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Abstract. We explore Littlewood-Paley like decompositions of bilinear Fourier
multipliers. Grafakos and Li [5] showed that a bilinear symbol supported in an
angle in the positive quadrant is bounded from Lp×Lq into Lr if its restrictions to
dyadic annuli are bounded bilinear multipliers in the local L2 case (p ≥ 2, q ≥ 2,
r = 1/(p−1+q−1) ≤ 2). We show that this range of indices is sharp and also discuss
similar results for multipliers supported near axis and negative diagonal.

1. Introduction

Littlewood-Paley decomposition is an essential tool in the theory of Fourier multi-
pliers. The function f is decomposed as

f =
∑
i∈Z

∆if,

where the support of ∆̂if is in an annulus Ai of radius 2i. Similar tools are often
used in the theory of the bilinear Fourier multipliers. Bilinear multiplier theorems
have been studied by many authors, following the pioneereing work of Coifman and
Meyer [2]. In contrast with the linear case, the behaviour of the bilinear multiplier
is not invariant with respect to rotations. Therefore the space is decomposed into
dyadic cubes with diameter equivalent to the distance to the origin, and these cubes
are split into diagonal families (|ξ1| ∼ |ξ2|) and families where one variable is dominant
(|ξ1| << |ξ2| or |ξ2| << |ξ1|). Decompositions of this type are used for example in
recent articels by Tomita [8], Mayachi and Tomita [6] etc.

While the Littlewood-Paley decomposition is a key part in proofs of many multi-
plier theorems, Lp boundedness of a multiplier operator Tm on functions supported
in the annuli Ai does not automatically imply the boundedness of Tm on Lp (p 6= 2).
It is surprising that in the case of bilinear multiplier operator Tm : Lp1 × Lp2 → Lp

this is sometimes the case, provided the symbol is supported in the proximity of the
positive diagonal, 2 ≤ p1, p2 ≤ ∞ and 1 ≤ p ≤ 2. This was noted by Grafakos and
Li [5]. Similar theorem was also proved for symbol supported in proximity of the
coordinate axis, but under the additional conditions on the symbol, by Diestel and
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Grafakos [3]. In this article we study range of indices p1 and p2 for positive diagonal,
negative diagonal and axis.

The author would like to thank Loukas Grafakos for his encouragement and helpful
discussions.

2. Results

Let us have m ∈ L∞(R2) and Schwartz functions f, g on R. We define a bilinear
multiplier operator

Tm(f, g)(x) =

∫
R

∫
R
m(ξ, ν)f̂(ξ)ĝ(ν)e2πix(ξ+ν)dξdν.

On the positive diagonal, the following positive result is mostly proved in [5].

Theorem 1. Let 2 ≤ p1, p2 ≤ ∞ and p = (1/p1 +1/p2)
−1 ∈ [1, 2]. Let mj ∈ L∞(R2),

j ∈ Z be supported in [2j, 2j+1]2 and let for any Schwartz functions f, g

‖Tmj
(f, g)‖p ≤ ‖f‖p1‖g‖p2 ,

then
‖
∑
j∈Z

Tmj
(f, g)‖p ≤ C‖f‖p1‖g‖p2 .

The results for axis and negative diagonal case are much weaker, in each case there
is exactly one combination of p1 and p2 such that the theorem is valid.

Theorem 2. Let p1 = 2, p2 = 2 and p = (1/p1 + 1/p2)
−1 = 1 and Mj = [2j, 2j+1]×

[−2j+1,−2−j] or let p1 = 2, p2 = ∞ and p = 2 and Mj = [2j, 2j+1] × [−2j−1, 2j−1].
Let mj ∈ L∞(R2), j ∈ Z be supported in Mj and let for any Schwartz functions f, g

‖Tmj
(f, g)‖p ≤ ‖f‖p1‖g‖p2 ,

then
‖
∑
j∈Z

Tmj
(f, g)‖p ≤ C‖f‖p1‖g‖p2 .

