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Abstract. We give several new results on the recent topic of monotone met-
ric spaces. First, we prove that every 1-monotone metric space in Rd has finite

1-dimensional Hausdorff measure. As a consequence we obtain that each con-
tinuous bounded curve has a finite length if and only if it can be written as

a finite sum of 1-monotone continuous bounded curves. Second, we construct

a continuous function f such that M has a zero Lebesgue measure provided
graph(f |M) is a monotone set in the plane. In the third part a differentiable

function is found with a monotone graph and unbounded variation.

1. Introduction

The concept of monotone metric spaces was introduced in [4] (for more informa-
tion and motivation of this definition see also [6]).

There exists a series of results on the concept of monotone metric spaces. For
instance in [3] a Cantor set in R2 is found such that is not σ-monotone. In [1] it
is proved that for each c > 1 there is a continuous, almost nowhere differentiable
function with a symmetrically c-monotone graph. Consequently, such function has
an unbounded variation. From [8] an interesting result follows. Let X be a compact
metric space of Hausdorff dimension dimH(X). Then for any ε > 0 there exists
a monotone compact subset S ⊂ X with dimH(S) ≥ dimH(X) − ε . Further
information can be found in [2], [5] and [7].

In this paper we are investigating some properties of the concept of monotone
spaces. The paper is organized as follows. Section 2 contains basic notations,
definitions and assertions.

In Section 3 we prove that every 1-monotone bounded subspace of a Euclidean
space has finite length (see Theorem 3.8). Note at this moment that in [1, The-
orem 6.5] it is proved that every real continuous function with 1-monotone graph
has a bounded variation, which is a special case of our result. Moreover, as a con-
sequence we prove that a continuous bounded curve in Rd has a finite length if
and only if it can be expressed as a finite sum of continuous bounded 1-monotone
curves.

Section 4 contains a construction of a continuous function f with small monotone
subgraphs. More precisely, if graph(f |M) is monotone then M is nowhere dense
and has a zero Lebesgue measure. This example improves a known example of a
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function from [1] where M is nowhere dense provided the restriction of the function
to M is monotone.

In Section 5 we give another example of a function. For c > 1 we find a continuous
function defined on [0, 1) with symmetrically c-monotone graph and unbounded
variation such that f ′(0) = 0 and f ∈ C∞(0, 1]. This answers [1, Question 8.4].

2. Notation and definitions

Given d ∈ N denote as usually by Rd the corresponding d-dimensional Euclidean
space. We will use the symbol B(x, r) for open ball with center x and radius r > 0
and |z| will mean the Euclidean norm of z. Let λ(M) stand for the d-dimensional
Lebesgue measure of M ⊂ Rd. Let I ⊂ R be interval and f : I → R be a function.
We denote VI(f) as a variation of the function f on the interval I.

Recall a definition of a monotone and symmetrically monotone metric space.

Definition 2.1. Let c ≥ 1. A metric space (X, ρ) is called c-monotone if there
is an linear ordering ≺ such that for every x, y, z ∈ X with x ≺ y ≺ z we have
ρ(x, y) ≤ cρ(x, z). The space X is then called monotone, if it is c-monotone for
some c.

Definition 2.2. Let c ≥ 1. The metric space (X, ρ) is called symmetrically c-
monotone if there is an linear ordering ≺ such that for every x, y, z ∈ X with
x ≺ y ≺ z we have ρ(x, y) ≤ cρ(x, z) and ρ(z, y) ≤ cρ(z, x).

We say that A = {ai}Ni=1 is (symmetrically) c-monotone sequence if A is (sym-
metrically) c-monotone with respect to the sequence ordering. We say that A =
{ai}Ni=1 is α-separated if |ai−aj | ≥ α, for every i 6= j. Note that if A is 1-monotone
then it is α-separated if and only if |ai − ai+1| ≥ α for every suitable i.

We start with a definition introduced in [1].

