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Abstract. We state necessary and sufficient conditions for weak lower semicontinuity of u 7→∫
Ω
h(x, u(x)) dx where |h(x, s)| ≤ C(1 + |s|p) is continuous and possesses a recession function, and

u ∈ Lp(Ω;Rm), p > 1, lives in the kernel of a constant-rank first-order differential operator A which
admits an extension property. Our newly defined notion coincides for A = curl with quasiconvexity
at the boundary due to J.M. Ball and J. Marsden. Moreover, we give an equivalent condition for
weak lower semicontinuity of the above functional along sequences weakly converging in Lp(Ω;Rm)
and approaching the kernel of A even if A does not have the extension property.
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1 Introduction

In this paper, we investigate the influence of concentration effects generated by sequences {uk}k∈N ⊂
Lp(Ω;Rm), which satisfy a linear differential constraint Auk = 0, or Auk → 0 in W−1,p(Ω;Rd),
1 < p < +∞, where A is a first-order linear differential operator, on weak lower semicontinuity

of integral functionals. To the best of our knowledge, the first such results were proved in [22] for

nonnegative integrands. In this case, the crucial necessary and sufficient condition ensuring this

property is the so-called A-quasiconvexity; cf. (2.5) below. However, if we refrain from considering

only nonnegative integrands, this condition is not necessarily sufficient. A prominent example

is A=curl, i.e., u has a potential. It is well known that the weak lower semicontinuity of I(u) :=∫
Ω h(x, u(x)) dx for |h(x, u)| ≤ C(1+|u|p) (i.e. possibly negative and noncoercive) strongly depends,

besides (Morrey’s) quasiconvexity, also on the behavior of h(·, s) on the boundary of Ω. This

was first observed by N. Meyers [34] and then elaborated more explicitly in [31]. Moreover, it

turns out that for a special case where h(x, ·) possesses a recession function, the precise condition

is its so-called quasiconvexity at the boundary [6, 33]. Namely, if {uk}k∈N ⊂ Lp(Ω;Rm) is a

weakly converging sequence, concentrations of {|uk|p}k∈N ⊂ L1(Ω;Rm) at the boundary of Ω can
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destroy weak lower semicontinuity. We refer to [25, 26] for a thorough analysis of oscillation

and concentration effects in the gradient (curl-free) case. Hence, it is obvious that one should

expect, besides A-quasiconvexity, another condition to guarantee weak lower semicontinuity. Here

we isolate an integral condition which additionally to A-quasiconvexity is necessary and sufficient

for I to be weakly lower semicontinuous along “asymptotically” A-free sequences. It has already

been observed in [19] that concentrations of the sequence at the boundary of the domain are

exactly the reason for possible failure of this property. In comparison with the gradient case,

the A-free setting brings a few subtle features. First of all, we cannot always expect to have a

continuous linear extension operator preserving the A-free property at our disposal even for very

smooth domains. Secondly, having Fourier analysis in its background, the treatment of problems

with differential constraints typically relies on periodic test functions. On the other hand, (point)

concentrations are closely related to sequences with vanishing support and values tending to infinity.

This dilemma is resolved below by allowing for test functions which are in the kernel of the operator

only approximately. As a result we get the condition stated in Definition 3.3 which precisely

describes the behavior of the integrand at the boundary to ensure weak lower semicontinuity.

The price we pay is that our condition is natural (at least as far as necessity is concerned) for

sequences that are A-free only in an asymptotical sense. For a full characterization of weak lower

semicontinuity along genuinely A-free sequences, we were forced to assume the existence of an

A-free extension operator in Lp, and in this case, we end up with a slightly modified condition

given in Definition 3.1. Some links between those two settings are discussed in the final section.

Let us emphasize that variational problems with differential constraints naturally appear in hy-

perelasticity, electromagnetism, or in micromagnetics [13, 38, 39]. The concept of A-quasiconvexity

goes back to [11] and has been proved to be useful as a unified approach to variational problems

with differential constraints. We refer to [9] for results concerning homogenization and to [21] for

weak* lower semicontinuity results for functionals with nonstandard growth. The paper [40] treats

the case of an operator A with nonconstant coefficients and the recent work [2] analyzes lower

semicontinuity of functionals with linearly growing integrands. See also a very recent paper [3]

where generalized Young measures were characterized in the A-free setting. Finally, first results on

A-quasiaffine functions and weak continuity appeared recently in [24].

The plan of the paper is as follows. We first recall some needed definitions and results in

Section 2. Our newly derived conditions which, together with A-quasiconvexity precisely charac-

terize weak lower semicontinuity are studied in Section 3. The main results are summarized in

Theorem 3.8 and Theorem 3.14. After the concluding remarks in the final section, some auxiliary

material is provided in the appendix.
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2 Preliminaries

We recall some measure theory results and set the notation. Let X be a topological space. We

denote by C(X) the space of real-valued continuous functions in X. If X is a locally compact space

then C0(X) denotes the closure of the subspace of C(X) of functions with compact support. By the

Riesz Representation Theorem, the dual space to C0(X), C0(X)′, is isometrically isomorphic with

M(X), the linear space of finite Radon measures supported on X, normed by the total variation.

Moreover, if X is compact then the dual space to C(X), C(X)′, is isometrically isomorphic with

M(X). A positive Radon measure µ ∈M(X) with µ(X) = 1 is called a probability measure. The

n-dimensional Lebesgue measure is denoted Ln.

Unless explicitly stated otherwise, we always work with a bounded domain Ω ⊂ Rn such that

Ln(∂Ω) = 0, equipped with the Euclidean topology and the n-dimensional Lebesgue measure Ln.

Lp(Ω,Rm), 1 ≤ p ≤ +∞, is a standard Lebesgue space. Furthermore, W 1,p(Ω;Rm), 1 ≤ p < +∞,

stands for the usual space of measurable mappings, which together with their first (distributional)

derivatives, are integrable with the p-th power. The closure of C∞0 (Ω;Rm) inW 1,p(Ω;Rm) is denoted

W 1,p
0 (Ω;Rm). If 1 < p < +∞ then W−1,p(Ω;Rm) denotes the dual space to W 1,p′

0 (Ω;Rm), where

p′−1 + p−1 = 1. A sequence {uk}k∈N converges to zero in measure if Ln({x ∈ Ω; uk(x) 6= 0}) → 0

as k →∞.

We say that v ∈ Υp(Rm) if there exists a continuous and positively p-homogeneous function

v∞ : Rm → R, i.e., v∞(ts) = tpv∞(s) for all t ≥ 0 and s ∈ Rm, such that

lim
|s|→∞

v(s)− v∞(s)

|s|p
= 0 . (2.1)

Such a function is called the recession function of v.

2.1 The operator A and A-quasiconvexity

Following [22], we consider linear operators A(i) : Rm → Rd, i = 1, . . . , n, and define A :

Lp(Ω;Rm)→W−1,p(Ω;Rd) by

Au :=

n∑
i=1

A(i) ∂u

∂xi
,where u : Ω→ Rm ,

i.e., for all w ∈W 1,p′

0 (Ω;Rd)

〈Au,w〉 = −
n∑
i=1

∫
Ω
A(i)u(x) · ∂w(x)

∂xi
dx .

For w ∈ Rn we define the linear map

A(w) :=
n∑
i=1

wiA
(i) : Rm → Rd .
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Throughout this article, we assume that there is r ∈ N ∪ {0} such that

rank A(w) = r for all w ∈ Rn , |w| = 1 ,

i.e., A has the so-called constant-rank property.

