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Abstract. We present a fully computable a posteriori error estimator for
piecewise linear finite element approximations of reaction-diffusion problems
with mixed boundary conditions and piecewise constant reaction coefficient
formulated in arbitrary dimension. The estimator provides a guaranteed upper
bound on the energy norm of the error and it is robust for all values of the
reaction coefficient, including the singularly perturbed case. The approach is
based on robustly equilibrated boundary flux functions [1] and on subsequent
robust and explicit flux reconstruction. This paper simplifies and extends the
applicability of the previous result [2] in three aspects: (i) arbitrary dimension,
(ii) mixed boundary conditions, and (iii) non-constant reaction coefficient. It
is the first robust upper bound on the error with these properties. An auxiliary
result that is of independent interest is the derivation of new explicit constants
for two types of trace inequalities on simplices.

1. Introduction

Consider a linear reaction-diffusion problem in a domain Ω ⊂ R
d with mixed

boundary conditions:

−∆u+ κ2u = f in Ω; u = 0 on ΓD; ∂u/∂n = gN on ΓN, (1)

where n stands for the unit outward normal vector to the boundary ∂Ω. The
dimension d ≥ 2 is chosen arbitrarily. For simplicity we assume Ω to be a
polytope. The portions ΓD and ΓN of the boundary ∂Ω are open, disjoint, and
satisfy ΓD∪ΓN = ∂Ω. The reaction coefficient κ ≥ 0 is considered to be piecewise
constant. In order to guarantee unique solvability of (1), we consider κ > 0 in a
subdomain of Ω of a positive measure or a positive measure of ΓD. We use the
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finite element method to approximate the exact solution u by a piecewise affine
function uh with respect to a simplicial partition Th of Ω.
In this paper we derive a computable a posteriori error estimate based on

robust flux equilibration and explicit flux reconstruction. This error estimate η
provides a guaranteed and fully computable upper bound on the energy norm of
the error |||u− uh||| and it is robust with respect to both κ and the mesh-size h.
A posteriori error estimates are useful for adaptive algorithms, where they play

two roles. Firstly, they indicate where the computational mesh should be refined
or coarsened. Secondly, they provide quantitative information about the size of
the error for reliable stopping criterion. Unfortunately, many existing estimators
do not provide actual numerical bounds that can be used as a stopping criterion.
Adaptive algorithms are convergent [3] provided the error estimates are locally

efficient and reliable. If ηK stand for local error indicators on elements K ∈ Th

and η2 =
∑

K∈Th
η2K is the global error estimator, then the indicators ηK are said

to be locally efficient if there exists a constant c > 0 such that

cηK ≤ |||u− uh|||K̃ ,

where |||u− uh|||K̃ stands for the energy norm restricted to a patch K̃ of elements
consisting of K and neighbouring elements sharing at least one vertex with K.
Similarly, the error estimator η is reliable if there exists a constant C > 0 such
that

|||u− uh||| ≤ Cη.

The error estimate η is robust if the constants c and C are independent of κ and
mesh-size h. The error estimate η is a guaranteed upper bound if |||u − uh||| ≤ η,
i.e. the reliability constant C is equal to one. Finally, the error bound η is fully
computable if it can be evaluated in terms of the approximation uh and given
data without the need for generic (unknown) constants.
A robust, reliable, locally efficient explicit a posteriori error estimate for prob-

lem (1) was first derived by Verfürth in [4]. This estimate, however, does not
provide guaranteed upper bound on the error. An estimator which does provide
an upper bound along with robust local efficiency was obtained by Ainsworth and
Babuška in [5], but this upper bound depends on an exact solution of a Neumann
problem and as noted in [5] is not fully computable. Subsequently in [2] we were
able to develop fully computable error bounds in the two dimensional setting
by a complementarity technique combined with robustly equilibrated fluxes and
explicit flux reconstruction. Here, we develop a simpler flux reconstruction that
is suitable for any dimension d ≥ 2 and is applicable to the case of piecewise
constant coefficient κ including the situation where κ can be very large in some
parts of the domain and vanishingly small in others. Furthermore, we extend the
previous results by considering nonhomogeneous Neumann boundary conditions.
In order to achieve these goals, we develop some new techniques and tools for the
analysis that are of wider applicability than the problem addressed here.
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The question of robust a posteriori error estimates for singularly perturbed
problems is studied by other authors as well. In [6], an error estimate that is
robust with respect to anisotropic meshes is obtained, but unfortunately does
not provide guaranteed upper bound on the error. A robust, locally efficient
and fully computable guaranteed upper bound was obtained in [7] for the finite
volume method and d = 2 and 3. Recently, a robust estimator for the error in
the maximum norm was obtained in [8] for the case d = 1.
The basic idea behind our work can be traced back to the method of the

hypercircle [9] and later to [10, 11, 12]. This approach has been adopted by Repin
[13] and his group for a wide class of problems in conjunction with the solution
of a global minimization problem to compute the error bound. We avoid any
global computations and instead develop local algorithms for guaranteed and fully
computable error bounds based on flux equilibration [5, 14, 15, 16, 17, 18, 19, 20]
etc. In the present work we will utilize the robust flux equilibration from [5].
The rest of the paper is organized as follows. Section 2 defines the finite

element approximation and corresponding assumptions. The core of the paper
lies in Section 3, where we present new trace inequalities on simplices, and develop
two new flux reconstructions both of which are used to derive the a posteriori
error and our main result. Finally, Section 4 provides an illustrative numerical
example and Section 5 draws the conclusions.

2. Model Problem and Its Approximate Solution

The weak formulation of (1) reads: find u ∈ V = {v ∈ H1(Ω) : v = 0 on ΓD}
such that

B(u, v) = F(v) ∀v ∈ V, (2)

where B and F are bilinear and linear forms, respectively, defined on V by

B(u, v) =

∫

Ω

(∇u ·∇v + κ2uv) dx; F(v) =

∫

Ω

fv dx+

∫

ΓN

gNv ds.