Definition 2.3. Let c ≥ 0 and I ⊂ R. We say that a function f : I → R satisfy
condition Pc if for every x, y ∈ I such that f(x) = f(y), we have

sup{|f(t)− f(x)|; t ∈ (x, y)} ≤ c|x− y|.(1)

It can be found in [1] that every continuous function satisfying condition Pc
has symmetrically (c + 1)-monotone graph and also that every c-monotone set is
symmetrically (c+ 1)-monotone.

Lemma 2.4. Let A = {ai}Ni=1 be 1-monotone sequence, then for every 1 ≤ i ≤ j ≤
k ≤ m ≤ N we have

|aj − ak| ≤ 2|ai − am|.

Proof. Since {ai}Ni=1 is 1-monotone and symmetrically 2-monotone we can write

|aj − ak| ≤ |aj − am| ≤ 2|ai − am|.

�

3. Hausdorff measure of 1-monotone spaces

As a main result of this section we prove that each 1-monotone bounded subset
of Rd has a finite 1-dimensional Hausdorff outer measure.
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Observation 3.1. Let d ∈ N. There is a constant 1
2 > Ω(d) > 0 such that for

every z1, ..., zd ∈ Rd \ {0} with the property that∣∣∣∣ zi|zi| · zj|zj |
∣∣∣∣ ≤ Ω(d) for every i, j ∈ {1, ..., d}, i 6= j

we can find a Cartesian system of coordinates ẽ1, ..., ẽd such that

(2) ẽi ·
zi
|zi|
≥ 1− 1

32d2

for every i = 1, ..., d.

We will need for j ∈ N0 some additional notation:

rj :=

(
1− Ω(d)

10

)j
,

ρj := rj − rj+1 =
Ω(d)

10
·
(

1− Ω(d)

10

)j
,

B(x, r, j) := B(x, rjr) \B(x, rj+1r),

κd maximal cardinality of 2ρ0-separated subset of B(x, 1, 0).

Lemma 3.2. Let x ∈ Rd and r > 0. Let A ⊂ B(x, r) be a set with a cardinality n.
Then there is j ∈ N such that card(A ∩B(x, r, j)) ≥ ρj(n− 1).

Proof. We set ck = card(A ∩B(x, r, k)) for every k ≥ 0. Clearly,
⋃∞
k=0B(x, r, k) =

B(x, r) \ {x}. Thus, we have
∑∞
k=0 ck = card(A ∩ B(x, r) \ {x}) ≥ n − 1. So, we

have
∞∑
k=0

ρk
ck
ρk
≥ n− 1.(3)

Clearly,
∑∞
k=0 ρk = 1. Using this and formula (3) we have that there exists j ∈ N0

such that
cj
ρj
≥ n− 1. So, we are done. �

Lemma 3.3. Let x ∈ Rd, j ∈ N0 and r > 0. Let A ⊂ B(x, r, j) be a set with
cardinality n. Then there is an y ∈ A such that

card(A ∩B(y, 2rρj)) ≥
n

κd
.

Proof. We can assume x = 0. Let C be some maximal 2rρj-separated subset of A.
Then { y

rjr
; y ∈ C} is 2ρ0-separated subset of B(x, 1, 0). Thus, card(C) ≤ κd. By

the maximality of C we have
⋃
y∈C A ∩ B(y, 2rρj) = A. Thus, there exists y ∈ C

such that

card(A ∩B(y, 2rρj)) ≥
card(A)

card(C)
≥ n

κd
and we are done. �

Definition 3.4. Let x, y ∈ Rd. Define C(x, y), D(x, y) ⊂ Rd by formulas

C(x, y) :=

{
z ∈ Rd :

z − y
|z − y|

· x− y
|x− y|

≤ −Ω(d)

2

}
.