Below, we use ker A to denote the set of all locally integrable functions u such that Au = 0

in the sense of distributions, i.e.,
∫
u · A∗w dx = 0 for all w ∈ C∞ compactly supported in the

domain, where A∗ is the formal adjoint of A. Of course, this depends on the domain considered,

which should be clear from the context. In particular, a periodic function u in the space

Lp#(Rn;Rm) := {u ∈ Lploc(R
n;Rm) : u is Q-periodic}

is in ker A if and only if Au = 0 on Rn. Here and in the following, Q denotes the unit cube

(−1/2, 1/2)n in Rn, and we say that u : Rn → Rm is Q-periodic if for all x ∈ Rn and all z ∈ Z

u(x+ z) = u(x) .

We will use the following lemmas proved in [22, Lemma 2.14] and [22, Lemma 2.15], respectively.

Lemma 2.1 (projection onto A-free fields in the periodic setting) There is a linear bounded op-

erator T : Lp#(Rn;Rm) → Lp#(Rn;Rm) that vanishes on constant functions, T (T u) = T u for all

u ∈ Lp#(Rn;Rm), and T u ∈ ker A. Moreover, for all u ∈ Lp#(Rn;Rm) with
∫
Q u(x) dx = 0 it holds

that

‖u− T u‖Lp#(Rn;Rm) ≤ C‖Au‖W−1,p
# (Rn;Rd)

,

where C > 0 is a constant independent of u and W−1,p
# denotes the dual of W 1,p′

# ( 1
p′ + 1

p = 1), the

Q-periodic functions in W 1,p′

loc (Rn;Rm) equipped with the norm of W 1,p′(Q;Rm).

Remark 2.2 For every w ∈ W−1,p
# (Rn), we have ‖w‖W−1,p(Q) ≤ ‖w‖W−1,p

# (Rn)
. The converse

inequality does not hold, not even up to a constant. However, Lemma 2.1 is often applied to (a

sequence of) functions supported in a fixed set G ⊂⊂ Q (up to periodicity, of course). One can

always find a constant C = C(Ω, p,G) such that

‖Au‖
W−1,p

# (Rn;Rd)
≤ C‖Au‖W−1,p(Q;Rd) for every u ∈ Lp(Q;Rm) with u = 0 a.e. on Q \G.

To achieve this, the Q-periodic test functions used in the definition of the norm in W−1,p
# can be

multiplied with a fixed cut-off function η ∈ C∞0 (Q; [0, 1]) with η = 1 on G to make them admissible

(i.e., elements of W 1,p′

0 (Q)) for the supremum defining the norm in W−1,p. This enlarges their

norm in W 1,p′ at most by a constant factor which only depends on p and ‖∇η‖L∞(Q) (and thus the

distance of G to ∂Q).
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Lemma 2.3 (Decomposition Lemma) Let Ω ⊂ Rn be bounded and open, 1 < p < +∞, and let

{uk} ⊂ Lp(Ω;Rm) be bounded and such that Auk → 0 in W−1,p(Ω;Rd) strongly, and uk⇀u in

Lp(Ω;Rm) weakly. Then there is a sequence {zk}k∈N ⊂ Lp(Ω;Rm)∩ ker A, {|zk|p} is equiintegrable

in L1(Ω) and uk − zk → 0 in measure in Ω.

We also point out the following simple observation made in the proof of Lemma 2.15 in [22],

which is useful to truncate A-free or “asymptotically” A-free sequences:

Lemma 2.4 Let Ω ⊂ Rn be open and bounded, and let {uk} ⊂ Lp(Ω;Rm) be a bounded sequence

such that Auk → 0 in W−1,p(Ω;Rd) strongly and uk⇀u in Lp(Ω;Rm) weakly. Then for every

η ∈ C∞(Rn), A(ηuk)→ 0 in W−1,p(Ω;Rd).

Proof. A(ηuk) = ηAuk +
∑n

i=1 ukA
(i) ∂η

∂xi
→ 0 in W−1,p, the second term due to the compact

embedding of Lp into W−1,p. 2

Definition 2.5 (see [22, Def. 3.1, 3.2]) We say that a continuous function v : Rm → R, |v| ≤
C(1 + | · |p) for some C > 0, is A-quasiconvex if for all s0 ∈ Rm and all ϕ ∈ Lp#(Q;Rm) ∩ ker A
with

∫
Q ϕ(x) dx = 0 it holds

v(s0) ≤
∫
Q
v(s0 + ϕ(x)) dx .

Besides curl-free fields, admissible examples of A-free mappings include solenoidal fields where

A = div and higher-order gradients whereAu = 0 if and only if u = ∇(s)ϕ for some ϕ ∈W s,p(Ω;R`),
and some s ∈ N (for more details see Subsection 4.3, where s = 2).

2.2 Weak lower semicontinuity

Let I : Lp(Ω;Rm)→ R be defined as

I(u) :=

∫
Ω
h(x, u(x)) dx . (2.2)

We often restrict I to ker A below.

Definition 2.6

(i) We say that a sequence {uk} ∈ Lp(Ω;Rm) is asymptotically A-free if ‖Auk‖W−1,p(Ω;Rm) → 0 as

k →∞.

(ii) A functional I as in (2.2) is called weakly sequentially lower semicontinuous (wslsc) along

asymptotically A-free sequences in Lp(Ω;Rm) if lim infk→∞ I(uk) ≥ I(u) for all such sequences

that weakly converge to some limit u in Lp.
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We have the following result which was proved in [19, Theorem 2.4] in a slightly less general

version. However, its original proof directly extends to this setting.

Theorem 2.7 Let h : Ω̄ × Rm → R be continuous such that h(x, ·) ∈ Υp(Rm) for all x ∈ Ω̄

and h(x, ·) is A-quasiconvex for almost every x ∈ Ω, 1 < p < +∞. Then I is sequentially

weakly lower semicontinuous in Lp(Ω;Rm) ∩ ker A if and only if for any bounded sequence {uk} ⊂
Lp(Ω;Rm) ∩ ker A such that uk → 0 in measure there is

lim inf
k→∞

I(uk) ≥ I(0) . (2.3)

The statement of Theorem 2.7 remains valid if we replace the sequences in kerA with asymptotically

A-free sequences.

Theorem 2.8 With h and p as in Theorem 2.7, I is wslsc along asymptotically A-free sequences

in Lp(Ω;Rm) if and only if (2.3) holds for any bounded, asymptotically A-free sequence {uk} ⊂
Lp(Ω;Rm) such that uk → 0 in measure.

Proof. We only point out the differences to the proof [19, Theorem 2.4]. First, the result there is

stated only for functions h of product form h(x, ξ) = g(x)v(ξ), but as in the case of Theorem 2.7,

it works verbatim also for our slightly more general class. “Only if” is trivial as before. For “if”,

we also rely on splitting a given sequence into a purely oscillating (p-equiintegrable) part and a

purely concentrating part, which is still a straightforward application of the decomposition lemma

(Lemma 2.3). Notice that the purely oscillating part {zk} lives in ker A, even if the sequence we

started with is only asymptotically A-free. The rest of the proof is completely analogous to the

corresponding one in [19]. 2

Remark 2.9

(i) It follows from [19, (5.1)] that (2.3) can be replaced by

lim inf
k→∞

I∞(uk) ≥ I∞(0) = 0, where I∞(u) :=

∫
Ω
h∞(x, (u(x)) dx,

with h∞(x, ·) denoting the recession function of h(x, ·).
(ii) In fact, having an integrand (x, s) 7→ h(x, s) which is A-quasiconvex in the second variable, weak

lower semicontinuity can only fail due to sequences concentrating large values on small sets, and it

even suffices to test that with sequences {uk} which tend to zero in measure and concentrate at the

boundary in the sense that {|uk|p} converges weakly* to a measure σ ∈M(Ω̄) with σ(∂Ω) > 0.
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3 A-quasiconvexity at the boundary

The two conditions introduced below play a crucial role in our characterization of weak lower

semicontinuity of integral functionals. They are typically applied to the recession function h∞ of

an integrand h with p-growth.