In order to discretize problem (1) we consider a family of partitions G = {Th}
of the domain Ω. Each partition Th consists of simplices (elements), their union
is Ω, their interiors are pairwise disjoint, and every facet of each simplex lies
either in ∂Ω or it is completely shared by exactly two neighbouring simplices.
We assume that all partitions in G are compatible the coefficient κ meaning that
κ is a constant κK in any element K of Th for all Th ∈ G.
We denote by hK , xK , ρK , and nK the diameter, the incentre, the inradius

of simplex K, and the unit outward-facing normal vector to the boundary ∂K,
respectively. The family of partitions G is assumed to be regular, i.e. there exists
a constant C > 0 such that

sup
Th∈G

max
K∈Th

hK
ρK

≤ C, (3)
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but is not requested to be quasi-uniform, thereby permitting the use of locally
refined meshes. Throughout the paper we use symbol C for a generic constant
whose value is independent of κ and any mesh-size and whose actual numerical
value can differ in different occurrences. Furthermore, we define

K̃ = int
{⋃

K ′ : K ′ ∩K 6= ∅
}

(4)

to be the patch consisting of K and elements sharing at least one common point
with K.
The regularity assumption implies several facts that we will use in the subse-

quent analysis. Firstly, the number of elements in any patch is uniformly bounded
over the family G as is the number of patches containing a particular element. Sec-

ondly, within each patch K̃, a local quasi-uniformity condition chK ≤ hK′ ≤ ChK
holds for all elements K ′ ⊂ K̃ with uniform constants c > 0 and C > 0 over the
family G. Thirdly, the elements are shape regular meaning that there exists a
positive constant C0 such that

1

C0

ρK ≤ ρK′ ≤ C0ρK (5)

for all elements K ′ ⊂ K̃, all K ∈ Th, and all Th ∈ G.
The coefficient κ is assumed to be piecewise constant, and such that for some

constant C > 0 the following conditions hold for all triangulations Th ∈ G and
all elements K ∈ Th:

if κK 6= 0 then κK′ ≤ CκK for all K ′ ⊂ K̃; (6)

if κK = 0 then κK′ ≤ C for all K ′ ⊂ K̃. (7)

These assumptions rule out the case of arbitrarily high jumps in values κK be-
tween neighbouring elements.
One consequence of assumptions (6)–(7) together with the quasi-uniformity of

hK is existence of a constant C > 0 such that for all Th ∈ G, all K ∈ Th, and all

elements K ′ ⊂ K̃, we have

C−1 min{hK′ , κ−1
K′} ≤ min{hK , κ

−1
K } ≤ Cmin{hK′ , κ−1

K′}. (8)

The quantity min{hK , κ
−1
K } appears extensively throughout the paper, and for

the avoidance of doubt, we note explicitly that

min{hK , κ
−1
K } = hK if κK = 0. (9)

Let Xh be the space of continuous and piecewise affine functions with respect
to the partition Th, and let the subspace Vh = Xh ∩ H

1
0 (Ω). The finite element

approximation uh ∈ Vh of (1) is then given by

B(uh, vh) = F(vh) ∀vh ∈ Vh. (10)
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Finally, we use local counterparts of the bilinear and linear forms defined by

BK(u, v) =

∫

K

(∇u ·∇v + κ2Kuv) dx; FK(v) =

∫

K

fv dx+

∫

ΓN∩∂K

gNv ds.

The associated global and local energy norms ||| · ||| and ||| · |||K are defined by
|||v|||2 = B(v, v) and |||v|||2K = BK(v, v), respectively. Analogously, we use ‖·‖ and
‖·‖K for the L2(Ω) and L2(K) norms, respectively.

3. A Posteriori Error Estimator

3.1. Trace inequalities on simplices. The derivation of complementarity based
error estimates for problems with nonhomogeneous Neumann boundary condi-
tions requires certain types of trace inequalities. Moreover, the constants ap-
pearing in these inequalities are present in the final error bounds. We derive
two new trace inequalities for simplices together with explicit formulas for the
corresponding constants.

Lemma 1. Let K be a d-dimensional non-degenerate simplex and let γ be one of
its facets. Let hK be the diameter of K and κK ≥ 0 a constant. Let v ∈ H1(K)
and let v̄γ denote the average value of v on γ. Then

‖v‖γ ≤ CT|||v|||K for κK > 0, (11)

‖v − v̄γ‖γ ≤ CT|||v|||K , (12)

hold with constants CT, CT > 0 given by

C2
T =

|γ|

|K|

1

d+ 1

1

κK

√
(2hK)2 + (d/κK)2,

C
2

T =
|γ|

|K|

1

d+ 1
min{hK/π, κ

−1
K }

(
2hK + dmin{hK/π, κ

−1
K }
)
.

Proof. Let x0 be the vertex of K opposite to the facet γ. Define ϕ(x) = x− x0

for x ∈ K. Note that nK · ϕ = 0 on ∂K \ γ and n · ϕ = ˜̺K on γ, where nK

is the unit outward normal to ∂K and ˜̺K is the distance between γ and x0, i.e.
the altitude of K. In particular, ˜̺K = (d+ 1)|K|/|γ|.
Let v ∈ H1(K) then

d+ 1

|γ|
|K| ‖v‖2γ =

∫

γ

v2nK ·ϕ ds =

∫

∂K

v2nK ·ϕ ds =

∫

K

div(v2ϕ) dx

= 2

∫

K

vϕ ·∇v dx+

∫

K

v2 divϕ dx ≤ ‖v‖K (2hK ‖∇v‖K + d ‖v‖K) . (13)

Using ‖v‖K ≤ κ−1|||v|||K and 2hK ‖∇v‖K+d ‖v‖K ≤ ((2hK)
2 + (d/κK)

2)
1/2

|||v|||K
in (13), we obtain (11).
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Now, consider v̄γ = |γ|−1
∫
γ
v ds and v̄K = |K|−1

∫
K
v dx. Applying estimate

(13) to v − v̄K yields

‖v − v̄γ‖
2
γ ≤ ‖v − v̄K‖

2
γ ≤

|γ|

|K|

1

d+ 1
‖v − v̄K‖K (2hK ‖∇v‖K + d ‖v − v̄K‖K) .

