈ BnK \ (T ∪ {k}) ⇒ (µ, ν) ⊥ l and (µ′, ν′) ⊥ l.

Let us prove the inequality for the modified system. We need to show that the
modification of the system increased the left side at least by 1

60 varEnk . What we
need to show is

when 1 < ι < j + 1: 2−

∫ ν

µ

f − 2−

∫ vk

uk

f + 2−

∫ ν′

µ′

f ≥ 2−

∫ νι

µι

f +
1

60
varEnk ,

when 1 = ι < j + 1: −

∫ ν

µ

f − 2−

∫ vk

uk

f + 2−

∫ ν′

µ′

f ≥ −

∫ νι

µι

f +
1

60
varEnk ,

when 1 < ι = j + 1: 2−

∫ ν

µ

f − 2−

∫ vk

uk

f + −

∫ ν′

µ′

f ≥ −

∫ νι

µι

f +
1

60
varEnk ,

when 1 = ι = j + 1: −

∫ ν

µ

f − 2−

∫ vk

uk

f + −

∫ ν′

µ′

f ≥
1

60
varEnk .

These inequalities, even with 1
12 instead of 1

60 , follow from

−

∫ ν

µ

f −−

∫ vk

uk

f ≥
1

24
varEnk , −

∫ ν′

µ′

f −−

∫ vk

uk

f ≥
1

24
varEnk ,

−

∫ ν

µ

f ≥ −

∫ νι

µι

f or −

∫ ν′

µ′

f ≥ −

∫ νι

µι

f
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(−
∫ ν
µ f ≥ −

∫ νι

µι
f is implied by νι ≤ uk − Ln and −

∫ ν′

µ′
f ≥ −

∫ νι

µι
f is implied by µι ≥

vk + Ln).
The proof of Proposition 5.1 is completed.

Corollary 5.5. For 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199, we have

∑ {
varEnk : n = N mod 10, k ∈ BnK

}
≤ 60 Var f.

Proof. Let η be large enough such that

BoK 6= ∅ ⇒ o ≤ n

where n = 10η +N . Let

ϕ1 < ψ1 < s1 < t1 < ϕ2 < ψ2 < s2 < t2 < · · · < sm < tm < ϕm+1 < ψm+1

be the system which Proposition 5.1 gives for N,K and η. For 1 ≤ i ≤ m+ 1, let
λi ∈ (ϕi, ψi) be chosen so that

f(λi) ≥ −

∫ ψi

ϕi

f.

For 1 ≤ i ≤ m, let zi ∈ (si, ti) be chosen so that

f(zi) ≤ −

∫ ti

si

f.

We compute

Var f ≥

m∑

i=1

[
|f(zi) − f(λi)| + |f(λi+1) − f(zi)|

]

≥

m∑

i=1

[
f(λi) − f(zi) + f(λi+1) − f(zi)

]

≥
m∑

i=1

[
−

∫ ψi

ϕi

f + −

∫ ψi+1

ϕi+1

f − 2−

∫ ti

si

f
]

≥
1

60

∑ {
varEok : o = N mod 10, o ≤ n, k ∈ BoK

}

=
1

60

∑ {
varEok : o = N mod 10, k ∈ BoK

}
.

�

6. Proof of Theorem 1.2

We are going to finish the proof of Theorem 1.2. We recall that Theorem 1.2 is
being proven for a fixed function f of bounded variation with f ≥ 0. Let us sum-
marize our conclusions first (the required notation was introduced in Definition 2.2
and during Section 3).
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Let 0 ≤ N ≤ 9 and 0 ≤ K ≤ 199. Using Lemma 3.3 and Corollaries 4.5 and 5.5,
we can write

∑ {
varEnk : n = N mod 10, k = K mod 200

}

=
∑ {

varEnk : n = N mod 10, k = K mod 200 and Enk is non-empty
}

=
∑ {

varEnk : n = N mod 10, k ∈ An
K ∪ BnK

}

≤ 60 Var f + 60 Var f.

Further, using Lemma 3.2, we can compute

σ∑

i=1

[
Mf(bi) −Mf(ai) +Mf(bi) −Mf(ai+1)

]

= varP = var(P \E) + varE
= var(P \E) +

9∑

N=0

199∑

K=0

∑ {
varEnk : n = N mod 10, k = K mod 200

}

≤ 2 Var f + 10 · 200 · 120 Varf.

So, we have proven the following statement.