D(x, y) :=

{
z ∈ Rd :

z − y
|z − y|

· x− y
|x− y|

> −Ω(d)

2
and |x− y| ≤ |x− z|

}
.
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Lemma 3.5. Suppose that w1, ..., wn ∈ Rd and A := {ai}li=n+1 ⊂ Rd. Put aj = wj,

j = 1, .., n and suppose that the sequence {ai}li=1 is 1-monotone. Then there are
γ ∈ N0 and indices

(4) n+ 1 = i(0,+) ≤ i(1,−) ≤ · · · ≤ i(γ,−) ≤ i(γ,+) ≤ i(γ + 1,−) = l

such that for every m = 1, ..., γ

(5) if i(m,−) ≤ k < i(m,+) then ak+1 ∈
⋃
j

C(wj , ak),

and for every m = 0, ..., γ

(6) if i(m,+) ≤ k < i(m+ 1,−) then ak ∈
⋂
j

D(wj , ai(m,+)),

and

(7) if m < γ then ai(m+1,−) ∈
⋃
j

C(wj , ai(m,+)).

Proof. Since ak is 1-monotone we can easily see that either ak+1 ∈
⋃
j C(wj , ak) or

ak+1 ∈
⋂
j D(wj , ak). Now, the proof can be done by straightforward induction. �

Lemma 3.6. Suppose that w1, ..., wn ∈ Rd and A := {ai}li=n+1 ⊂ Rd. Put aj = wj,

j = 1, .., n and suppose that the sequence {ai}li=1 is α-separated 1-monotone. Pick
{bi}Li=0 be a subsequence of {ai}li=n+1. Suppose that bk+1 ∈

⋃
i C(wi, bk) for every

0 ≤ k < L. Then for every k there is some ik such that

|bk+1 − wik | − |bk − wik | >
αΩ(d)

2
.

In particular, there is some i such that

|bL − wi| − |b0 − wi| >
αΩ(d)

2n
L.

Proof. The first inequality is a simple geometric fact. To see the second one set

Wi = {k ∈ {0, . . . , L− 1}; ik = i}
for every i = 1, . . . , n. Clearly there is a j such that card(Wj) ≥ L

n . Now, by
1-monotonicity we have

|bL − wj | − |b0 − wj | =
L−1∑
k=0

|bk − wj | − |bk − wj |

≥
∑
k∈Wj

|bk − wj | − |bk − wj | > card(Wj)
αΩ(d)

2
≥ αΩ(d)L

2n
.

�

Lemma 3.7. Suppose that {ai}li=0 be an α-separated 1-monotone sequence. Choose
N,M, p1, ..., pd ∈ {1, ..., l} such that p1 < p2 < ... < pd < N < M. Suppose that

2
Ω(d) |ak − aN | ≤ |api − aN | for every N < k ≤M and every i = 1, ..., d.

Assume that for every N ≤ k ≤M and every i, j ∈ {1, ..., d}, i 6= j,

(8)

∣∣∣∣ api − ak|api − ak|
·
apj − ak
|apj − ak|

∣∣∣∣ ≤ Ω(d).

Then for every N ≤ k < M there is some i such that |ak+1−api |−|ak−api | > α
6d .
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In particular, there is some i such that |aM − api | − |aN − api | >
α(M−N)

6d2 .

Proof. Using Observation 3.1 we can can find unit vectors ẽi with

(9) cos(γi) = ẽi ·
api
|api |

≥ 1− 1

32d2
,

where γi is the angle between api and ẽi.

Take an arbitrary N ≤ k < M and consider x =
∑d
j=1 xj ẽj = ak and y =∑d

j=1 yj ẽj = ak+1. Without any loss of generality we can suppose that ak = 0.

First observe that there is some i with |yi| ≥ |y|d . Without any loss of generality we
can suppose that i = 1.