(14)
The norm ‖v − v̄K‖K can be bounded in either of the two ways:

‖v − v̄K‖K ≤ ‖v‖K ≤ κ−1
K |||v|||K and ‖v − v̄K‖K ≤

hK
π

‖∇v‖K ≤
hK
π

|||v|||K ,

where we use Poincaré inequality [21]. Thus, ‖v − v̄K‖K ≤ min{hK/π, κ
−1
K }|||v|||K .

Using this estimate and inequality ‖∇v‖K ≤ |||v|||K in (14), we derive (12). �

The constants CT and CT from Lemma 1 have the correct asymptotic behaviour
with respect to hK and κK , but they are not optimal in terms of absolute values.
Optimal values for trace constants are not known in general, but their two-sided
bounds can be computed numerically for quite general domains [22].

3.2. General framework. We define ΠK : L2(K) → P
1(K) to be the L2(K)-

orthogonal projector to the space of affine functions defined over an element
K ∈ Th. Similarly, for a facet γ ⊂ ∂K we define Πγ : L2(γ) → P

1(γ) to be the
L2(γ)-orthogonal projector to the space of affine functions defined over the facet
γ ⊂ ∂K. The following generalization of the corresponding result in [2] forms the
basis of our approach:

Lemma 2. Let u ∈ V be the weak solution (2) and uh ∈ V be an arbitrary
function. Further let τ ∈ H(div,Ω) be such that ΠKf + div τ = 0 in those
elements K ∈ Th where κK = 0 and τ · n = ΠγgN on facets γ ⊂ ΓN ∩ ∂K. Then

|||u− uh|||
2 ≤

∑

K∈Th

[
ηK(τ ) + oscK(f) +

∑

γ⊂ΓN∩∂K

oscγ(gN)

]2

where ηK(τ ) ≥ 0, oscK(f), and oscγ(gN) are defined by

η2K(τ ) =

{
‖τ −∇uh‖

2
K + κ−2

K ‖ΠKf − κ2Kuh + div τ‖
2
K if κK > 0,

‖τ −∇uh‖
2
K if κK = 0,

(15)

oscK(f) = min

{
hK
π
,
1

κK

}
‖f − ΠKf‖K ,

oscγ(gN) = min{CT, CT} ‖gN − ΠγgN‖γ .

Proof. Let v ∈ V be arbitrary. Using the weak formulation (2) for u, the fact
that the global forms B and F are sums of the local forms BK and FK , and the
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divergence theorem, we obtain the following identity

B(u− uh, v) =
∑

K∈Th

FK(v)− BK(uh, v) =
∑

K∈Th

[∫

K

(τ −∇uh) ·∇v dx

+

∫

K

(ΠKf − κ2Kuh + div τ )v dx+
∑

γ⊂ΓN∩∂K

∫

γ

(ΠγgN − τ · n)v ds

+

∫

K

(f − ΠKf)v dx+
∑

γ⊂ΓN∩∂K

∫

γ

(gN − ΠγgN)v ds

]
. (16)

Now we estimate the five integrals on the right-hand side of (16). The sum of the
first two integrals is clearly bounded by ηK(τ )|||v|||K for both κK > 0 and κK = 0.
The third integral on the right-hand side of (16) vanishes since τ · n = ΠγgN on
ΓN.
The fourth integral can be estimated as
∫

K

(f − ΠKf)v dx ≤ min

{
hK
π
,
1

κK

}
‖f − ΠKf‖K |||v|||K = oscK(f)|||v|||K ,

where the constant hK/π comes from the Poincaré inequality [21] and 1/κK comes
from the inequality ‖v‖K ≤ κ−1

K |||v|||K , see [2, p. 228] for details. The last integral
in (16) can be bounded in the following two ways:
∫

γ

(gN − ΠγgN)v ds ≤ ‖gN − ΠγgN‖γ ‖v‖γ ,

∫

γ

(gN − ΠγgN)v ds =

∫

γ

(gN − ΠγgN)(v − v̄γ) ds ≤ ‖gN − ΠγgN‖γ ‖v − v̄γ‖γ ,

where v̄γ = |γ|−1
∫
γ
v ds. Employing trace inequalities (11) and (12) we end up

with the estimate ∫

γ

(gN − ΠγgN)v ds ≤ oscγ(gN)|||v|||K .

Hence,

B(u− uh, v) ≤
∑

K∈Th

[
ηK(τ ) + oscK(f) +

∑

γ⊂ΓN∩∂K

oscγ(gN)

]
|||v|||K .