Proposition 6.1. Let

a1 < b1 < a2 < b2 < · · · < aσ < bσ < aσ+1

be such that

Mf(ai) < Mf(bi) and Mf(ai+1) < Mf(bi)

for 1 ≤ i ≤ σ. Then

σ∑

i=1

[
Mf(bi) −Mf(ai) +Mf(bi) −Mf(ai+1)

]
≤ (2 + 10 · 200 · 120) Var f.

Once we have Proposition 6.1, the proof of Theorem 1.2 is easy. Nevertheless,
we provide the final argument for completeness.

Proof of Theorem 1.2. Let x1 < x2 < · · · < xl be given. We want to show that

l−1∑

j=1

∣∣Mf(xj+1) −Mf(xj)
∣∣ ≤ C Var f.

After eliminating unnecessary points and possible repeating of the first and the last
point, we obtain a system

b0 ≤ a1 < b1 < a2 < b2 < · · · < aσ < bσ < aσ+1 ≤ bσ+1

such that

Mf(ai) < Mf(bi) and Mf(ai+1) < Mf(bi)

for 1 ≤ i ≤ σ and

σ∑

i=0

(
Mf(bi) −Mf(ai+1)

)
+

σ+1∑

i=1

(
Mf(bi) −Mf(ai)

)
=

l−1∑

j=1

∣∣Mf(xj+1) −Mf(xj)
∣∣.
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We have Mf(b0) − Mf(a1) ≤ sup f − inf f ≤ Var f . Similarly, Mf(bσ+1) −
Mf(aσ+1) ≤ Var f . It follows now from Proposition 6.1 that

l−1∑

j=1

∣∣Mf(xj+1) −Mf(xj)
∣∣ ≤ (2 + 2 + 10 · 200 · 120) Var f,

and the proof of the theorem is completed! �

7. Proof of Corollaries 1.3 and 1.4

In this section, we follow methods from [2] and [12]. We recall that a function
f : A ⊂ R→ R is said to have Lusin’s property (N) (or is called an N -function) on
A if, for every set N ⊂ A of measure zero, f(N) is also of measure zero. The well-
known Banach-Zarecki theorem states that f : [a, b] → R is absolutely continuous
if and only if it is a continuous N -function of bounded variation.

Lemma 7.1. Let f : R→ R be a measurable function with Mf 6≡ ∞ and let r > 0.
Then the function

M≥rf(x) = sup
ω≥r

−

∫ x+ω

x−ω

|f |

is locally Lipschitz. In particular, M≥rf is a continuous N -function.

We prove a claim first.

Claim 7.2. For x, y ∈ R, we have

M≥rf(y) ≥M≥rf(x) −
M≥rf(x)

r
|y − x|.

Proof. Due to the symmetry, we may assume that y > x. Let ε > 0. There is an
ω ≥ r for which

−

∫ x+ω

x−ω

|f | ≥M≥rf(x) − ε.

We can compute

M≥rf(y) ≥ −

∫ 2y−(x−ω)

x−ω

|f | =
1

2(y − x+ ω)

∫ 2y−(x−ω)

x−ω

|f |

≥
1

2(y − x+ ω)

∫ x+ω

x−ω

|f | ≥
2ω

2(y − x+ ω)

(
M≥rf(x) − ε

)

≥ M≥rf(x) − ε−
y − x

y − x+ ω
M≥rf(x) ≥M≥rf(x) − ε−

y − x

r
M≥rf(x).

As ε > 0 could be chosen arbitrarily, the claim is proven. �

Proof of Lemma 7.1. We realize first that M≥rf is locally bounded. If y ∈ R, then
M≥rf is bounded on a neighbourhood of y by Claim 7.2, as

|y − x| < r ⇒ M≥rf(x) ≤
r

r − |y − x|
M≥rf(y).

Now, let I be a bounded interval. There is a B > 0 such that M≥rf(x) ≤ B for
x ∈ I. Using Claim 7.2 again, we obtain, for x, y ∈ I,

M≥rf(y) ≥M≥rf(x) −
B

r
|y − x|.

Hence, M≥rf is Lipschitz with the constant B/r on I. �
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Lemma 7.3. Let f : R → R be a measurable function with Mf 6≡ ∞ and let
x ∈ R. If f is continuous at x, then Mf is continuous at x, too.

Proof. The assumption Mf 6≡ ∞ is sufficient for Mf to be lower semicontinu-
ous. Assume that Mf is not upper semicontinuous at x. There is a sequence xk
converging to x such that infk∈NMf(xk) > Mf(x). We choose c so that

inf
k∈NMf(xk) > c > Mf(x).

For each k ∈ N, we choose ωk > 0 such that

−

∫ xk+ωk

xk−ωk

|f | ≥ c, k = 1, 2, . . . .