Before we state them, we fix some additional notation frequently used in what follows:

Lp0(Ω;Rm) := {u ∈ Lp(Ω;Rm); suppu ⊂ Ω},

Cphom(Rm) := {v ∈ C(Rm); v is positively p-homogeneous}.

A norm in Cphom is given by the supremum norm taken on the unit sphere in Rm. Moreover,

whenever a larger domain comes into play, functions in Lp0(Ω;Rm) are understood to be extended

by zero to Rn \ Ω without changing notation.

Definition 3.1 We say that h∞ ∈ C(Ω̄;Cphom(Rm)) is A-quasiconvex at the boundary (A-qcb) at

x0 ∈ ∂Ω if for every ε > 0 there are δ > 0 and α > 0 such that∫
B(x0,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0 (3.1)

for every u ∈ Lp0(B(x0, δ);Rm) with ‖Au‖W−1,p(Rn;Rd) < α‖u‖Lp(B(x0,δ)∩Ω;Rm).

Remark 3.2 Above, Au is measured in the norm of W−1,p(Rn;Rd), but Rn can be replaced by

any domain Sδ compactly containing B(x0, δ), because for distributions supported on B(x0, δ), the

norms of W−1,p(Rn;Rd) and W−1,p(Sδ;Rd) are equivalent, with constants depending on δ. The

latter is not a problem since α depends on ε and thus may also depend on δ = δ(ε). In particular,

A-qcb can also be defined using the class of all u ∈ Lp0(B(x0,
δ
2);Rm) with ‖Au‖W−1,p(B(x0,δ);Rd) <

α‖u‖Lp(B(x0,δ)∩Ω;Rm).

Due to the fact that the test functions u and Au in Definition 3.1 are required to be defined on

B(x0, δ), a set which is not fully contained in Ω, A-qcb as defined above is only natural if there is an

A-free extension operator on Lp(Ω;Rm), cf. Definition 3.10 below. However, the existence of such

an extension operator may require sufficient smoothness of ∂Ω, and, worse, it strongly depends on

A. For instance, on the one hand, if ∂Ω is of class C1, the extension operators are available for

A = curl and A = div (essentially using a partition of unity and extension by a suitable reflection),

but on the other hand, if we choose A to be the differential operator of the Cauchy–Riemann system

(n = m = 2, identifying C with R2), no such extension operator exists, since holomorphic functions
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with singularities at the boundary of Ω can never be extended to holomorphic functions on a larger

set including the singular point5.

To circumvent this unpleasant dependence on the existence of A-free extensions, we also in-

troduce the following variant of A-qcb, which is not equivalent in general. It turns out that it is

related to weak lower semicontinuity along asymptotically A-free sequences, instead of weak lower

semicontinuity in Lp ∩ ker A:

Definition 3.3 We say that h∞ ∈ C(Ω̄;Cphom(Rm)) is W−1,p-asymptotically A-quasiconvex at the

boundary (aA-qcb) at x0 ∈ ∂Ω if for every ε > 0 there are δ > 0 and α > 0 such that∫
B(x0,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0 (3.2)

for every u ∈ Lp0(B(x0, δ);Rm) with ‖Au‖W−1,p(Ω;Rd) < α‖u‖Lp(Ω;Rm).

Remark 3.4 For the reasons already outlined in Remark 3.2, the class of test functions above

can be replaced by the set of all u ∈ Lp0(B(x0,
δ
2);Rm) such that ‖Au‖W−1,p(Ω∩B(x0,δ);Rd) <

α‖u‖Lp(Ω∩B(x0,δ);Rm).

Notice that the smallness of Au is now measured in the W−1,p-norm on Ω instead of a larger

set as in Definition 3.1. To calculate this norm, we seek the largest possible value of
∫
Rn u · A

∗ϕdx

among all functions ϕ ∈W 1,p′

0 (Ω;Rd) with norm not larger than 1 in that space. In particular, each

admissible ϕ is now required to vanish on ∂Ω. This does make a difference, which can be easily be

checked in a simplified setting: if we let B denote a ball in Rn and D = {x ∈ B|x · ν < 0} the half

ball in B determined by some (arbitrary but fixed) vector ν, then the norms of the dual spaces of

X := W 1,p′

0 (D) and Y := {v ∈ W 1,p′

0 (D) | v = u|D for some u ∈ W 1,p′

0 (B)} are not equivalent on

their mutual subset Lp0(B).

Remark 3.5 In Definition 3.1 as well as in Definition 3.3, if for a given ε > 0 the estimate holds

for some δ > 0, then it also holds for any δ̃ < δ in place of δ. Hence, both A-qcb and aA-qcb are

local properties of h∞ in the x variable, since it suffices to study arbitrarily small neighborhoods of

x0.

We now focus on the link between A-quasiconvexity at the boundary and weak lower semicon-

tinuity. An equivalent variant of aA-qcb and A-qcb is discussed at the end of each subsection,

respectively.

5In terms of integrability, the weakest possible point singularity of an elsewhere holomorphic function locally
behaves like z 7→ 1/z (z ∈ C \ {0}), which is not even in L1(Ω) if 0 ∈ ∂Ω and ∂Ω is smooth in a neighborhood, but
using an appropriately weighted series of singular terms, each with a singularity slightly outside Ω, accumulating at
a boundary point, examples in Lp are possible for arbitrary 1 ≤ p <∞.
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3.1 Asymptotically A-free sequences

Proposition 3.6 Let h∞ ∈ C(Ω̄;Cphom(Rm)). Then I∞(u) :=
∫

Ω h∞(x, u(x)) dx is weakly sequen-

tially lower semicontinuous along asymptotically A-free sequences in Lp(Ω;Rm) if and only if

(i) h∞ is aA-qcb at every x0 ∈ ∂Ω and

(ii) h∞(x, ·) is A-quasiconvex at almost every x ∈ Ω.

Proof. “only if”: We show that aA-qcb at x0 ∈ ∂Ω is a necessary condition; the necessity of (ii)

is well known. Suppose that h∞ is not aA-qcb at x0 ∈ ∂Ω. This means that there is ε > 0 such

that for every k ∈ N there exists uk ∈ Lp0(B(x0,
1
k );Rm) with ‖Au‖W−1,p(Ω;Rd) ≤ 1

k‖uk‖Lp(Ω;Rm) and∫
B(x0,

1
k

)∩Ω
h∞(x, uk(x)) + ε|uk(x)|p dx < 0 .

In particular, uk cannot be the zero function. Denote

ûk := uk/‖uk‖Lp(B(x0,
1
k

)∩Ω;Rm) = uk/‖uk‖Lp(Ω;Rm).

Then ûk ∈ Lp0(Ω;Rm) with ‖ûk‖Lp = 1 and ‖Aûk‖W−1,p(Ω;Rd) ≤ 1/k. In addition, ûk vanishes

outside of B(x0,
1
k ), so that ûk → 0 in measure and weakly in Lp(B(x0, 1);Rm). However,

lim inf
k→∞

∫
Ω
h∞(x, ûk(x)) dx ≤ −ε < 0 =

∫
Ω
h∞(x, 0) dx .