The Cauchy-Schwarz inequality and substitution v = u−uh finishes the proof. �

The vector field τ ∈ H(div,Ω) is referred to as a flux reconstruction and its
specific choice is crucial for the efficiency and robustness of the resulting error
estimators. We reconstruct the flux τ ∈ H(div,Ω) in two steps. Firstly, we find
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boundary fluxes gK satisfying the following conditions:

gK |γ ∈ P
1(γ) for all facets γ ⊂ ∂K, (17)

gK = ΠγgN for all facets γ ⊂ ΓN ∩ ∂K, (18)

gK + gK′ = 0 on facets γ = ∂K ∩ ∂K ′. (19)

Secondly, we locally reconstruct vector fields τK ∈ H(div, K) satisfying bound-
ary conditions τK ·nK = gK on ∂K. The values of τ in the interior of the elements
will be presented in detail below. Irrespective of this, the resulting vector field τ

is defined elementwise by τ |K = τK for all K ∈ Th, so that τ ∈ H(div,Ω) due
to the consistency condition (19).
Conditions (17)–(19) do not determine a unique set of fluxes. The specific

choice of fluxes satisfying (17)–(19) will be crucial to the robustness of the asso-
ciated estimator. We say that boundary fluxes gK are equilibrated with respect
to linear functions if the following condition holds:

∫

K

fθ dx− BK(uh, θ) +

∫

∂K

gKθ ds = 0 ∀θ ∈ P
1(K). (20)

or, equally well,
∫

K

(τ −∇uh) ·∇θ dx+

∫

K

(f − κ2Kuh + div τ )θ dx = 0 ∀θ ∈ P
1(K).

Fluxes satisfying the equilibration (20) yield accurate error bounds for small κ,
but are not robust for large values of κ [5]. Therefore, we will follow the approach
from [5] for large values of κ.

3.3. Robust equilibration of boundary fluxes. A detailed algorithm for the
construction of boundary fluxes gK satisfying conditions (17)–(20) can be found
in [1]. A modification of this approach that is robust for large values of κ is
described in [5] and [2] and we will briefly recall it here.
The idea is to replace the affine functions in (20) by their approximate minimum

energy extensions. Clearly, it suffices to satisfy condition (20) for the barycentric
coordinates θn, n = 1, 2, . . . , d + 1, in K. The approximate minimum energy
extensions θ∗n of θn are defined in [5] for d = 1, 2, and 3 dimensions. Here, we
define them for general d-dimensional simplices.
Consider a simplex K with vertices x1, . . . ,xd+1 and facets γ1, . . . , γd+1 oppo-

site to these vertices. The standard basis functions θn are determined by the
conditions θn(xm) = δnm, n,m ∈ {1, 2, . . . , d + 1}. For each n = 1, 2, . . . , d + 1,
define approximate minimum energy extension θ∗n as follows. If κKρK ≤ 1 then
θ∗n = θn. If κKρK > 1 then define a point xP by its barycentric coordinates
λi(xP ) = δ for i 6= n and λn(xP ) = 1 − dδ with δ = min{1, 1/(κKρK)}/d, and
consider a submesh in K created by simplices Ki = γixP , i = 1, 2, . . . , d + 1.
The approximate minimum energy extension θ∗n is then defined as a piecewise
affine function with respect to this submesh such that θ∗n(xn) = 1, θ∗n(xP ) = 0,
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θ∗3

1

x1

x2
x3

θ∗3

1

x1

x2
x3 xP

Figure 1. A graph of the approximate minimum energy exten-
sion θ∗n for κKρK ≤ 1 (left) and for κKρK > 1 (right).

and θ∗n(xi) = 0 for all i 6= n. A two-dimensional illustration of functions θ∗n is
provided in Figure 1.
It is easy to verify that θ∗n, n ∈ {1, 2, . . . , d+ 1}, satisfy

• θ∗n = θn on the boundary ∂K;
• if κKρK ≤ 1 then θ∗n = θn on K;
• C1h

d−1
K min{hK , 1/κK} ≤ ‖θ∗n‖

2
K ≤ C2h

d−1
K min{hK , 1/κK};

• C1h
d−1
K min{hK , 1/κK}

−1 ≤ ‖∇θ∗n‖
2
K ≤ C2h

d−1
K min{hK , 1/κK}

−1.

These key features of the approximate minimum energy extensions θ∗n were iden-
tified already in [5] and are crucial for the robustness of the resulting fluxes.
The robust flux reconstruction is obtained in [5] by replacing functions θn by

θ∗n in (20) and finding the least squares minimizer of the system. This approach
must be modified to deal with case of variable κ considered here.
In particular we require

FK(θn)− BK(uh, θn) +

∫

∂K\ΓN

gKθn ds = 0 (21)

for all elements K ∈ Th, where κKρK ≤ 1, and for all n = 1, 2, . . . , d + 1. For
elements K ∈ Th, where κKρK > 1, we impose a similar condition in a least-
squares sense:

FK(θ
∗
n)− BK(uh, θ

∗
n) +

∫

∂K\ΓN

gKθ
∗
n ds ≈ 0 ∀n = 1, 2, . . . , d+ 1. (22)

The resulting constrained least-squares problem (21)–(22) can be transformed
into a series of small constrained least-squares problems on patches of elements
corresponding to vertices of Th as follows.
We define the set of vertices N (γ) of a facet γ of a simplex K and functions

ψm
γ ∈ P

1(γ) satisfying
∫
γ
ψm
γ θn ds = δmn. Further, we consider a fixed orientation

σK,γ of facets γ of simplices K ∈ Th. The orientation σK,γ is either 1 or −1 and
satisfies

σK,γ + σK′,γ = 0 on γ = ∂K ∩ ∂K ′.
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Finally, we introduce the average and the jump flux across a common facet of
two neighbouring simplices K and K ′ as
〈
∂uh
∂nK

〉
=

1

2
nK ·(∇uh|K +∇uh|K′) and

[
∂uh
∂nK

]
= nK ·(∇uh|K −∇uh|K′) .

