Rotating compressible fluids under strong stratification
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Abstract
We consider the Navier-Stokes system written in the rotational frame describing the motion
of a compressible viscous fluid under strong stratification. The asymptotic limit for low Mach
and Rossby numbers and large Reynolds number is studied on condition that the Froude number
characterizing the degree of stratification is proportional to the Mach number. We show that,
at least for the well prepared data, the limit system is the same as for the problem without
stratification - a variant of the incompressible planar Euler system.
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1 Introduction

We study the asymptotic behavior of a multiple-parameter system of partial differential equations
arising in the modelling of atmospheric flows, see e.g. Klein [7]. In the rotational coordinate frame,
such a system reads:

0o + div,(pu) = 0, (1.1)
1 1 1
O¢(ou) + div,(ou ® u) + SouXw + gvxp(g) = vdiv,S(V,u) + 5—29va, (1.2)
2
S(Veu) = p <qu + Viu— gdivxu]l> + ndiv,ul, ¢ >0, n > 0. (1.3)

Here, we have used the following notation:

= 0(t, ) the fluid mass density
W= U(E, ) ettt the velocity field
W =[0,0, 1] ot the rotation axis
D= D) e the pressure
S=S(Val) .o the Newtonian viscous stress tensor
Ly A e the viscosity coefficients
G = g o the gravitational potential



1.1 Boundary conditions

The Navier-Stokes system (1.1 - 1.3) is written in its dimensionless form, with the Mach number
= Rossby number = Froude number = ¢, and the Reynolds number = v~!. The Mach and Froude
number being of the same order, the asymptotic motion of the fluid is strongly stratified. We consider
a highly simplified geometry, namely the infinite slab Q C R?,

Q= R*x(0,1), (1.4)
with the complete slip boundary conditions
u-nlgo =0, [S:nianlog =0, n — the outer normal vector to 0L, (1.5)
and the far field condition for the velocity
u— 0 as |z| — oo. (1.6)

Given this geometrical setting, it is convenient to introduce the horizontal variable xj, = [z, 2]
and the vertical variable x3, along with the associated differential operators divy,, Vj, and the
Laplacean A, acting on the horizontal variables. Moreover, we denote

<h>:/01hdx3

the vertical average of a function h.

1.2 Static solutions

The asymptotic distribution of the density is governed by the static system
As V.G = 10,0, —1], it is easy to see that ¢ depends only on the vertical variable x3, more specifically,

~ 2 p(z
H'(0)=—x3+¢, H(o)=0 : ,52> dz (1.8)
for a suitable constant c¢. Fixing ¢ so that ¢ > 0 in , we can prescribe the far field behavior of the
density, namely

0— 0 as |z| — 0. (1.9)



1.3 Target system

Our goal is to perform the simultaneous singular limit and to identify the target system as e, v — 0.
This can be viewed as a continuation of our previous work [2], [3] in the context of strongly stratified
fluids. We refer to the survey by Klein [7] for specific features of such multiscale problems in the
context of atmospheric flows. There are several competing processes in the course of the singular limit.
The density profile approaches the static distribution g, while, as a consequence of the asymptotically
infinite sound speed (low Mach number), the fluid flow becomes “incompressible”. On the other hand,
the fast rotation drives the system to the purely planar motion, and, last but not least, the limit
fluid flow is inviscid due to the high Reynolds number.

Unlike the asymptotic density approaching the static profile g, the limit velocity is not essentially
influenced by stratification. Denoting o0 = ¢.,, u = u., the solutions of the scaled system, we show
that _

0— 0
€

— s, u—vasec— 0, ¥ — 0in some sense, (1.10)

where s and v are interrelated through

2 P (o)
—v | +V, ( - s) =0, in particular, v = [vi(¢, xp), vo(t, zp), 0], (1.11)
0 o

whereas the limit system takes the form

Viig=vn, (0)0:Ang— <]ﬁ> g+ {(8)Virq- Vi (Ang) =0, ¢ =

Viq = [a$QQJ _ax1Q]

p'(0)
0

s, (1.12)

Thus the limit is the same as in [3] - a “damped” variant of the planar incompressible Euler system
occurring in certain meteorological models, see Zeitlin [12]. In particular, the problem (1.11), (1.12)
admits global in time classical solutions for any smooth initial data, see Section 2 below.