This means that u 7→
∫

Ω h∞(x, u(x)) dx is not lower semicontinuous along {ûk}.
“if”: Let us now prove the sufficiency. Let {uk}k∈N ⊂ Lp(Ω;Rm) be an asymptotically A-free

sequence weakly converging to some u in Lp. As a first step, we assume that in addition, {uk}
is purely concentrating in the sense that uk ⇀ 0 in Lp(Ω;Rm) and Ln({x ∈ Ω; uk(x) 6= 0}) → 0

as k → ∞. It suffices to show that every subsequence of {uk} admits another subsequence along

which I is lower semicontinuous. Using DiPerna-Majda measures as in (A.4) in the Appendix, and

we get that for every δ > 0, up to a subsequence,

lim
k→∞

∫
B(x0,δ)∩Ω

h∞(x, uk(x)) dx

=

∫
B(x0,δ)∩Ω

∫
βSRm\Rm

h∞(x, s)

1 + |s|p
dλx(s)dπ(x)

(3.3)

for some (π, λ) ∈ DMp
S(Ω;Rm).

In the following, we only consider those δ > 0 for which π(∂B(x0, δ)∩ Ω̄) = 0, which is certainly

true for a dense subset. Let {η`}`∈N ⊂ C∞0 (B(x0, δ)) such that 0 ≤ η` ≤ 1 and η` → χB(x0,δ) as

`→∞. Here, χB(x0,δ) is the characteristic function of B(x0, δ) in Rn and x0 ∈ ∂Ω. By Lemma 2.4,

A(η`uk) → 0 in W−1,p(Ω;Rd) as k → ∞, for fixed `. Take ε > 0, x0 ∈ ∂Ω, α, δ > 0 as in
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Definition 3.3 and set wk := η`(k)uk, where `(k) tends to ∞ sufficiently slowly as k → ∞ so that

Awk → 0 in W−1,p(Ω;Rd) and reasoning as in [19, Appendix], using that π(∂B(x0, δ)∩ Ω̄) = 0, we

see that {wk} also generates (π, λ), at least on B(x0, δ)∩Ω. If wk strongly converges to zero in Lp,

0 ≤ lim
k→∞

∫
B(x0,δ)∩Ω

h∞(x,wk(x)) + ε|wk(x)|p dx, (3.4)

by continuity (in that case, we even get equality). Otherwise, a subsequence of {wk} (not relabeled)

is bounded away from zero in Lp, and since Awk → 0 in W−1,p, this implies that ‖Awk‖W−1,p ≤
α‖wk‖Lp , at least for k large enough. Hence, wk is admissible as a test function in (3.2), and we

end up again with (3.4). The right-hand side of (3.4) can be expressed using (A.4):

lim
k→∞

∫
B(x0,δ)∩Ω

h∞(x,wk(x)) + ε|wk(x)|p dx

=

∫
B(x0,δ)∩Ω

∫
βRRm\Rm

h∞(x, s) + ε|s|p

1 + |s|p
dλx(s)dπ(x) .

Hence,

0 ≤ π(B(x0, δ) ∩ Ω)−1

∫
B(x0,δ)∩Ω

∫
βRRm\Rm

h∞(x, s) + ε|s|p

1 + |s|p
dλx(s)dπ(x) .

Therefore, by the Lebesgue-Besicovitch differentiation theorem (see [17], e.g.) and by taking into

account that ε > 0 is arbitrary we get that for π-almost every x0 ∈ ∂Ω

0 ≤
∫
βRRm\Rm

h∞(x0, s)

1 + |s|p
dλx0(s) .

This together with Theorem A.2 and (A.4) implies that the inner integral on the right-hand side of

(3.3) is nonnegative for π-almost every x0 ∈ Ω̄. As a consequence, I∞ is lower semicontinuous along

{uk}, i.e., all purely concentrating sequences. By Theorem 2.8 and Remark 2.9 (ii), we conclude

that u 7→
∫

Ω h(x, u(x)) dx is weakly lower semicontinuous along arbitrary asymptotically A-free

sequences. 2

It is possible to formulate several equivalent variants of the definition of A-quasiconvexity at

the boundary. In particular, the following proposition shows that the first variable of h can be

“frozen” in Definition 3.3.

Proposition 3.7 A function h∞ ∈ C(Ω̄;Cphom(Rm)) is A-qcb at x0 ∈ ∂Ω if and only if for all

ε > 0 there are δ > 0, α > 0 such that for all u ∈ Lp0(B(x0, δ);Rm) with ‖Au‖W−1,p < α‖u‖Lp (all

norms taken on B(x0, δ) ∩ Ω),∫
B(x0,δ)∩Ω

h∞(x0, u(x)) + ε|u(x)|p dx ≥ 0 . (3.5)

10



Proof. Let ε > 0 and recall that if (3.1) holds for some δ > 0 then it holds also for any 0 < δ̃ < δ

in the place of δ. We have∣∣∣∣∣
∫
B(x0,δ)∩Ω

h∞

(
x,

u(x)

|u(x)|

)
|u(x)|p dx−

∫
B(x0,δ)∩Ω

h∞

(
x0,

u(x)

|u(x)|

)
|u(x)|p dx

∣∣∣∣∣
≤
∫
B(x0,δ)∩Ω

µ(|x− x0|, 0)|u(x)|p dx ≤M(δ)

∫
B(x0,δ)∩Ω

|u(x)|p dx ,

where µ : R×R→ R is a continuous modulus of continuity of the continuous function h∞ restricted

to the compact set Ω̄× Sm−1 and M(δ) := max
x∈B(x0,δ)∩Ω

µ(|x− x0|, 0). In particular, M(δ)→ 0

as δ → 0. Hence, if (3.1) holds then we have that∫
B(x0,δ)∩Ω

h∞(x0, u(x)) + (M(δ) + ε)|u(x)|p dx ≥
∫
B(x0,δ)∩Ω

h∞(x, u(x)) + ε|u(x)|p dx ≥ 0 .

This shows that (3.1) implies (3.5). Notice that M(δ)+ε can be made arbitrarily small if δ is small

enough. The converse implication is proved analogously. 2

In view of Remark 2.9, our results obtained so far can be summarized as follows.

Theorem 3.8 Let 1 < p < +∞, and let h : Ω̄ × Rm → R be continuous and such that

h(x, ·) ∈ Υp(Rm) for all x ∈ Ω̄, with recession function h∞ ∈ C(Ω;Cphom). Then I is weakly

lower semicontinuous along asymptotically A-free sequences if and only if

(i) h(x, ·) is A-quasiconvex for almost all x ∈ Ω;

(ii) h∞ is asymptotically A-quasiconvex at the boundary for all x0 ∈ ∂Ω.

From its definition, it is not clear to what extent the notion of aA-qcb depends on the local

shape of ∂Ω near the boundary point under consideration. The proposition below shows that at

least for domains with smooth boundary, the domain enters only via the outer normal to ∂Ω at

this point.

Proposition 3.9 Assume that Ω ⊂ Rn has a C1-boundary in a neighborhood of x0 ∈ ∂Ω. Let νx0

be the outer unit normal to ∂Ω at x0 and

Dx0 := {x ∈ B(0, 1) | x · νx0 < 0}.

Then v ∈ Cphom(Rm) is aA-qcb at x0 if and only if

for every ε > 0 there exists β > 0 such that∫
Dx0

v(ϕ(x)) + ε|ϕ(x)|p dx ≥ 0

for every ϕ ∈ Lp0(B(0, 1
2);Rm) with ‖Aϕ‖W−1,p(Dx0 ;Rd) ≤ β‖ϕ‖Lp(Dx0 ;Rm).

(3.6)
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Proof. Without loss of generality let us assume x0 = 0. We adopt the proof which appeared

already in [31] for the gradient case.