On the boundary ∂Ω we set 〈∂uh/∂nK〉 = ∂uh/∂nK and [∂uh/∂nK ] = 0. The
boundary flux gK on a facet γ of a simplex K is then defined in the form

gK =

〈
∂uh
∂nK

〉
+ σK,γ

∑

m∈N (γ)

αm
γ ψ

m
γ . (23)

Notice that this construction of gK immediately guarantees the consistency con-
dition (19). Furthermore, if γ ⊂ ΓN then the coefficients αm

γ are uniquely deter-
mined by (18).
The substitution (23) transforms the global constrained least-squares problem

(21)–(22) into small local constrained least-squares problems
∑

γ:γ⊂∂K\ΓN,γ∋xn

σK,γα
n
γ = −DK(θn) ∀K ∈ ω(xn),where κKρK ≤ 1, (24)

∑

γ:γ⊂∂K\ΓN,γ∋xn

σK,γα
n
γ ≈ −DK(θ

∗
n) ∀K ∈ ω(xn),where κKρK > 1, (25)

for all vertices xn in the partition Th, where we define ω(xn) = {K ∈ Th : xn ∈
K} to be the set of elements sharing the vertex xn and

DK(θ) = FK(θ)− BK(uh, θ) +

∫

∂K\ΓN

〈
∂uh
∂nK

〉
θ ds.

The summations in (24)–(25) are performed over those facets γ ⊂ ∂K \ ΓN that
contain the vertex xn.
Observe that the system (24)–(25) is always solvable. It was shown in [5]

and [1] that if κKρK ≤ 1 for all elements K ∈ ω(xn) then the linear system
(24) is always solvable. Trivially, removing some (or all) equality constraints
and replacing them by the requirement of least-squares fit (25), preserves the
solvability of the remaining system of linear constraints (24).
To summarize, we require the satisfaction of the exact equilibration condition

(24) for those elements where the coefficient κK is small. For the other ele-
ments we mimic the equilibration by the least-squares fit (25). The resulting
constrained least-squares problem (24)–(25) is always solvable and its solution
depends continuously on the data.

3.4. Auxiliary results. In this section we recall several estimates from [5] and
extend them to include the case of piecewise constant κ and to Neumann bound-
ary conditions. Lemma 5(2) from [5] says that if γ is an interior facet (i.e. shared
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by two elements) then
∥∥∥∥
[
∂uh
∂nK

]∥∥∥∥
γ

≤ C
[
min{hγ, κ

−1
K }−

1

2 |||u− uh|||γ̃ +min{hγ, κ
−1
K }

1

2 ‖f − Πf‖γ̃

]
, (26)

where γ̃ is the pair of elements sharing the facet γ and Πf is defined piecewise
by (Πf)|K = ΠKf for all K ∈ Th. Notice that thanks to the assumption (8)
estimate (26) holds for any K ∈ γ̃.
Further, Lemma 6 from [5] provides the estimate

∥∥∥∥gK −

〈
∂uh
∂nK

〉∥∥∥∥
γ

≤ C
[
min{hγ, κ

−1
K }−

1

2 |||u− uh|||K̃ +min{hγ, κ
−1
K }

1

2 ‖f − Πf‖K̃

]
,

(27)
for all K ∈ Th, where γ is a facet of K that is either interior or it lies on the

Dirichlet boundary ΓD. The patch of elements K̃ was defined in (4) and condition
(8) is needed to generalize the proof from [5] to the case of piecewise constant κ.
The final estimate on page 343 in [5] states that

‖ΠKrh‖K ≤ C
[
min{hK , κ

−1
K }|||u− uh|||K + ‖f − ΠKf‖K

]
, (28)

for all elements K in Th. Here, rh = f − κ2Kuh +∆uh stands for the residual on
K. This bound is local and independent of values of κ in the other elements and
therefore applies to the case considered here.
We emphasize that estimates (26)–(28) are proved in [5] for the case of pure

Dirichlet boundary conditions and constant coefficient κ. However, their proofs
remain valid even in the presence of Neumann boundary conditions and due to
the condition (8) also for piecewise constant κ. Nevertheless, estimate (27) is not
valid for a facet on the Neumann boundary. We use a slight modification of the
proof of Lemma 5(2) from [5] and derive the estimate

‖gK −∇uh|K · nK‖γ ≤ C
[
min{hK , κ

−1
K }−

1

2 |||u− uh|||K

+min{hK , κ
−1
K }

1

2 ‖f − ΠKf‖K + ‖gN − ΠγgN‖γ

]
(29)

for those facets γ of K located on the Neumann boundary ΓN. Thus, defining
R = gK −∇uh|K · nK , using (26), (27), (29) and the fact that

R = gK −

〈
∂uh
∂nK

〉
−

1

2

[
∂uh
∂nK

]

we easily derive the estimate

‖R‖∂K ≤ C
(
min{hK , κ

−1
K }−

1

2 |||u− uh|||K̃

+min{hK , κ
−1
K }

1

2 ‖f − Πf‖K̃ +
∥∥gN − ΠK

γ gN
∥∥
ΓN∩∂K

)
(30)

for all K ∈ Th. In view of notation (9) and thanks to the assumption (7) the
above estimates hold even if κK = 0.



12 MARK AINSWORTH AND TOMÁŠ VEJCHODSKÝ

3.5. Flux reconstruction #1. For each simplex K ∈ Th on which κKρK ≤ 1,
we use a reconstruction of the form

τ
(1)
K = ∇uh|K + τ L

K + τ
Q
K . (31)

The vector field τ L
K is defined as

τ L
K = −

d+1∑

n=1

λn

d+1∑

m=1
m 6=n

R|γm(xn) |∇λm| tnm, (32)

where xn, n = 1, 2, . . . , d+1, stand for vertices of K, γn are the facets opposite to
the vertices xn, λn are the corresponding barycentric coordinates, tmn = xn−xm

denote the edge-vectors from xm to xn, and function R = gK − ∇uh|K · nK is

affine on each facet of K. The quadratic vector field τ
Q
K is given by

τ
Q
K =

1

d+ 1

d+1∑

n=1

d+1∑

m=2
m>n

λmλntmnt
T
mn∇r(xK) (33)

where r = ΠKf − κ2Kuh is affine on K, and xK denotes the centroid of simplex
K.
It can be easily shown that τ L

K ·nK = R and τ
Q
K ·nK = 0 on each facet of K.