The fact above with the help of the monotonicity of {ai} means that

cos(β) =
y

|y|
· ẽ1 ≤ −

1

d
,

where β is the angle between y and ẽ1.
Let ∆ be an angle between y and ap1 , then

y

|y|
· ap1
|ap1 |

= cos(∆) ≤ cos(β) cos(γ1) + | sin(β) sin(γ1)|

≤ − 1

d
+

1

32d3
+ | sin(γ1)| ≤ − 1

2d
+
√

1− cos2(γ1)

≤− 1

2d
+

√
1− (1− 1

32d2
)2 = − 1

2d
+

√
1

16d2
− 1

1024d4

≤− 1

2d
+

1

4d
= − 1

4d
.

Now, with use of the cosine formula for triangle with vertices ap1 , 0 and y we
obtain

|y − ap1 | − |ap1 | =
|y|2 − 2|y| · |ap1 | · cos(∆)

|ap1 |+ |y − ap1 |

≥|y|
(

|y|
|ap1 |+ |y − ap1 |

+
2|ap1 |

4d(|ap1 |+ |y − ap1 |)

)
≥|y|

2d
· |ap1 |
|ap1 |+ |y − ap1 |

≥ |y|
6d
≥ α

6d
.

The last part of the statement of this Lemma is now straight forward application
of the pigeonhole principle. �

Theorem 3.8. Let 1 > α > 0. For every d ∈ N there is a constant Λ(d) such
that every α-separated 1-monotone sequence {ai}Ki=0 in B(0, 1) ⊂ Rd with a0 = 0
we have αK ≤ Λ(d). In particular, every bounded 1-monotone set in Rd has finite
1-dimensional (outer) Hausdorff measure.

Proof. We first prove the last part of the theorem. Suppose that Γ ⊂ B(0, 1
2 ) ⊂ Rd

is 1-monotone. Choose 1 > α > 0 and suppose that {Γαi }Ni=1 is a maximal α-
separated subset of Γ and 1-monotone sequence. Then

Γ ⊂
⋃
i

B(Γαi , α)
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and {Γαi − Γα1 }Ni=1 ⊂ B(0, 1). By the first part of the theorem we have α(N − 1) ≤
Λ(d). Thus∑

i

diamB(Γαi , α) ≤ 2αN ≤ 2α · Λ(d) + α

α
= 2Λ(d) + 2α ≤ 2Λ(d) + 2.

Therefore H1(Γ) ≤ 2Λ(d) + 2.
Suppose that there is an α-separated 1-monotone sequence {ai}Ki=0, with K

greater than 6d2

α ·
(
dκd

Ω(d)

)d · ( 100
Ω(d)

)d
. Using a mathematical induction we will con-

struct indices pi, Ni,Mi, i = 1, ..., d such that the following conditions hold for
every 1 ≤ k ≤ d:

(a) Nk−1 ≤ pk < Nk < Mk ≤ Mk−1, (for sake of completeness we put N0 = 0,
M0 = K)

(b) 2
Ω(d) |al − aMk

| ≤ |api − aNk
| for every Nk ≤ l ≤Mk and every i = 1, ..., k,

(c) ∣∣∣∣ api − al|api − al|
·
apj − al
|apj − al|

∣∣∣∣ ≤ Ω(d)

for every i, j ∈ {1, ..., k}, i 6= j and every Nk ≤ l ≤Mk,

(d)
(
dκd

Ω(d)

)d−k
·
(

100
Ω(d)

)d−k
|aMk

− aNk
| ≤ α

6d2 (Mk −Nk).

(e) 10 ≤Mk −Nk.

Case k = 1 : Put p1 = 0.
Using Lemma 3.2 for A = {ai}M0

i=N0
, x = aN0

and r = |aM0
− aN0

| we obtain
that there is some q ∈ N0 such that

card(A ∩B(aN0
, |aM0

− aN0
|, q)) ≥ 6d2

α

(
dκd
Ω(d)

)d(
100

Ω(d)

)d
ρq.