“only if”: Suppose that v is aA-qcb at 0. Take ε > 0 and get α, δ > 0 such that∫
B(0,δ)∩Ω

v(u(x)) + ε|u(x)|p dx ≥ 0 (3.7)

for every u ∈ Lp0(B(0, δ2);Rm) satisfying ‖Au‖W−1,p(B(0,δ)∩Ω;Rd) ≤ α‖u‖Lp(B(0,δ)∩Ω;Rm). Introducing

the scaling Φδ : B(0, δ) 3 x 7→ δ−1x ∈ B(0, 1), the inequality (3.7) can be rewritten as∫
δ−1(Ω∩B(0,δ))

v(y(x′)) + ε|y(x′)|p dx′ ≥ 0 , where y := δn/pu ◦ Φ−1
δ (3.8)

Due to the smoothness of the boundary near zero, there exists a transformation Ψδ : B(0, 1) →
B(0, 1) such that Ψδ(0) = 0, Ψδ(B(0, 1

2)) = B(0, 1
2) and Ψδ(D0) = δ−1(Ω∩B(0, δ)), while both Ψδ

and its inverse Ψ−1
δ converge to the identity in C1(B(0, 1);Rn) as δ → 0. Hence, (3.8) leads to∫

D0

(v(ϕ(z)) + ε|ϕ(z)|p)|detDzΨδ(z)| dz ≥ 0 , (3.9)

where ϕ := y ◦Ψδ and [DzΨδ]ij := ∂Ψδi/∂zj for i, j = 1, . . . , n. Due to the boundedness of v+ε| · |p

and the (uniform) continuity of the transformation Ψδ on the unit sphere, we have the estimate

|(v(ϕ(z)) + ε|ϕ(z)|p)(|detDzΨδ(z)| − 1)| ≤ ε|ϕ(z)|p , (3.10)

for δ > 0 sufficiently small. Incorporating (3.10) into (3.9), we see that∫
D0

(v(ϕ(z)) + 2ε|ϕ(z)|p) dz ≥ 0 .

It remains to find some β = β(ε, δ, α) > 0, such that for any admissible ϕ in (3.6), the asso-

ciated function u = δ
−n
pϕ ◦ Ψ−1

δ ◦ Φδ is admissible as a test function in (3.7), i.e., we need that

‖Aϕ‖W−1,p(D0;Rd) ≤ β‖ϕ‖Lp(D0;Rm) implies that ‖Au‖W−1,p(B(0,δ)∩Ω;Rd) ≤ α‖u‖Lp(B(0,δ)∩Ω;Rm).

We calculate

‖Aϕ ‖
W−1,p

0 (D0;Rd)

= sup
‖w ‖

W
1,p′
0 (D0;Rd)

≤1

n∑
i=1

∫
D0

A(i)ϕ(z) · ∂w(z)

∂zi
dx

= sup
‖w‖≤1

n∑
i=1

∫
Ψδ(D0)

A(i)ϕ(Ψ−1
δ ) · ∂w

∂x′i
(Ψ−1

δ (x′))
∣∣detDΨ−1

δ (x′)
∣∣dx′

= sup
‖w‖≤1

n∑
i=1

∫
1
δ

(B(0,δ)∩Ω)

d∑
j=1

(
A(i)ϕ(Ψ−1

δ (x′))
)
j

(
D
(
w(Ψ−1

δ (x′))
)
·
(
DΨ−1

δ (x′)
)−1
)
j,i

·det|DΨ−1
δ (x′)|dx′.
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Denoting wδ := w ◦Ψ−1
δ , using the function y as in (3.8) and the convergence of Ψ−1

δ to the identity

in C1(B(0, 1);Rn), we get

‖Aϕ ‖
W−1,p

0 (D0;Rd)
≥1

2
sup

‖wδ ‖
W

1,p′
0 (Ψδ(D0);Rd)

≤1

n∑
i=1

∫
1
δ

(B(0,δ)∩Ω)
A(i)y(x′)

∂wδ(x
′)

∂x′i
dx′

=
1

2
sup
‖wδ‖≤1

n∑
i=1

∫
B(0,δ)∩Ω

A(i)y(δ−1x)
∂wδ
∂xi

(δ−1x)dx

=
1

2
sup
‖wδ‖≤1

n∑
i=1

∫
B(0,δ)∩Ω

A(i)
(
δn/pu(x)

)
δ
∂(wδ(δ

−1x))

∂xi
dx

for sufficiently small δ. With ηδ(x) := δ
1− n

p′wδ(δ
−1x) and due to

‖Dηδ ‖Lp′ (B(0,δ)∩Ω;Rd) = ‖Dwδ ‖Lp′ ( 1
δ

(B(0,δ)∩Ω;Rd)

it follows that

‖Aϕ ‖
W−1,p

0 (D0;Rd)
≥1

2
sup

‖ ηδ ‖
W

1,p′
0 (B(0,δ)∩Ω;Rd)

≤1

n∑
i=1

∫
B(0,δ)∩Ω

A(i)u(x) · ∂ηδ(x)

∂xi
δndx

=
1

2
δn‖Au ‖W−1,p(B(0,δ)∩Ω;Rd).

By a similar procedure as above, we compute

‖u‖pLp(B(0,δ)∩Ω;Rm) =

∫
B(0,δ)∩Ω

|u(x)|p dx

=

∫
δ−1(B(0,δ)∩Ω)

|u(Φ−1
δ (x′)|p|detDx′Φ

−1
δ (x′)|dx′ =

∫
δ−1(B(0,δ)∩Ω)

|y(x′)|p dx′

=

∫
D0

|y(Ψδ(z))|p|detDzΨδ(z)|dz ≥
1

2

∫
D0

|ϕ(z)|p dz =
1

2
‖ϕ‖pLp(D0;Rm) .

Hence, due to the assumption that u is A-qcb at 0, we see that

‖Aϕ‖W−1,p(D0;Rd) . ‖Au‖W−1,p(B(0,δ)∩Ω;Rd) . ‖u‖Lp(B(0,δ)∩Ω;Rm) . ‖ϕ‖Lp(D0;Rm).

“if”: The sufficiency of (3.6) for v to be A-qcb at 0 can be shown by analogous computations,

instead of the (uniform) convergence of Ψδ one uses the (uniform) convergence of Ψ−1
δ as δ → 0. 2

3.2 Genuinely A-free sequences

We now focus on weak lower semicontinuity along sequences {uk} that satisfy Auk = 0 for each

k ∈ N. Since a substantial part of the arguments in this context is analogous to the ones in the

preceding subsection, we do not always give full proofs. The main difference is that for the link to

A-quasiconvexity at the boundary (A-qcb) as introduced in Definition 3.1, more precisely, for its

sufficiency, we rely on an extension property:

13



Definition 3.10 (A-free extension domain) We say that Ω is an A-free extension domain if

there exists a larger domain Ω′ with Ω ⊂⊂ Ω′ and an associated A-free extension operator, i.e., a

bounded linear operator E : Lp(Ω;Rm) ∩ ker A → Lp(Ω′;Rm) ∩ ker A such that Eu = u on Ω.

As mentioned before, the existence of an A-free extension operator not only depends on the

smoothness of ∂Ω, but also on A itself. If we are able to extend, especially to a periodic setting,

the projection T of Lemma 2.1 can be used without changing the values of the functional in the

limit due to its uniform continuity on bounded subsets of Lp:

Lemma 3.11 Let h∞ ∈ C(Ω̄;Cphom(Rm)). Then for any pair {uk}, {vk} of bounded sequences in

Lp(Ω;Rm) such that uk − vk → 0 strongly in Lp, h∞(·, uk(·))− h∞(·, vk(·))→ 0 strongly in L1.

Proof. For δ > 0 let

Ak(δ) := {x ∈ Ω : |uk(x)− vk(x)| ≥ δ(|uk(x)|+ |vk(x)|+ 1)}.