Similarly to [2], [3] (cf. also Masmoudi [9], Wang and Jiang [11], Jiang et al. [5], [6]), our approach
is based on uniform bounds derived by means of the relative entropy (modulated energy) inequality.
We restrict ourselves to the case of well-prepared initial data for the Navier-Stokes system (1.1 -
1.3) approaching in the asymptotic limit the initial state of the target problem (1.11), (1.12). As a
benefit, we obatin a rather exact convergence rate in terms of the singular parameters ¢ and v.

The paper is organized as follows. In Section 2, we collect the necessary material concerning
solvability of both primitive and target system and state our main result. The relative entropy
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inequality is introduced in Section 3. The necessary estimates and the proof of the main result are
performed in Section 4.

2 Main result

We start with the standard technical hypothesis imposed on the pressure in order to ensure the
existence of global-in-time weak solutions to the primitive Navier-Stokes system:
3 P P _

p € C[0,00) N C°(0,00), p(0) =0, p'(0) >0 for p >0, lim = Poo >0 (2.1)

0—00 Q'Y*l

for some v > 3/2.

2.1 Weak solutions to the primitive system

We say that [o,u] is a finite energy weak solution of the Navier-Stokes-Poisson system (1.1 - 1.3),
supplemented with the boundary conditions (1.5), (1.6), (1.9), and the initial conditions

0(0,-) = 09, u(0,-) = uy, (2.2)
in the space-time cylinder (0,7) x 2 if:
e p>0aa. in (0,7) x Q,
(0= 0) € Cyear(0,T; L* + L(R)), 0u € Cyear(0,T; L* + LY/ 0D (Q; RY)),

uc L0, T;Wh(Q; R?)), u-n|sq = usloq = 0;

| [ levie+ou-Vog) drat = [ o(rp(r,) do = [ o0p(0.) dr (23
for 0 <7 < T and any test function ¢ € C>([0,T] x Q);
T 1 1 )
/0 /Q {Qu cOp+ou®@u: Vyp — g(gu Xw)- @+ gp(g)dlvxap} de dt (2.4)

T 1
:/0 /Q[”S(Vf‘” tVap — 50VaG | d dt+/ﬂgu(r,-)-so(7,-) dx—/Q@ouo-wo,-) dz

for any 0 < 7 < T and any test function ¢ € C>([0,T] x Q; R?), ¢ - n|gq = 0;




e the energy inequality
[ [Geul + 5 (o) - H'@) o - 8) - H(@))] (7.) da (25

—I—I//JT/QS(VIU)  V,u do dt

< [ [Senluol + = (H(ev) = H'@)(e0 — 8) — H(2))| o

holds for a.a. 7 € (0,7, where we have set

H(@)Z@/lgp(z)dz-

22

It can be shown by the methods developed by Lions [8] and in [4] that the Navier-Stokes system
admits global-in-time weak solutions for any finite energy initial data as long as €, > 0 and the
pressure satisfies (2.1).

2.2 Solutions to the target problem
As for solvability of the problem (1.11), (1.12), with the initial data

we report the following result that can be shown within the abstract theory developed by Oliver [10,
Theorem 3], cf. also [3, Section 2.1]:

Proposition 2.1 Suppose that
g € W™2(R?) for m > 4.

Then the problem (1.11), (1.12), (2.6) admits a solution q, unique in the class

g € C([0, T); W™*(R*) N CH([0, T]; W™ H2(R?)).

2.3 Asymptotic limit - main result

The main result of the present paper can be stated as follows:



Theorem 2.1 Let the pressure p satisfy the hypothesis (2.1) for some v > 3/2. Let qy €
Wm™2(R?), m > 4, together with

p'(0 vg p'(0
50, Vo,n, o = <~ )SO? [ 071h ] + VCE ( <~ )SO> =0
0 —Vo,n 0

be given, and let q, s, v. .= [vy,0] be the unique solution of the target problem (1.11), (1.12),
(2.6). Let o = 0., u = u., be a finite energy weak solution of the primitive Navier-Stokes
system (1.1 - 1.8), (1.5), (1.6), (1.9), emanating from the initial data

9(07 ) = 00ec = @ + 8@8‘27 u(07€> = Up, (27>

10§21 z2nzoe 0y + 100l 2 gesmey < d (2.8)

uniformly in €, v.

Then there ezists a constant c¢(D,T) depending only on the data qqy, d, and T such that

2

V@ =), g + | (2 = 5) (7.9 29

€

L2+L7(Q)

2
<c¢(D,T) (Hllo,s — [Vons O]Hi?(Q;R?’) + HQ((JIS) — S0

forany 0 <7 <T.

o VT €>

Remark 2.1 It follows from Theorem 2.1 that o = o.,, u = u., approach the solution of the targer
system provided €,v — 0 and the initial data are well prepared, meaning, the right-hand side of the
inequality (2.9) tends to zero.