Since {ai} is 1-monotone we we can find such indices N ′0 ≤ M ′0 that {ai}
M ′1
i=N ′1

=

A ∩B(aN0 , |aM0 − aN0 |, q).
Then using Lemma 3.3 we can find some s, N ′1 ≤ s ≤M ′1, such that

card(B(as, 2|aM0
− aN0

|ρq) ∩ {ai}
M ′1
i=N ′1

)

≥ 6d2

α

(
d

Ω(d)

)d
κd−1
d

(
100

Ω(d)

)d
ρq.

(10)

Now, let N1 be the first index for which aN1 ∈ B(as, 2|aM0 − aN0 |ρq)∩ {ai}
M ′1
i=N ′1

and M1 be the last index for which aM1 ∈ B(as, 2|aM0 − aN0 |ρq)∩ {ai}
M ′1
i=N ′1

. Then

{ai}M1

i=N1
⊂ B(aM1 , 4|aM0 − aN0 |ρq).(11)

To prove (e) note that

(12)

M1 −N1 + 1 ≥ card(B(as, 2|aM0 − aN0 |ρq) ∩ {ai}
M ′1
i=N ′1

)

(10)

≥ 6d2

α

(
dκd
Ω(d)

)d−1(
100

Ω(d)

)d
ρq ≥

60

α
rq ≥ 11

Where the last inequality follows from

α ≤ |aN0
− aN0+1| ≤ rq|aM0

− aN0
| ≤ rq.(13)
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Condition (a) is easy, we only need to verify N1 < M1, which follows from (e). To
prove (b) observe that aN1

∈ B(aN0
, |aM0

− aN0
|, q) and by (11) we have for every

N1 ≤ j ≤M1

(14)
2

Ω(d)
|aj − aM1

| ≤ 8

Ω(d)
ρq|aM0

− aN0
| ≤ rq+1|aM0

− aN0
| ≤ |aN1

− ap1 |.

Condition (c) is empty in this case. Using (e) and (10) we obtain

M1 −N1 ≥
10

11
· (M1 −N1 + 1)

≥10

11
· card(B(as, 2|aM0 − aN0 |ρq) ∩ {ai}

M ′1
i=N ′1

)

(10)

≥ 10

11
· 6d2

α
·
(

d

Ω(d)

)d
κd−1
d

(
100

Ω(d)

)d
ρq

(11)

≥ 10

11
· 6d2

α
·
(
dκd
Ω(d)

)d−1(
100

Ω(d)

)d |aM1
− aN1

|
4|aM0

− aN0
|

≥6d2

α
·
(
dκd
Ω(d)

)d−1(
100

Ω(d)

)d−1

|aM1 − aN1 |

(15)

which proves (d).
Induction step. Suppose that pi, Ni,Mi, i = 1, ..., k are already constructed for

some k < d we will now show how to construct pk+1, Nk+1,Mk+1.

Using Lemma 3.5 for wj = apj and the sequence A = {ai}Mk

i=Nk
we can find

indices

(16) Nk = i(0,+) ≤ i(1,−) ≤ · · · ≤ i(γ,−) ≤ i(γ,+) ≤ i(γ + 1,−) = Mk

such that (5), (6) and (7) hold.
Consider

V := {Nk ≤ i < Mk : i(β,−) ≤ i ≤ i(β,+), β = 1, ..., γ}.