Since uk − vk → 0 in Lp, we see that∫
Ak(δ)

(|uk(x)|+ |vk(x)|+ 1)p dx→ 0 as k →∞, for every δ. (3.11)

In addition, h∞ is uniformly continuous on the compact set O×B(0, 1) ⊂ Rn×Rm, with a modulus

of continuity µ, whence∫
Ω\Ak(δ)

|h∞(x, uk)− h∞(x, vk)| dx

=

∫
Ω\Ak(δ)

∣∣∣∣h∞(x, uk
|uk|+ |vk|+ 1

)
− h∞

(
x,

vk
|uk|+ |vk|+ 1

)∣∣∣∣ (|uk(x)|+ |vk(x)|+ 1)p dx

≤
∫

Ω\Ak(δ)
µ(δ)(|uk(x)|+ |vk(x)|+ 1)p dx

≤ µ(δ)C −→
δ→0

0 uniformly in k,

(3.12)

where we also used that {uk} and {vk} are bounded in Lp. Combining (3.11) and (3.12),

‖h∞(·, uk(·)) − h∞(·, vk(·))‖L1 can be made arbitrarily small, first choosing δ small enough and

then k large, depending on δ. 2

Proposition 3.6 can be adapted to the setting of genuinely A-free sequences:

Proposition 3.12 Suppose that Ω is an A-free extension domain and let h∞ ∈ C(Ω̄;Cphom(Rm)).

Then I∞(u) :=
∫

Ω h∞(x, u(x)) dx is weakly sequentially lower semicontinuous along A-free se-

quences in Lp(Ω;Rm) if and only if

(i) h∞ is A-qcb at every x0 ∈ ∂Ω and

(ii) h∞(x, ·) is A-quasiconvex at almost every x ∈ Ω.
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Proof. “only if”: Again, necessity of (ii) is well known. If h∞ is not A-qcb at a point x0 ∈ ∂Ω, as

in the proof of Proposition 3.6 we obtain an ε > 0 and a sequence {ûk} ⊂ Lp0(B(x0,
1
k );Rm) with

‖ûk‖Lp(Ω;Rm) = 1 such that

lim inf
k→∞

∫
Ω
h∞(x, ûk(x)) dx ≤ −ε < 0 =

∫
Ω
h∞(x, 0) dx,

and ‖Aûk‖W−1,p(Rn;Rd) ≤ 1/k. Each ûk can be interpreted as a Q-periodic function û#
k with respect

to a cube Q compactly containing Ω ∪B(x0, 1), by first extending ûk by zero to the rest of Q and

then periodically to Rn. We denote its cell average by

ak :=
1

|Q|

∫
Q
ûk dx.

By Remark 2.2, we infer that ‖Aû#
k ‖W−1,p

# (Rn;Rd)
≤ C/k with a constant C ≥ 0 independent of

k. The projection of Lemma 2.1 now yields the sequence {T û#
k } ⊂ Lp#(Rn;Rm) ∩ ker A, which

satisfies ‖ak + T û#
k − ûk‖Lp(Q;Rm) → 0 as k →∞. Consequently, ak + T û#

k ⇀ 0 weakly in Lp just

like ûk, and due to Lemma 3.11,

lim inf
k→∞

∫
Ω
h∞(x, ak + T û#

k (x)) dx ≤ −ε < 0 =

∫
Ω
h∞(x, 0) dx.

Hence, I∞ is not lower semicontinuous along the A-free sequence {ak + T û#
k }.

“if”: The argument is completely analogous to that of Proposition 3.6, using Theorem 2.7

instead of Theorem 2.8. Observe that due to the extension operator, any given sequence {uk}
along which we want to show lower semicontinuity is defined and A-free on some set Ω′ ⊃⊃ Ω.

Hence, after the truncation argument of Proposition 3.6, we now end up with an admissible test

function for Definition 3.1 (see also Remark 3.2). 2

Exactly as in the case of Definition 3.3, the first variable of h∞ can be “frozen” in Definition 3.1,

and we arrive at the analogous main result:

Proposition 3.13 A function h∞ ∈ C(Ω̄;Cphom(Rm)) is A-qcb at x0 ∈ ∂Ω if and only if for all

ε > 0 there are δ > 0, α > 0 such that for all u ∈ Lp0(B(x0, δ);Rm) with ‖Au‖W−1,p(Rn;Rd) <

α‖u‖Lp(Ω;Rm), ∫
B(x0,δ)∩Ω

h∞(x0, u(x)) + ε|u(x)|p dx ≥ 0 . (3.13)

Theorem 3.14 Let Ω ⊂ Rn be a bounded A-free extension domain, let 1 < p < +∞, and let

h : Ω̄×Rm → R be continuous and such that h(x, ·) ∈ Υp(Rm) for all x ∈ Ω̄, with recession function
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h∞ ∈ C(Ω;Cphom). Then I is sequentially weakly lower semicontinuous along A-free sequences if

and only if

(i) h(x, ·) is A-quasiconvex for almost all x ∈ Ω;

(ii) h∞ is A-quasiconvex at the boundary for all x0 ∈ ∂Ω.

Remark 3.15 In general, the continuity of h∞ in x cannot be dropped in Theorem 3.14. For a

counterexample in the gradient case (A =curl) see [31, Section 4].

Following the proof of Proposition 3.9, we are also able to give an equivalent variant of A-qcb

in the limit as δ → 0.

Proposition 3.16 Assume that Ω ⊂ Rn has a boundary of class C1 in a neighborhood of x0 ∈ ∂Ω.

Let νx0 be the outer unit normal to ∂Ω at x0 and

Dx0 := {x ∈ B(0, 1) | x · νx0 < 0}.

Then v ∈ Cphom(Rm) is A-qcb at x0 if and only if

for every ε > 0 there exists β > 0 such that∫
Dx0

v(ϕ(x)) + ε|ϕ(x)|p dx ≥ 0

for every ϕ ∈ Lp0(B(0, 1
2);Rm) with ‖Aϕ‖W−1,p(B(0,1);Rd) ≤ β‖ϕ‖Lp(Dx0 ;Rm).

(3.14)

Unlike for aA-qcb, it is possible to derive another version with periodic, precisely A-free test

functions and a much more obvious relationship to A-quasiconvexity. It again illustrates the depen-

dence on A-free extension: for the Cauchy–Riemann system, the condition below would be trivial,

because all periodic and thus bounded holomorphic functions on C are constant, and since γ can

be chosen small enough so that |Q\ 1
2Q| > γ

1
p |Q|, ϕ = 0 becomes the only admissible test function.

Proposition 3.17 Let x0 ∈ ∂Ω, assume that ∂Ω is of class C1 in a neighborhood of x0, and define

Q = Q(x0) := {y ∈ Rn | |y · ej | < 1 for j = 1, . . . , n} and Q− := {y ∈ Q | y · e1 < 0}, where

e1, . . . , en of Rn is an orthonormal basis of Rn such that e1 = νx0, the unit outer normal to ∂Ω at

x0. Then v ∈ Cphom(Rm) is A-qcb at x0 if and only if

for every ε > 0, there exists γ > 0 such that∫
Q−

v(ϕ(x)) + ε|ϕ(x)|p dx ≥ 0

for every ϕ ∈ Lp#(Q;Rm) with Aϕ = 0 and ‖ϕ‖Lp(Q\ 1
2
Q;Rm) ≤ γ‖ϕ‖Lp(Q;Rm).

(3.15)
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Proof. “if”: We claim that (3.15) implies (3.14). By p-homogeneity, it suffices to show the integral

inequality in (3.14) for every ϕ ∈ Lp0(B(0, 1
2);Rm) with ‖ϕ‖Lp = 1 and ‖Aϕ‖W−1,p ≤ β, where

β = β(ε) is yet to be chosen. Below, the average of ϕ is denoted by

aϕ :=
1

|Q|

∫
Q
ϕ(x) dx.