Now,

• the possibility ωk → 0 contradicts the continuity of f at x, since then
lim supy→x |f(y)| ≥ c > Mf(x) ≥ lim infy→x |f(y)|,

• the possibility lim supk→∞ ωk > r > 0 contradicts the continuity of the
function M≥rf from Lemma 7.1, since then lim supk→∞M≥rf(xk) ≥ c >
Mf(x) ≥M≥rf(x).

�

Lemma 7.4. Let f : R → R be a measurable function with Mf 6≡ ∞ which is
continuous on an open set U . If f has (N) on U , then Mf has also (N) on U .

Proof. Note that the set E = {x ∈ U : Mf(x) > |f(x)|} fulfills E =
⋃∞
k=1 E1/k

where

Er =
{
x ∈ U : Mf(x) > sup

|y−x|<r

|f(y)|
}
, r > 0.

For x ∈ Er, we have Mf(x) = M≥rf(x) where M≥rf is as in Lemma 7.1. At the
same time, for x ∈ U \ E, we have Mf(x) = |f(x)|. Hence,

|Mf(N)| ≤ |Mf(N \E)| +

∞∑

k=1

|Mf(N ∩E1/k)|

≤ |f(N \ E)| +

∞∑

k=1

|M≥1/kf(N ∩ E1/k)| = 0

for every null set N ⊂ U . �

Proof of Corollary 1.3. By Lemma 7.3, Mf is continuous on U . By Lemma 7.4,
Mf has (N) on U . So, it is sufficient to show that Mf has bounded variation on a
given [a, b] ⊂ U because then the Banach-Zarecki theorem can be applied to prove
that Mf is absolutely continuous on [a, b].

Let r > 0 be chosen so that [a− r, b+ r] ⊂ U and let g : R→ R be defined by

g(x) =

{
f(x), x ∈ [a− r, b+ r],
0, x /∈ [a− r, b+ r].

Then g has bounded variation, as f is absolutely continuous on [a − r, b + r]. By
Theorem 1.2, Mg has bounded variation. It remains to realize that

Mf(x) = max{Mg(x),M≥rf(x)}, x ∈ [a, b],

for the function M≥rf from Lemma 7.1. �
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Proof of Corollary 1.4. Assume that f ∈ W 1,1(R). Then f is represented by an
absolutely continuous function of bounded variation (which will be also denoted
by f). By Corollary 1.3, Mf is locally AC, and thus weakly differentiable. Using
Theorem 1.2, we can write

‖(Mf)′‖1 = VarMf ≤ C Var f = C‖f ′‖1.

�

8. Remarks

Remark 8.1. It is possible to formulate an abstract statement which covers a sig-
nificant part of the proof of Theorem 1.2.

Let f : R→ R be a function of bounded variation and let Qn,k, n ≥ 0, k ∈ Z, be
non-negative numbers. Let L0 > 0 and Ln = 2−nL0 for n ∈ N. Assume that, for
every (n, k) with Qn,k > 0, there are s < u < v < t such that

(k − 50)Ln ≤ s, t ≤ (k + 51)Ln,

u− s ≥ 4Ln, v − u ≥ Ln, t− v ≥ 4Ln

and

min{f(s), f(t)} − −

∫ v

u

f ≥
1

12
Qn,k.

Then ∑

n,k

Qn,k ≤ 10 · 200 · 120 Varf.

It is sufficient to prove this under the assumption that Qn,k > 0 for finitely many
Qn,k’s only. In such a case, just consider Qn,k instead of varEnk in Lemma 3.3 and
in Sections 4&5.

Remark 8.2. The proof of Theorem 1.2 works also for the local Hardy-Littlewood
maximal function. More precisely, if Ω ⊂ R is open and d : Ω → (0,∞) is Lipschitz
with the constant 1 such that d(x) ≤ dist(x,R \ Ω), then the function

M≤df(x) = sup
0<ω≤d(x)

−

∫ x+ω

x−ω

|f |

fulfills VarΩM≤df ≤ C VarΩ f . Here, by VarΩ we mean
∑

n VarIn
where Ω =

⋃
n In

is a decomposition of Ω into open intervals. The inequality VarIn
M≤df ≤ C VarIn

f
can be proven in the same way as Theorem 1.2. It is sufficient just to modify
appropriately the formula for ω(r) in Definition 2.2.

The version of Corollary 1.4 for M≤df can be proven as well. If f ∈ W 1,1(Ω),
then M≤df is weakly differentiable and

‖(M≤df)′‖1,Ω ≤ C‖f‖1,1,Ω.
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