Indeed, if we denote the outward normal unit vector to the facet γk by nk then
the following identity holds

τ L
K · nk|γk = −

d+1∑

n=1
n 6=k

λnR|γk(xn) |∇λk| tnk · nk

=
d+1∑

n=1
n 6=k

λnR|γk(xn) tnk ·∇λk =
d+1∑

n=1
n 6=k

λnR|γk(xn) = R|γk ,

where we use the facts that: λk|γk = 0; if n 6= k then tnm · nk = 0 for m 6= k;
nk = −∇λk/|∇λk|; and tnk ·∇λk = 1. Similarly, we show that

τ
Q
K · nk|γk =

1

d+ 1

d+1∑

n=1

d+1∑

m=2
m>n

λm|γkλn|γk(tmn ·∇r(xK))(tmn · nk) = 0,

because if n = k then λn|γk = 0 and if n 6= k then m 6= k and tmn · nk = 0.

Lemma 3. Let K ∈ Th then the vector field τ
(1)
K defined by (31), (32), and (33)

satisfies τ
(1)
K · nK = gK on all facets of K and, if κKρK ≤ 1, then

ΠKf − κ2Kuh + div τ
(1)
K = 0 in K.
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Proof. The first assertion is a consequence of the foregoing arguments. Suppose
κKρK ≤ 1, then since τ L

K has constant divergence over the element K and ∇uh|K
has vanishing divergence over K, we have

div τ L
K =

1

|K|

∫

∂K

τ L
K · nK ds =

1

|K|

∫

∂K

gK ds.

Since κKρK ≤ 1, the exact equilibration condition (21) is satisfied in K for

n = 1, 2, . . . , d + 1 and, consequently, using the fact that
∑d+1

n=1 θn = 1 on K in
(21) we end up with equality

∫

∂K

gK ds = −

∫

K

(f − κ2Kuh) dx = −

∫

K

(ΠKf − κ2Kuh) dx.

Observing that div(λmλntmn) = λm − λn and that

d+1∑

n=1

d+1∑

m=2
m>n

(λm(x)− λn(x)) (xn − xm) = −(d+ 1)(x− xK),

where x =
∑d+1

m=1 xmλm(x) and xK =
∑d+1

m=1 xm/(d + 1), we can compute the

divergence of τQ
K as

div τQ
K(x) =

1

d+ 1

d+1∑

n=1

d+1∑

m=2
m>n

(λm(x)− λn(x))(xn − xm) ·∇r(xK)

= (xK − x) ·∇r(xK).

Using the fact that r = ΠKf − κ2Kuh is affine and the centroid quadrature rule
for simplices that is exact for all linear functions, we obtain

div τQ
K(x) = −r(x) + r(xK) = −r(x) +

1

|K|

∫

K

r dx.

The statement of the lemma follows by summing the above equations. �

The next result shows that τ
(1)
K gives and efficient estimate of the local error

in element K:

Lemma 4. If K ∈ Th is such that κKρK ≤ 1 then

ηK
(
τ
(1)
K

)
≤ C

(
|||u− uh|||K̃ + hK ‖f − Πf‖K̃ + h

1/2
K

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

)
.

Proof. Let

cn =
d+1∑

m=1
m 6=n

R|γm(xn) |∇λm| tnm,
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then τ L
K = −

∑d+1
n=1 λncn and we have

|cn| ≤
d+1∑

m=1
m 6=n

|R|γm(xn)| |∇λm| |tnm| ≤ C

d+1∑

m=1
m 6=n

|R|γm(xn)|,

because d|K||∇λm| = |γm|, |tnm| ≤ hK , and due to the shape regularity assump-
tion (3). Further, thanks to the linearity of R,

d+1∑

n=1
n 6=m

|R|γm(xn)|
2 ≤ C

1

|γm|
‖R‖2γm .

We utilize these results to bound

∥∥τ L
K

∥∥2
K
≤ C|K|

d+1∑

n=1

|cn|
2 ≤ C|K|

d+1∑

m=1

d+1∑

n=1
n 6=m

|R|γm(xn)|
2 ≤ ChK ‖R‖2∂K . (34)

Similarly, we have

∥∥∥τQ
K

∥∥∥
2

K
≤ C

d+1∑

n=1

d+1∑

m=2
m>n

∫

K

λ2mλ
2
n dx|tmn|

4|∇r|2 ≤ Ch4K |K| |∇r|2 ≤ Ch4K ‖∇r‖2K ,

where we used the fact that ∇r is constant over K. Since r ∈ P
1(K), we have

the inverse inequality ‖∇r‖K ≤ Ch−1
K ‖r‖K and we obtain

∥∥∥τQ
K

∥∥∥
K
≤ ChK ‖r‖K = ChK ‖ΠKrh‖K , (35)

because rh = f − κ2Kuh +∆uh and ΠKrh = r on K.
Finally, using estimate (30) in (34) and estimate (28) in (35), we derive

∥∥τ L
K

∥∥
K
≤ C

[
|||u− uh|||K̃ + hK ‖f − Πf‖K̃ + h

1/2
K

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

]
, (36)

∥∥∥τQ
K

∥∥∥
K
≤ C [|||u− uh|||K + hK ‖f − Πf‖K ] . (37)

Notice that the assumption κKρK ≤ 1 and the shape regularity (3) imply the
existence of a constant C > 0 such that ChK ≤ min{hK , κ

−1
K } ≤ hK . Due to

Lemma 3 and definition (15) we have

ηK(τ
(1)
K ) =

∥∥∥τ (1)
K −∇uh

∥∥∥
K
=
∥∥∥τ L

K + τ
Q
K

∥∥∥
K
≤
∥∥τ L

K

∥∥
K
+
∥∥∥τQ

K

∥∥∥
K

and estimates (36)–(37) finish the proof. �
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x1

x2

x3
Kγ

γ

xK

ρK

Figure 2. Division of K into subsimplices Kγ and the local
Cartesian coordinates.