By Lemma 2.1 and Remark 2.2, ‖ϕ − aϕ − T ϕ‖Lp(Q;Rm) becomes arbitrarily small, provided that

‖Aϕ‖W−1,p ≤ β is small enough. In view of Lemma 3.11 (uniform continuity of u 7→ v(u) and

u 7→ |u|p, Lp → L1, on bounded sets in Lp), this means that for every ε > 0, there exists a β > 0

such that ∫
Q−

v(ϕ(x)) + ε|ϕ(x)|p dx ≥
∫
Q−

v(aϕ + T ϕ(x)) +
ε

2
|aϕ + T ϕ(x)|p dx,

and due to the inequality in (3.15) with aϕ + T ϕ instead of ϕ, the right-hand side above is non-

negative. Hence, ∫
Dx0

v(ϕ(x)) + ε|ϕ(x)|p dx =

∫
Q−

v(ϕ(x)) + ε|ϕ(x)|p dx ≥ 0.

“only if”: Suppose that (3.14) holds. Let ε > 0, and let ϕ denote an admissible test function for

(3.15), i.e., ϕ ∈ Lp#(Qx0 ;Rm) with Aϕ = 0 and ‖ϕ‖Lp(Q\ 1
2
Q;Rm) ≤ γ‖ϕ‖Lp(Q;Rm), with some γ still

to be chosen. We may also assume that ‖ϕ‖Lp(Q) = 1. Let η ∈ C∞0 (Q; [0, 1]) be a fixed function

such that η = 1 on 1
2Q and η = 0 on Q \ 3

4Q. Observe that ‖ϕ− ηϕ‖Lp(Q;Rm) ≤ 2‖ϕ‖Lp(Q\ 1
2
Q;Rm) ≤

2γ‖ϕ‖Lp(Q;Rm), whence

‖ϕ− ηϕ‖Lp(Q;Rm) ≤ 2γ‖ϕ‖Lp(Q;Rm) ≤
2γ

1− 2γ
‖ηϕ‖Lp(Q;Rm)

In addition, there is a constant C ≥ 0 depending on η and A such that

‖A(ηϕ)‖W−1,p(Q;Rd) ≤ C‖ϕ‖Lp( 3
4
Q\ 1

2
Q;Rm) ≤ Cγ‖ϕ‖Lp(Q;Rm) ≤

Cγ

1− 2γ
‖ηϕ‖Lp(Q;Rm).

Hence, for γ sufficiently small, ηϕ is an admissible test function for (3.14) (which we apply with

ε/2 instead of ε), up to the fact that the support of ηϕ, which is contained in 3
4Q, might be larger

than B(0, 1
2). This, however, can be easily corrected by a change of variables, rescaling by a fixed

factor. Consequently, ∫
Q−x0

v(η(x)ϕ(x)) +
ε

2
|η(x)ϕ(x)|p dx ≥ 0,

and due to the uniform continuity shown in Lemma 3.11, we conclude that for γ small enough,∫
Q−x0

v(ϕ(x)) + ε|ϕ(x)|p dx ≥ 0.

2
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4 Concluding remarks

4.1 A-free versus asymptotically A-free sequences

Clearly, weak lower semicontinuity along asymptotically A-free sequences implies weak sequential

lower semicontinuity for the functional restricted to ker A. We do not know whether or not the

converse is true in general. However, it holds at least in some special cases. More precisely,

it suffices to have an extension property in the following sense. It trivially implies the A-free

extension property mentioned in Definition 3.10 (but the converse is not clear there, either):

Definition 4.1 (asymtotically A-free extensions) We say that Ω has the A-(Lp,W−1,p) ex-

tension property if there exists a domain Λ with Ω̄ ⊂⊂ Λ such that for every u ∈ Lp(Ω;Rm), there

is an extension v ∈ Lp(Λ;Rm) of u which satisfies

‖v‖Lp(Λ;Rm) ≤ C‖u‖Lp(Ω;Rm) and ‖Av‖W−1,p(Λ;Rd) ≤ C‖Au‖W−1,p(Ω;Rd),

where C ≥ 0 is a suitable constant only depending on Λ, Ω, p and A.

If this holds, we can always reduce asymptotically A-free sequences to genuinely A-free se-

quences with arbitrarily small error in Lp. The argument can be sketched as follows: For a given

approximately A-free sequence uk ⇀ u along which we want to show lower semicontinuity, it is

possible to truncate the extension of uk−u, multiplying with a cut-off function which is 1 on Ω and

makes a transition down to zero in Λ\Ω (this cannot be done inside, because uk might concentrate

a lot of mass near the boundary, and cutting off inside could then significantly alter the limit of

the functional along the sequence). The modified sequence is still asymptotically A-free due to

Lemma 2.4, and since it is compactly supported in Λ by construction, we can further extend it

periodically to Rn, with a sufficiently large fundamental cell of periodicity containing the support

of the cut-off function. We thus end up in the periodic setting where we can project onto A-free

fields with controllable error, essentially due to Lemma 2.1.

Even for smooth domains, the A-(Lp,W−1,p) extension property depends on A (and possibly on

p), however; for instance, it holds for A = div on domains of class C1 using local maps and extension

by an appropriate reflection for flat pieces of the boundary, but not for all A. In particular, it fails

to hold for the Cauchy-Riemann system.

Interestingly, the A-(Lp,W−1,p) extension property is unclear for A =curl, at least if n ≥ 3.

For a flat piece of the boundary, the natural extension for curl-free fields would of course also be

by reflection, i.e., the one corresponding to an even extension of the scalar potential across the

boundary (even in direction of the normal), but in this case, the required estimate in W−1,p for the

curl seems to be nontrivial, if true at all. The problem appears for those of components of the curl
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that only contain partial derivatives in tangential directions, precisely the ones that “naturally”

get extended to even functions, say, ∂2u3−∂3u2, if the normal to the boundary (locally) is the first

unit vector.

4.2 The gradient case and classical quasiconvexity at the boundary

If ϕ ∈ ker A then (3.6) as well as (3.14) implies that
∫
Dx0

v(ϕ(x)) dx ≥ 0. For A = curl, the

differential constraint can also be encoded using potentials: If ϕ ∈ Lp and curlϕ = 0 on the simply

connected domain Dx0 , then there exists a potential vector field Φ ∈ W 1,p with ϕ = ∇Φ, and if

ϕ = 0 on Dx0 \B(0, 1
2), then Φ inherits this property up to an appropriate choice of the constants

of integration. Hence, we get that∫
Dx0

v(∇Φ(x)) dx ≥ 0 for every Φ ∈W 1,p
0 (B(0, 1

2);Rm). (4.1)

Taking into account that for p-homogeneous v, v(0) = 0 and Dv(0) = 0, the latter condition is the

so-called quasiconvexity at the boundary [6] (at the zero matrix).

The converse, that is, going back from (4.1) to either (3.6) or (3.14), is not so obvious, however.

In case of (3.14), this is true as a consequence of known characterizations of weak lower semi-

continuity, on the one hand our Proposition 3.12 and the other hand Theorem 1.6 in [31]: Both

results apply to functionals of the form U 7→
∫

Ωx0
η(x)v(∇U(x)) dx, where v is continuous and

p-homogeneous, η ∈ C∞(Rn; [0, 1]) is supported in a small neighborhood of x0 ∈ ∂Ωx0 , and Ωx0 is a

C1-domain chosen in such a way that in a neighborhood of x0 containing the support of η on ∂Ωx0 ,

∂Ox0 is a hyperplane with constant normal νx0 . (A proof directly working with the two conditions

is also possible, although slightly more technical.) As to the question whether (4.1) implies (3.6)

for A = curl, we suspect that at least for n ≥ 3, this is not true in general, but our attempts of

constructing an example of a function v proving this so far did not succeed.