The rest of the paper will be devoted to the proof of Theorem 2.1.



3 Relative entropy

Similarly to [2], [3], we introduce the relative entropy functional

£ (o,u|r,U) :/Q Bmu—um;(H(g)—H’(r)(g—r)—H(r))} da, (3.1)

along with the relative entropy inequality associated to the primitive Navier-Stokes system (1.1 -
1.3):

& (g,u ‘ T, U) (1) + U/OT/Q (S(qu) - S(VxU)) : (qu — VIU) dr dt < (3.2)
T(Oa ')7 U(07 ))
+/()T/Qg(atU+u-va) S(U—n) de dt

T 1 T
+u/ /S(VIU):VI(U—u) dz dt—f/ /Q(wxu)-(U—u) dz dt
0o Jo eJo Jo
1 47 1 /7 )
+§/0 /Q {(7‘ — 0)0H'(r)+ V. H'(r) - (rU — Qu)} dz dt — ?/0 /lesz(p(Q) — p(r)) dz dt
1 T
—3/ / oV.G - (U —u) dz dt
ez Jo Ja
for all (smooth) functions r, U such that
r>0, (r—9)€C>x(0,T] xQ), UeC*(0,T] x Q). (3.3)
As shown in [1], any finite energy weak solution [p, u] satisfies the relative entropy inequality for any
pair of “test” functions r, U as in (3.3).

8 (QO,€7 uO,e

3.1 Uniform bounds

The ansatz
r=p, U=0,

together with the hypotheses (2.7), (2.8) imposed on the initial data, gives rise to the following
bounds (cf. [3, Section 3.2)):

ess sup ||v/ou(7, )| 2.y < (D), (3.4)
7€(0,T)
ess sup e—¢ < (D), (3.5)
7€(0,T) € L2+17(Q)

2 2
V.u+ Viu— gdivxu]l dz dt < ¢(D), (3.6)

T T
I/T]/ / |div,ul? do dt + I// /
o Ja o Jo

where the constant ¢(D) depends only on the norms of the initial data specified in Theorem 2.1.
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4 Convergence
Our goal is to derive (2.9) from the relative entropy inequality (3.2) using a new ansatz
r=o0+es, U=v=]|vy0], (4.1)

where vy, s satisfy the limit system (1.11), (1.12). In the remaining part of this section, we examine
term by term the integrals on the right-hand side of (3.2).

4.1 Initial data

Given (2.7), we easily compute

€ (0., 10.[r(0), U(0)) < ¢(D) /Q [0 = [Vou, 0]* + |06 — sol?] dz (4.2)

4.2 “Viscous” terms

I//QS(VQCV) :Ve(v—u)dr — 0= QV/QS(VJUV) :S(Vy(v—u)) dz (4.3)
< VS(729) oy + VIS = ) e
v
= v[8(Vav)llZ o) + 5 /Q (8(Vau) =8(V,v)) : (Vou = Vov) da

Combining (4.2), (4.3) we can rewrite (3.2) as
£(ou|rU)(r) <e(D) ( /Q ([0, — [von 01% + @b — sol?| dz+ ) (4.4)
—1—/0 /Qg(atv—i—u-vxv)-(v—u) dz dt
1 7 1 7 , , -
—1——/0 /Qg(w xu)-vdedt+ 572/0 /Q {(7’ —0)0H'(r) + V,H'(r) - (rv gu)} dz dt

3

—;/()T/QQVIG‘(V—U.) dz dt.



4.3 Singular terms

Using the relation (1.11) we deduce

_ 1 1 1 p'(0)
Ilz—g/ﬂg(wxu)vdx—g/gg(wxv)udx—E/QQu Vx< @5) dz.
Next,
I = 1/(7’— YO H'(r) /Q+€S '(r)0ys dx
T 22 Jg e/ t
1 / (~ ) [~
:/(@—F&S—Q)(p(r)_p(~9>>8t3dg;—|—/(@+£S—Q)p(~g)at8d$,
€ JQ r 0 € JQ 0

where, in view of the previously established uniform bounds (3.4), (3.5),

L ferea(F0 D)0

0

x| < e(D)e.

Finally,
I;;——/VH’ rv—gu)dx——/gVG(v—u)d

= fpower (B) a5 [

_ 1 <p’(é) _p’(r)> V5 dx_f/ p'(r)
T eJQ r

20 dx

e2Ja\ 0

where we have used that
Vs v =0.