3.6. Flux reconstruction #2. On elements K for which κKρK > 1, we use a
flux reconstruction given by

τ
(2)
K = ∇uh|K + τO

K , (38)

where the vector field τO
K is defined piecewise on each element K in the following

way. We consider d+ 1 subsimplices Kγ of K that are defined as convex hulls of
the incentre xK and facets γ of K. In each subsimplex Kγ we define τO

K to be

τO
K(x) = ρ−1

K (1− κKxd)
+(x− xK)R(x1, . . . , xd−1) in Kγ,

where z+ = (|z| + z)/2 stands for the positive part of z, R = gK −∇uh|K · nK

as before, ρK is the inradius of K, and x = (x1, x2, . . . , xd) are local Cartesian
coordinates defined in such a way that points (x1, . . . , xd−1) lie in the plane of
γ and xd corresponds to the direction perpendicular to γ aiming inwards K, see
Figure 2 for a three-dimensional illustration.
Clearly, τO

K vanishes for xd ≥ κ−1
K . We also observe that the normal component

of τO
K vanishes on ∂Kγ \ γ whilst on γ

τO
K · nK |γ = R(x1, . . . , xd−1),

because xd = 0 on γ and (x− xK) · nK = ρK on γ. These conditions guarantee

that τ
(2)
K ∈ H(div, K) and τ

(2)
K · nK = gK on ∂K. Moreover, the flux leads to a

locally efficient estimator for the error in the case κKρK > 1:

Lemma 5. Let K ∈ Th then τ
(2)
K · nK = gK on ∂K and, if κKρK > 1, then

ηK
(
τ
(2)
K

)
≤ C

(
|||u− uh|||K̃ + κ−1

K ‖f − Πf‖K̃ + κ
−1/2
K

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

)
.

Proof. The first assertion has been shown above. Suppose κKρK > 1, then since
|x− xK | ≤ hK and hK/ρK is bounded uniformly thanks to (3), we obtain

∥∥τO
K

∥∥2
Kγ

≤
h2K
ρ2K

∫ κ−1

K

0

(1− κKxd)
2 dxd ‖R‖

2
γ =

h2K
ρ2K

1

3κK
‖R‖2γ ≤ Cκ−1

K ‖R‖2γ . (39)
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For xd ≤ κ−1
K , a simple computation yields inequality

| div τO
K | ≤ ρ−1

K (1− κKxd)
+ (d|R|+ hK |∇γR|) + ρ−1

K κKhK |R|,

where ∇γ denotes the gradient with respect to x1, . . . , xd−1 only. Consequently,

∥∥div τO
K

∥∥2
Kγ

≤
C

ρ2K

(∫ κ−1

K

0

(1− κKxd)
2 dxd

[
‖R‖2γ + h2K ‖∇γR‖

2
γ

]
+ κKh

2
K ‖R‖2γ

)
.

Since R ∈ P
1(γ), we use the shape regularity and the inverse estimate ‖∇γR‖γ ≤

Ch−1
γ ‖R‖γ to derive

∥∥div τO
K

∥∥2
Kγ

≤
C

ρ2K

1

κK
max{1, κKhK}

2 ‖R‖2γ ≤ CκK ‖R‖2γ , (40)

where the last inequality follows from the shape regularity (3), from (5), and from
the assumption κKρK > 1.
Hence, thanks to (30) and (39):
∥∥∥τ (2)

K −∇uh

∥∥∥
K
=
∥∥τO

K

∥∥
K
≤ Cκ

−1/2
K ‖R‖∂K

≤ C
(
|||u− uh|||K̃ + κ−1

K ‖f − Πf‖K̃ + κ
−1/2
K

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

)
.

Similarly, estimates (40), (28), and (30) yield the bound

κ−1
K

∥∥∥ΠKf − κ2Kuh + div τ
(2)
K

∥∥∥
K
≤ κ−1

K ‖ΠKrh‖K + κ−1
K

∥∥div τO
K

∥∥
K

≤ κ−1
K ‖ΠKrh‖K + Cκ

−1/2
K ‖R‖∂K

≤ C
(
|||u− uh|||K̃ + κ−1

K ‖f − Πf‖K̃ + κ
−1/2
K

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

)
.

Combining these estimates gives the result claimed. �

3.7. Main result. We combine the flux reconstructions τ
(1)
K and τ

(2)
K in a natural

way and construct τ ∈ H(div,Ω) elementwise as

τ |K =
{

τ
(1)
K if κKρK ≤ 1,

τ
(2)
K if κKρK > 1,

(41)

where τ
(1)
K and τ

(2)
K are defined in (31) and (38). The following theorem shows

that the associated error estimator provides a guaranteed upper bound on the
error, which is robust with respect to κ and h.

Theorem 6. Let u be the exact weak solution given by (2) and and uh ∈ Vh be
its finite element approximation (10). Let the flux reconstruction τ ∈ H(div,Ω)
be given by (41). Then the error in uh is bounded by

|||u− uh|||
2 ≤ η2(τ ) =

∑

K∈Th

[ηK(τ ) + oscK(f) + oscΓN∩∂K(gN)]
2 .
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Moreover, there exists a positive constant C, independent of any mesh-size or any
values κK satisfying (6)–(7), such that

ηK(τ ) ≤ C
(
|||u− uh|||K̃ +min{hK , κ

−1
K } ‖f − Πf‖K̃

+min{hK , κ
−1
K }1/2

∥∥gN − ΠK
γ gN

∥∥
ΓN∩∂K

)
.