Our main objective is to show that these results are sharp.

Theorem 3. Suppose 1 ≤ p1, p2 ≤ ∞ and p = (1/p1 + 1/p2)
−1 and either p1 < 2 or

p2 < 2 or p ∈ [1/2,∞]\ [1, 2]. Then for any K > 0 there exits m ∈ L∞(R2) supported
in [1, 2]2 such that for any Schwartz functions f, g

‖Tm(f, g)‖p ≤ ‖f‖p1‖g‖p2 ,
and if we denote mj(ξ1, ξ2) = m(2−jξ1, 2

−jξ2), then there exist Schwartz functions
f, g such that

‖T∑
j∈Zmj

(f, g)‖p ≥ K‖f‖p1‖g‖p2 .

Theorem 4. Suppose 1 ≤ p1, p2 ≤ ∞ and p = (1/p1 + 1/p2)
−1 and either p1 6= 2 or

p2 6= 2. Then for any K > 0 there exits m ∈ L∞(R2) supported in [1, 2] × [−2,−1]
such that for any Schwartz functions f, g

‖Tm(f, g)‖p ≤ ‖f‖p1‖g‖p2 ,
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and if we denote mj(ξ1, ξ2) = m(2−jξ1, 2
−jξ2), then there exist Schwartz functions

f, g such that
‖T∑

j∈Zmj
(f, g)‖p ≥ K‖f‖p1‖g‖p2 .

Theorem 5. Suppose 1 ≤ p1, p2 ≤ ∞ and p = (1/p1 + 1/p2)
−1 and either p1 6= 2 or

p2 6=∞. Then for any K > 0 there exits m ∈ L∞(R2) supported in [1, 2]×[−1/2, 1/2]
such that for any Schwartz functions f, g

‖Tm(f, g)‖p ≤ ‖f‖p1‖g‖p2 ,
and if we denote mj(ξ1, ξ2) = m(2−jξ1, 2

−jξ2), then there exist Schwartz functions
f, g such that

‖T∑
j∈Zmj

(f, g)‖p ≥ K‖f‖p1‖g‖p2 .

3. Examples

Here we provide the examples from the Theorems 3, 4 and 5. They all use a similar
principle, and therefore we construct them simultaneously. Let us fix a N ∈ N and

a nonzero Schwartz function ψ with ψ̂ supported in [1/8, 3/8]. We choose M such
that

∫
R\[−M,M ]

|ψ|(x)dx ≤ 1
100N2 and supx∈R\[−M,M ] |ψ|(x) ≤ 1

100N2 . We introduce test

functions

f1(x) =
N∑
n=1

e2πi2
n−1xψ(x),

f2(x) =
N∑
n=1

e2πi2
n−1xψ(x− 2N−n+1M),

f3(x) =
N∑
n=1

e−2πi(2
n−1+ 3

2
)xψ(x),

f4(x) =
N∑
n=1

e−2πi(2
n−1+ 3

2
)xψ(x− 2N−n+1M)

and
f5(x) = e−2πi

x
4ψ(x).

The Lp norms of a lacunary Fourier series on an interval are equivalent for 1 ≤ p <∞,
therefore there is a constant C such that

C−1N1/2 ≤ ‖f1‖p ≤ CN1/2

and
C−1N1/2 ≤ ‖f3‖p ≤ CN1/2.

By the choice of M , we also get

C−1N1/p ≤ ‖f2‖p ≤ CN1/p

and
C−1N1/p ≤ ‖f4‖p ≤ CN1/p

for 1 ≤ p ≤ ∞. (We take 1/∞ = 0.) Obviously ‖f5‖p = ‖ψ‖p.
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Let us take a Schwartz function φ supported in [0, 1/2] with φ(ξ) = 1 for ξ ∈
[1/8, 3/8]. We define symbols