Thus we get

L +1;= 512/9 (p’(@) — p’i?")) ou-V,odr+ — / ( ? — p’(r)) ou-[Vys,0] dz

p'(r)

ou’d,,s du.

Denoting h(z) = ’( ) we get

1 1
L +1; < —f/ R"(8)s*ou - V.0 dv — f/ h'(9)spu- V0o dx
2 Ja e Ja
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p

—/ h'(9)sou - [Vys,0] d 0u 0y, 8 dx—/ W (0)sou’dy,s dx + c¢(D)e
Q

— "e~\ 2 . ~ _ ()~ X _ 1/~ 3
2/ﬂh (0)s“ou -V, 0 dx /Qh (0)sou - [Vps,0] do /ﬂh (0)sou”0yys dx + ¢(D)e.

where we have used (1.11), specifically,

p’(é)a

h'(0)0y4, 08 + s S = 0.

Furthermore,

1 r7 T T
—7/ / R"(0)s*ou - V.0 dz dt — / / h'(9)sou - [Vys,0] de dt —/ / B (8)sou’d,,s dx dt
2Jo Ja 0 Jo 0 Ja

:_;/OT/QVI (W(8)s?) - (ou) du dt = / [ 0(1(@)s*) o do at
o [ [ W@ as -

where the last inequality is guaranteed by the estimate (3.5) and the fact that ¢ is independent of ¢.
Consequently, the relation (4.4) can be written as

< ¢(D)e,

t=T1

& (eu ] 0) (1) < D) ([ [luoe = o 0F + lefl = 5o datws)  (49)

7 B 1 ()
+/O /QQ(@V—I—ue.VzV).(V u) dxdt+€/0/g(g+gs 0L da

4.4 Remaining terms - conclusion

We write the last two integrals in (4.9) as

// (Ov+u-V,v) (v—u) de dt+ - //Q—i-es ()8tsdxdt (4.10)

S/ /Q|u—vl2\vxv] de dt + I + I,
0o Ja

where

Ilz/T/g(@tv+v-VxV)-vdwdt—l—/T/sp(~g)8tsdxdt,
0o Jo o Jo 0
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-1, = // (Opv+v-V,v)- udxdt—i—//g @ s dz.

Next, we observe that

s )
< . . '
L < /0 /QQ(atv +v-V,v)-vdedt +/0 /QS G Oys dz dt + ¢(D)e (4.11)

:/OT{;<§>§5/RZ val? da:h+;< (é)>§t g dxh} dt + ¢(D)e = ¢(D)e,

where we have use the energy balance for (1.12).
Furthermore, using the weak formulation of the momentum equation (2.4), we deduce that

1 ) 1
A [(Qu Xw) ¥ — gp(g)dlvxlll - EQVJCG . \I/] dz dt‘ < ¢(D)el|¥|wreonwrzomxors).  (4.12)

Next, we take
U= (0wv+v-Vv)xXw

and verify by direct calculation using (1.12) that

. 0 1
div, ¥ = — 0yq, and uxw) - ¥V=pu-(Ov+v-V,v). 4.13
(5} izt (mxe)- ¥ =@ MNCRE

Now, employing in (4.12) the definition of I and (1.12), one gets

‘_ Iy +/ / - Qatq— 1(p(@) —p'(0)(0—0) + p(o ))dwz\If 7()° - édivx\lf d:c‘ < ¢(D

where we have used U = [V, (¢, 2;),0], G = G(z3), 0 = o(x3). Consequently, expressing div, ¥ in the
last term at the left hand side by using (4.13), we infer that

|12|_\//l < é>—pf~)]pé@9 20 da ] + (D) (4.14)

Finally, we use again (2.4) to obtain

'~ o
(2) <Qa . Q) div,(0®) do dt| < ec(D)||P||wrecnwr2(o,r)x0) Whenever & = (0,0, ®]. (4.15)
%

Thus, writing

l<§> <pf>> B p'<@~>] = 88 </ l<§> <p(@)> B p/<§~>] o atq) |




we

for

may combine (4.14), (4.15) to obtain the desired estimate
|I5] < ¢(D)e. (4.16)
Going back to (4.9) and exploiting (4.11), (4.16) we conclude that

& (ou| 1, U) (1) < e(D,T) (/Q [[uos — Vo, 0112 + o8 — sof?] da + v + a) (4.17)

any 7 € [0, 7], which is nothing other than (2.9). Theorem 2.1 has been proved.
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