Define W = {Nk+1, ...,Mk−1}\V. Using Lemma 3.6 for bi being the subsequence
obtained by restricting A to V and wj = apj we obtain that either card(V ) ≤ 1 or
there is some i such that

card(V ) ≤2(card(V )− 1)

≤ 4k

αΩ(d)
· (|amaxV − api | − |aminV − api |)

≤ 4k

αΩ(d)
· (|aMk

− api | − |aNk
− api |)

≤ 4k

αΩ(d)
· |aMk

− aNk
|

(d)

≤ 4kα(Ω(d))d−k

6d2αΩ(d)(dκd)d−k
(

100
Ω(d)

)d−k · (Mk −Nk)

≤ (Mk −Nk)

10
.
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This and (e) from the induction step imply that card(W ) ≥ 8(Mk−Nk)
10 . Clearly, we

can find

Nk ≤ ι(0,−) < ι(0,+) ≤ ι(1,−) < ... < ι(Υ− 1,+) ≤ ι(Υ,−) < ι(Υ,+) ≤Mk.

such that

W =

Υ⋃
s=0

{i; ι(s,−) < i < ι(s,+)}

and ι(s,−) < ι(s,+)− 1 for every s = 0, . . . ,Υ.
Now, we will prove that there is an index 0 ≤ s̃ ≤ Υ such that

1

5

(
d

Ω(d)

)d−k−1

(κd)
d−k

(
100

Ω(d)

)d−k
|aι(s̃,+)−1 − aι(s̃,−)|

≤ α

6d2
(ι(s̃,+)− ι(s̃,−)− 1).

(17)

First assume that 2(ι(Υ,+)− ι(Υ,−)− 1) ≥ card(W ). Then we have

1

5

(
d

Ω(d)

)d−k−1

(κd)
d−k

(
100

Ω(d)

)d−k
|aι(Υ,+)−1 − aι(Υ,−)|

Lemma 2.4
≤ 1

5

(
d

Ω(d)

)d−k−1

(κd)
d−k

(
100

Ω(d)

)d−k
2|aMk

− aNk
|

(d)

≤ α

6d2

2(Mk −Nk)

5

≤ α

6d2
(ι(Υ,+)− ι(Υ,−)− 1)

and therefore we can put s̃ = Υ.
Now assume that 2(ι(Υ,+)− ι(Υ,−)− 1) ≤ card(W ). We will prove that there

is 0 ≤ s̃ < Υ such that for every i = 1, ..., k

2

5d

(
dκd
Ω(d)

)d−k (
100

Ω(d)

)d−k
(|aι(s̃,+) − api | − |aι(s̃,−) − api |)

≤ α

6d2
(ι(s̃,+)− ι(s̃,−)− 1).

(18)

For a contradiction suppose that for each 0 ≤ s < Υ there is some is such that

2

5d

(
dκd
Ω(d)

)d−k (
100

Ω(d)

)d−k
(|aι(s,+) − apis | − |aι(s,−) − apis |)

>
α

6d2
(ι(s,+)− ι(s,−)− 1).

Define

Wi =
⋃
is=i

{j; ι(s,−) < j < ι(s,+)}.

Find i such that card(Wi) is maximal. Then card(Wi) ≥ card(W )
2d ≥ 2(Mk−Nk)

5d
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Now,

α

6d2
(Mk −Nk) ≤5d

2
· α

6d2
card(Wi)

=
5d

2
· α

6d2

( ∑
s:is=i

(ι(s,+)− ι(s,−)− 1)

)

<

(
dκd
Ω(d)

)d−k (
100

Ω(d)

)d−k( ∑
s:is=i

(|aι(s,+) − api | − |aι(s,−) − api |)

)

≤
(
dκd
Ω(d)

)d−k (
100

Ω(d)

)d−k
(|aMk

− api | − |aNk
− api |)

≤
(
dκd
Ω(d)

)d−k (
100

Ω(d)

)d−k
|aMk

− aNk
|

(d)

≤ α

6d2
(Mk −Nk),

which is not possible. Since s̃ < Υ we have that ι(s̃,−), ι(s̃,+) are consecutive

elements of V . Thus by (7) we have aι(s̃,+) ∈
⋃k
i=1 C(api , aι(s̃,−)). So there exists

i ∈ {1, . . . , k} such that

Ω(d)|aι(s̃,+)−1 − aι(s̃,−)| ≤Ω(d)|aι(s̃,+) − aι(s̃,−)|
≤2(|aι(s̃,+) − api | − |aι(s̃,−) − api |).