s0(ξ1, ξ2) = φ(ξ1 − 1)φ(ξ2 + 1/4)e2πiM2N ξ1 ,

s1(ξ1, ξ2) = φ(ξ1 − 1)φ(ξ2 + 1/4)e−2πiM2N ξ1e−2πiM2N ξ2 ,

s2(ξ1, ξ2) = φ(ξ1 − 1)φ(ξ2 − 1)e2πiM2N ξ1e2πiM2N ξ2

s3(ξ1, ξ2) = φ(ξ1 − 1)φ(ξ2 − 1)e−2πiM2N ξ1

s4(ξ1, ξ2) = φ(ξ1 − 1)φ(−ξ2 − 1)e2πiM2N ξ1e2πiM2N ξ2 ,

and
s5(ξ1, ξ2) = φ(ξ1 − 1)φ(−ξ2 − 1)e2πiM2N ξ1 .

all of these symbols are tensor products of modulated smooth bumps, therefore their
norms as bilinear multipliers are bounded for any pair 1 ≤ p1, p2 ≤ ∞ and p =
(1/p1 + 1/p2)

−1. For example

Ts2(f, g) = F−1(φ(ξ1 − 1)e2πiM2N ξ1 f̂(ξ1))F−1(φ(ξ2 − 1)e2πiM2N ξ2 ĝ(ξ2)

and for 1 ≤ p1 ≤ ∞
‖F−1(φ(ξ1 − 1)e2πiM2N ξ1 f̂(ξ1))‖p1 ≤ C‖f‖p1

with similar inequality for f2.
Now we construct the example from the Theorem 3, suppose first that 2 < p ≤ ∞.

We set m = s2. Then both p1 > 2 and p2 > 2 and we consider Tm(f2, f2). As

(1) f̂2(ξ) =
N∑
n=1

e−2πiM2N−n+1ξψ̂(ξ − 2n−1),

we see that

T∑
j∈Zmj

(f2, f2)(x) =
∑
j∈Z

Tmj
(f2, f2)(x) =

N∑
n=1

e4πi2
n−1xψ2(x)

and using square function argument we get

‖T∑
j∈Zmj

(f2, f2)‖ ≥ CN1/2.

(This also holds in case p =∞) On the other hand

‖f2‖p1‖f2‖p2 ≤ CN1/p1+1/p2

and as 1/p < 1/2 we can choose K ≈ N1/2−1/p1−1/p2 . Next, suppose p1 < 2. We set
m = s3. We consider Tm(f1, f2). We have

(2) f̂1(ξ) =
N∑
n=1

ψ̂(ξ − 2n−1),

and therefore

T∑
j∈Zmj

(f1, f2)(x) =
∑
j∈Z

Tmj
(f1, f2)(x) =

N∑
n=1

e4πi2
n−1xψ2(x− 2N−n+1M).
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This is a sum of almost separated bumps and therefore

‖T∑
j∈Zmj

(f1, f2)‖p ≥ CN1/p.

On the other hand

‖f1‖p1‖f2‖p2 ≤ CN1/2+1/p2

and we choose K ≈ N1/p−1/2−1/p2 . (Again, if p2 =∞ we take 1/p2 = 0.)
Next we construct the example from the Theorem 4, we first suppose that p ≥ 1,

p1 > 2 and p2 <∞. We set m = s5 and observe that

T∑
j∈Zmj

(f2, f3)(x) = e3πix
N∑
n=1

ψ2(x)

and so

‖T∑
j∈Zmj

(f2, f3)‖p ≥ CN

and we take K ≈ N1−1/p1−1/2. The case p2 > 2, p1 < ∞ follows by symmetry. If
p < 1, we take m = s4 and we get

T∑
j∈Zmj

(f1, f3)(x) = e3πix
N∑
n=1

ψ2(x+ 2N−n+1M).

This gives

‖T∑
j∈Zmj

(f1, f3)‖p ≥ CN1/p

and we take K ≈ N1/p−1/2−1/2. The remaining case p1 = p2 = p =∞ is very similar
to 3, and may be done mirroring the example about the x axis.