4.3 Examples for the case of higher order derivatives

The following example shows that I(u) :=
∫

Ω det∇2u(x) dx is not weakly lower semicontinuous on

W 2,2(Ω). Consequently, the determinant is not A-qcb for suitably defined A. As to the definition

of A, we recall [22]: The functional I fits into our framework, if instead of ∇2u, we define I on

fields v = (v)ij , 1 ≤ i ≤ j ≤ n, in L2, satisfying Av := curl v = 0, with the understanding that for

each x, v(x) (the upper triangular part of a matrix) is identified with a symmetric matrix in Rn×n

still denoted v, both for the application of the (row-wise) curl and the evaluation of I, where ∇2u

is replaced by v. One can check that Av = 0 if and only if there exists a scalar-valued u ∈ W 2,2

with v = ∇2u, at least as long as the domain is simply connected.
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Example 4.2 Consider Ω := (−1, 1)2 and for F ∈ R2×2 the function v∞(F ) := detF and the

operator A such that Aw = 0 if and only if for some u ∈ W 2,2(Ω), w is the upper (or lower)

triangular part of ∇2u, which takes values in the symmetric matrices; cf. [22, Example 3.10(d)].

Here ∇2u denotes the Hessian matrix of u. Then v∞ is not A-qcb. Indeed, take u ∈ W 2,2
0 (Ω)

extended by zero to the whole R2. Define uk(x) := k−1u(kx). Then uk ⇀ 0 in W 2,2(Ω). We have

that

lim
k→∞

∫
(0,1)×(−1,1)

det∇2uk(x) dx =

∫
(0,1)×(−1,1)

det∇2u(y) dy . (4.2)

Hence, it remains to find u for which the integral on the right-hand side is negative. Let u(x1, x2) :=

f(x1)g(x2) where f, g : [−1, 1] → R are smooth and such that g(±1) = g′(±1) = f(1) = f ′(1) = 0,

f ′(0)f(0) > 0, and g′ does vanish identically. Then∫
(0,1)×(−1,1)

det∇2u(y) dy =

∫
(0,1)×(−1,1)

f(x1)g(x2)f ′′(x1)g′′(x2)− f ′(x1)2g′(x2)2 dx

=

∫
(0,1)×(−1,1)

f ′(x1)2g′(x2)2 dx+ [f ′(x)f(x)]10

∫ 1

−1
g′′(x2)g(x2) dx2

− [g′(x)g(x)]1−1

∫ 1

0
f ′(x)2 dx1 −

∫
(0,1)×(−1,1)

f ′(x1)2g′(x2)2 dx

= −f ′(0)f(0)

∫ 1

−1
g′(x2)2 dx < 0 .

Example 4.3 Consider Ω := B(0, 1) ⊂ R3 and A such that Aw = 0 if and only if w = ∇2u for

some u ∈W 2,2(Ω), and the mapping h(x, F ) := a(x) · (CofF )ν(x), where a ∈ C(Ω̄;R3) is arbitrary

and ν(x) ∈ C(Ω̄) coincides with the outer unit normal to ∂Ω for x ∈ ∂Ω. Notice that by definition of

the Cofactor matrix ((Cof)ij is (−1)i+j times the determinant of the 2× 2 submatrix of F obtained

by erasing the i-th row and j-th column), (Cof∇u(x))ν(x) effectively only depends on directional

derivatives of u in directions perpendicular to ν(x).

For this h, ∫
Ω
h(x,∇2uk(x)) dx→

∫
Ω
h(x,∇2u0(x)) dx

whenever uk ⇀ u0 in W 2,2(Ω).

To see that consider zk := ∇uk for k ∈ N∪{0}. Then {zk} ∈W 1,2(Ω;R3) and the result follows

from[25].
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A Appendix

A.1 DiPerna-Majda measures

Consider a complete (i.e. containing constants, separating points from closed subsets and closed

with respect to the supremum norm), separable (i.e. containing a dense countable subset) ring S
of continuous bounded functions from Rm into R defined as

S :=

{
v0 ∈ C(Rm)

∣∣∣∣ there exist c ∈ R , v0,0 ∈ C0(Rm), and v0,1 ∈ C(Sm−1) s.t.

v0(s) = c+ v0,0(s) + v0,1

(
s

|s|

)
|s|p

1 + |s|p
if s 6= 0 and v0(0) = c+ v0,0(0)

}
,

(A.1)

where Sm−1 denotes the (m − 1)-dimensional unit sphere in Rm. Then βSRm is homeomorphic

to the unit ball B(0, 1) ⊂ Rm via the mapping f : Rm → B(0, 1), f(s) := s/(1 + |s|) for all

s ∈ Rm. Note that f(Rm) is dense in B(0, 1). It is known that there is a one-to-one correspondence

S 7→ βRRm between such ring and a (metrizable) compactification of Rm by the sphere [16]; by

a compactification we mean here a compact set, denoted by βSRm, into which Rm is embedded

homeomorphically and densely. For simplicity, we will not distinguish between Rm and its image

in βSRm.

DiPerna and Majda [14] proved the following theorem:

Theorem A.1 Let Ω be an open domain in Rn with Ln(∂Ω) = 0, and let {yk}k∈N ⊂ Lp(Ω;Rm),

with 1 ≤ p < +∞, be bounded. Then there exists a subsequence (not relabeled), a positive Radon

measure π ∈ M(Ω̄) and a family of probability measures on βSRm λ := {λx}x∈Ω̄ such that for all

h0 ∈ C(Ω̄× βSRm) it holds that

lim
k→∞

∫
Ω
h0(x, yk(x))(1 + |yk(x)|p)dx =

∫
Ω̄

∫
βSRm

h0(x, s)dλx(s)dπ(x) . (A.2)

If (A.2) holds we say that {yk} generates (π, λ) and we denote the set of all such pairs of

measures generated by some sequence in Lp(Ω;Rm) by DMp
S(Ω;Rm).

For any h(x, s) := h0(x, s)(1 + |s|p) with h0 ∈ C(Ω̄× βSRm) then there exists a continuous and

positively p-homogeneous function h∞ : Ω̄× Rm → R, i.e., h∞(x, ts) = tph∞(x, s) for all t ≥ 0, all

x ∈ Ω̄, and s ∈ Rm, such that

lim
|s|→∞

h(x, s)− h∞(x, s)

|s|p
= 0 . (A.3)

It is already mentioned in [19, 33] that if {yk} ⊂ Lp(Ω;Rm) is bounded and Ln({x ∈ Ω; yk(x) 6=
0})→ 0 as k →∞ then (A.2) can be replaced by

lim
k→∞

∫
Ω
h∞(x, yk(x))dx =

∫
Ω̄

∫
βSRm\Rm

h∞(x, s)

1 + |s|p)
dλx(s)dπ(x) , (A.4)
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where (x, s) 7→ h0(x, s) := h∞(x, s)/(1 + |s|p) belongs to C(Ω̄× βSRm).

The following theorem is a direct consequence of [19, Thms. 2.1, 2.2].

Theorem A.2 Let {yk} ⊂ Lp(Ω;Rm) ∩ ker A generates (π, λ) ∈ DMp
S(Ω;Rm) and let yk → 0

in measure. Then for π-almost every x ∈ Ω and all h ∈ C(Ω̄;Cphom(Rm)) such that h(x, ·) is

A-quasiconvex for all x ∈ Ω̄ it holds that

0 ≤
∫
βSRm\Rm

h(x, s)

1 + |s|p
dλx(s) . (A.5)
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