Using this and (18) we obtain (17).

Put pk+1 = Ñk+1 = ι(s̃,−) and M̃k+1 = ι(s̃,+) − 1. This implies pk+1 ≥ Nk.
Observe that for every i = 1, ..., k

(19) {aj}
M̃k+1

Ñk+1+1
⊂ D(api , apk+1

).

Now, we will find Nk+1 and Mk+1. Consider B(apk+1
, |a

M̃k+1
− apk+1

|). Then

according to Lemma 3.2 there is some q ∈ N0 with

card
(
{aj}

M̃k+1

Ñk+1
∩B(apk+1

, |a
M̃k+1

− apk+1
|, q)

)
≥ ρq(M̃k+1 − Ñk+1).

Since {aj}
M̃k+1

Ñk+1
is 1-monotone we have some indices N ′k+1, M ′k+1 such that Ñk+1 <

N ′k+1 ≤M ′k+1 ≤ M̃k+1 and

{aj}
M ′k+1

N ′k+1
= {aj}

M̃k+1

Ñk+1
∩B(apk+1

, |a
M̃k+1

− apk+1
|, q).

Further, due to Lemma 3.3 and (17) there is some index s with N ′k+1 ≤ s ≤M ′k+1

and

card
(
{ai}

M ′k+1

i=N ′k+1
∩B(as, 2|aM̃k+1

− apk+1
|%q)

)
≥ ρq
κd

(M̃k+1 − Ñk+1)

(17)

≥ 1

5

6d2

α

( dκd
Ω(d)

)d−k−1
(

100

Ω(d)

)d−k
ρq|aM̃k+1

− aÑk+1
|.

(20)
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LetMk+1, Nk+1 be a smallest and greatest indeces from {j}M
′
k+1

N ′k+1
for which aNk+1

, aMk+1
∈

B(as, 2|aM̃k+1
− apk+1

|%q). Then

{aj}
Mk+1

Nk+1
⊂ B(aMk+1

, 4|a
M̃k+1

− apk+1
|%q).(21)

Evidently,

(22) Ñk+1 < Nk+1 ≤Mk+1 ≤ M̃k+1.

Let us prove (c). Assume Nk+1 ≤ j ≤Mk+1 and i = 1, ..., k. By the 1-monotonicity
we have

|aj − apk+1
| ≤ |apk+1

− aMk
|

(b)

≤ Ω(d)

2
|api − aNk

| ≤ Ω(d)

2
|api − apk+1

|

which implies

Ω(d)

2
|api − apk+1

|+ |aj − apk+1
| ≤ Ω(d)|api − apk+1

| ≤ Ω(d)|api − aj |.(23)

Thus,

0 ≥(aj − apk+1
) · (api − aj)

=(aj − apk+1
) · ((api − apk+1

) + (apk+1
− aj))

=(aj − apk+1
) · (api − apk+1

) + (aj − apk+1
) · (apk+1

− aj)
(19)

≥ −
Ω(d)|apk+1

− aj | · |api − apk+1
|

2
− |aj − apk+1

|2

(23)

≥ − Ω(d)|apk+1
− aj | · |api − aj |,

where the first inequality follows from 1-monotonicity of {aj}. Now, the fact Nk ≤
Nk+1 ≤Mk+1 ≤Mk completes (c).