Example from the theorem 5 in the case p1 ≥ 2 follows by taking m = s0 and
considering

T∑
j∈Zmj

(f2, f5)(x) =
N∑
n=1

e2πi2
n−1xψ2(x).

We have

‖T∑
j∈Zmj

(f2, f5)‖p ≥ CN1/2

and we may take K = N1/2−1/p1 . If p1 < 2 we take m = s1, consider

T∑
j∈Zmj

(f1, f5)(x) =
N∑
n=1

e2πi2
n−1xψ2(x− 2N−n+1M)

and

‖T∑
j∈Zmj

(f2, f5)‖p ≥ CN1/p.

So we may take K = N1/p−1/2 and we are done.
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4. The positive results

The positive cases are either done by Grafakos and Li in [5] or they are trivial.
For the sake of completness, we are going to sketch a proof here. The proof of the
Theorem 1 relies upon the following lemma from [5].

Lemma 1. Let 2 ≤ p1, p2 < ∞, 1 < p ≤ 2 and 1/p1 + 1/p2 = 1/p Suppose that
{Lk}k∈Z is a family of uniformly bounded bilinear operators from Lp1 × Lp2 into Lp.
Furthermore, suppose that for all functions f, g, h on the line we have

〈Lk(f, g), h〉 = 〈Lk(∆1
kf,∆

2
kg),∆3

kh〉,

Where ∆̂1
kf = f̂χAk

, ∆̂2
kg = ĝχBk

, ∆̂3
kh = ĥχCk

, and {Ak}, {Bk}, {Ck} are sets of
intervals such that the Ak’s being pairwise disjoint, the Bk’s being pairwise disjoint
and the Ck’s being pairwise disjoint. Then there is a constant C = C(p, p1, p2) such
that for all functions f, g we have

‖
∑
k

Lk(f, g)‖p ≤ C‖f‖p1‖g‖p2 .

This Lemma gives proof of the Theorem 1 for 2 ≤ p1, p2 <∞, 1 < p ≤ 2, because
the operators Tmj

clearly satisfy the assumptions. The remaining cases are p1 = ∞
or p2 = ∞ or p = 1. First, if p1 = 2, p2 = ∞ and p = 2, we use the fact that the
Fourier supports of the operators Tmj

are disjoint. We have

‖T∑mj
(f, g)‖22 =

∑
j

‖Tmj
(f, g)‖22 ≤

∑
j

‖f̂χ[2j ,2j+1]‖22‖g‖2∞ ≤ ‖f̂‖22‖g‖2∞.

The case p1 =∞ follows from symmetry. Finally if p = 1, p1 = p2 = 2 we write

‖T∑mj
(f, g)‖1 =

∑
j

‖Tmj
(f, g)‖1 ≤

∑
j

‖f̂χ[2j ,2j+1]‖2‖gχ[2j ,2j+1]‖2 ≤ ‖f‖2‖g‖2.

To prove the Theorem 2, we note that for negative diagonal and p1 = p2 = 2 we
may use exactly the same argument as for the positive diagonal. For the case of the
axis, where we have Mj = [2j, 2j+1]× [−2j−1, 2j−1], we note that the Fourier support
of Tmj

is [2j−1, 2j+1 + 2j−1]. Since these intervals may be organised into three disjoint
systems, we may also repeat the previous argument for p1 = 2, p2 =∞ and p = 2.

5. Notes

While there is no analogy to the Theorem 1 for the linear Fourier multipliers on Lp,
analogous theorem holds for multipliers from Lp to Lq in the case 1 < p ≤ 2 ≤ q <∞,
see for example [4], theorem 5.3.6.

Also, Seeger [7] and Carbery [1] proved that if m is a Lp multiplier on each dyadic
annulus Ai and it satisfies some minimal smoothness estimate, then it is Lr multiplier
for any r such that (|1/2− 1/r| < |1/2− 1/p|.) It is a question if an analogous result
may hold in the bilinear case.
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[8] N. Tomita, Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259
no. 8 (2010), 2028–2044.

Petr Honźık,
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