Proof. It follows immediately from Lemmas 2, 4, and 5. �

In view of convention (9), this result holds even if κK = 0 for any number of
elements K ∈ Th. Theorem 6 provides a robust, computable upper bound, but
it is possible to improve the bound at the expense of having to compute both

ηK(τ
(1)
K ) and ηK(τ

(2)
K ) on every element. The associated flux is defined by

τ ∗|K =
{

τ
(1)
K if κK = 0 or if ηK(τ

(1)
K ) ≤ ηK(τ

(2)
K ),

τ
(2)
K otherwise.

(42)

and the corresponding estimator is given by η(τ ∗), which in turn involves the

local indicator ηK(τ
∗) = min

{
ηK(τ

(1)
K ), ηK(τ

(2)
K )
}
. This flux reconstruction is

slightly more expensive to compute, but it yields more accurate estimator than
τ , because ηK(τ

∗) ≤ ηK(τ ). Clearly, if we replace τ by τ ∗ in Theorem 6, both
its statements remain valid.

4. Numerical example

This section illustrates numerical performance of the a posteriori error estima-
tors η(τ ) and η(τ ∗) for a three dimensional example. In particular, the example
confirms the robustness of both estimators with respect to the discontinuous re-
action coefficient κ and with respect to the mesh size.
We consider problem (1) in a cube Ω = (−1, 1)3, with piecewise constant

coefficient κ defined by

κ(x1, x2, x3) =

{
κ1 for x1 < 0,
κ2 for x1 ≥ 0,

where 0 < κ1 ≤ κ2 are constants. The right-hand side is f = κ21. Homogeneous
Dirichlet boundary conditions are assumed on ΓD = {(x1, x2, x3) ∈ ∂Ω : x1 = ±1}
and homogeneous Neumann boundary conditions are prescribed on ΓN = ∂Ω\ΓD.
Its exact solution can be expressed as

u(x1, x2, x3) =

{
A1e

−κ1x1 + A2e
κ1x1 + 1 for x1 < 0,

A3e
−κ2x1 + A4e

κ2x1 + κ21/κ
2
2 for x1 ≥ 0,

where constants A1, . . . , A4 are uniquely determined by the Dirichlet boundary
conditions and by the requirement of C1 continuity of u(x1, x2, x3) for x1 = 0.
In the subsequent computations we fix κ2 = 106 and hence the solution has a
boundary layer at least in the vicinity of the face x1 = 1. Although the true
solution has a univariate nature, this plays no role in the computations.
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Figure 3. Dependence of |||u− uh|||, η(τ ), and η(τ
∗) on κ1 (left)

and corresponding effectivity indices (right). These results corre-
spond to κ2 = 106 and to a mesh with NDOF = 4335 (M = 16).

We approximate this problem using linear finite elements on uniform tetra-
hedral meshes that are constructed in two steps. First, the cube Ω is uniformly
divided intoM3 subcubes and then each subcube is split into 6 tetrahedrons along
its diagonal. The resulting mesh then has NDOF = (M − 1)(M + 1)2 degrees of
freedom.
Figure 3 presents the results for a fixed mesh (M = 16, NDOF = 4335). The left

panel shows the dependence of the true error |||u− uh||| and the error estimators
η(τ ) and η(τ ∗) as κ1 is varied in the range (0, κ2]. The right panel presents the
effectivity indices Ieff = η/|||u − uh|||. We observe that both estimators provide
upper bound on the error and that they robustly capture the behaviour of the
error in the whole range of values of κ1. Thus, they are independent of the ratio
κ1/κ2 in this case. As expected, the effectivity index for η(τ ∗) is smaller than for
η(τ ). Both indices exhibit values around 2 for small values of κ1 and they are
close to 1 for κ1 ≥ 1000.
Similarly, Figure 4 demonstrates the behaviour of these error estimators and of

the true error with respect to the number of degrees of freedom. In this case we fix
κ1 = 100 and solve the problem on a series of meshes with M = 2, 22, 23, . . . , 27.
We have chosen the most unfavourable value κ1 = 100 for which both error
estimators exhibit the highest overestimation in Figure 3.
As above, the left panel of Figure 4 presents the values of the true error |||u−uh|||

and of the estimators η(τ ) and η(τ ∗), while the right panel shows the effectivity
indices. Again, we verify the upper bound property of the estimators and observe
their robust behaviour with respect to the mesh size. The effectivity indices have
values around 1 and 2 with an exception of the intermediate case, where the mesh
size h is comparable to 1/κ1.
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Figure 4. Dependence of |||u−uh|||, η(τ ), and η(τ
∗) on the num-

ber of degrees of freedom (left) and corresponding effectivity indices
(right). These results were computed on a sequence of uniformly
refined meshes with κ1 = 100 and κ2 = 106.

5. Conclusions

We presented a robust a posteriori error estimator on the energy norm of the
approximation error for a reaction-diffusion problem in arbitrary dimension. The
reaction coefficient κ is assumed to be piecewise constant and mixed Dirichlet-
Neumann boundary conditions are allowed. The estimator is robust with respect
to the reaction coefficient κ, including the singularly perturbed case, and it pro-
vides a computable upper bound on the error. The upper bound is guaranteed
up to round-off errors and quadrature errors in the evaluation of η(τ ).
The approach is suitable for the piecewise linear finite element approximations.

The Galerkin condition (10) is required in order to guarantee the exact equilibra-
tion condition (21) in case of small values of the reaction coefficient κ. On the
other hand, the exact equilibration is not needed for large values of κ and the
presented error estimator can be used for an arbitrary (conforming) approximate
solution uh ∈ V .
Finally, we note that whilst we have assumed conformity of the approximation,

this is not essential. Methodologies derived in [23, 24, 25] could be used to extend
the error bound to any piecewise linear non-conforming approximation.
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