Let us prove (b). Consider Nk+1 ≤ l ≤Mk+1. By (21) we have

2

Ω(d)
|al − aMk+1

| ≤ 8

Ω(d)
|a
M̃k+1

− apk+1
|%q ≤ rq+1|aM̃k+1

− apk+1
| ≤ |aNk+1

− apk+1
|

which proves (b) for i = k+ 1. Assume now 1 ≤ i ≤ k. Then by 1-monotonicity we
obtain

2

Ω(d)
|al − aMk+1

| ≤ 2

Ω(d)
|al − aMk

|
(b)

≤ |api − aNk
| ≤ |api − aNk+1

|

which finishes the proof of (b).
Using (20) and following the calculation showed in (12) and (13) we obtain

Mk+1 −Nk+1 + 1 ≥ card(B(as, 2|aM̃k+1
− aÑk+1

|ρq) ∩ {ai}
M ′k+1

i=N ′k+1
)

(20)

≥ 1

5
· 6d2

α

(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k
ρq|aM̃k+1

− aÑk+1
|

=2
6d2

α

(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k−1

rq|aM̃k+1
− aÑk+1

|

≥11.

(24)

Thus, Mk+1 −Nk+1 ≥ 10 which proves (e).
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Moreover, by (24) and (e) we obtain

Mk+1 −Nk+1 ≥
10

11
(Mk+1 −Nk+1 + 1)

(24)

≥ 10

11
· 1

5
· 6d2

α

(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k
ρq|aM̃k+1

− aÑk+1
|

(21)

≥ 2

11
· 6d2

α
·
(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k |aMk+1
− aNk+1

|
4

=
1

22
· 6d2

α
·
(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k
|aMk+1

− aNk+1
|

≥6d2

α
·
(
dκd
Ω(d)

)d−k−1(
100

Ω(d)

)d−k−1

|aMk+1
− aNk+1

|

which proves (d).
To finish the construction note that (a) follows from (e) and the induction pro-

cedure.
Now, using Lemma 3.7 for our choice of pi, N = Nd, M = Md we obtain that

for some i

|aMd
− aNd

| ≥ |aMd
− api | − |aNd

− api | >
α

6d2
(Md −Nd),

which is in contradiction with (d) for k = d. Note that we can use Lemma 3.7 due
to (a)− (c). �

Remark that an analogous theorem cannot hold in an infinite dimensional Hilbert
space H because a 1-monotone space of Hausdorff dimension greater than 1 can be
found in H.

Corollary 3.9. Let Γ : [0, 1] → Rd be continuous curve. Then graph of Γ has
finite 1-dimensional Hausdorff measure if and only if Γ is a linear combination of
continuous curves with 1-monotone graphs.

Proof. Let Γ = (f1, . . . , fd) : [0, 1] → Rd be continuous curve. Clearly, Γ has
finite 1-dimensional Hausdorff measure if and only if V[0,1](fi) is finite for every
i = 1, . . . , d. This and Theorem 3.8 give that a linear combination of continuous
curves with 1-monotone graphs has a finite 1-dimensional Hausdorff measure.

If Γ has a finite 1-dimensional Hausdorff measure then we can define functions
f ji : [0, 1]→ R for every i = 1, . . . , d and j = 0, 1 by

f0
i (t) = V[0,t](fi),

f1
i (t) = fi(t)− V[0,t](fi).

Now, we define F s : [0, 1]→ Rd for every s ∈ {0, 1}d by

F s(t) =
(
f
s(1)
1 (t), . . . , f

s(d)
d (t)

)
.

Since functions f ji are monotone we easily obtain that functions F s are continuous
and have 1-monotone graph. Clearly,

Γ = 21−d
∑

s∈{0,1}d
F s.
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So, we proved that Γ is a linear combination of continuous curves with 1-monotone
graphs.

�

4. Function with small monotone subspaces

In this section we construct an example of a continuous function f : [0, 1] → R
with the following property: if graph(f |M) is a monotone set in the plane for some
M ⊂ [0, 1] then λ(M) = 0 and M is nowhere dense.

Definition 4.1. Let F : [0, 1] → [0, 1] be the standard (triadic) Cantor function
and let g : [0, 1]→ [0, 1] be a continuous function defined by

g :=

{
F (2x), x ∈ [0, 1

2 ]

F (2− 2x), x ∈ [ 1
2 , 1].

Let I = [a, a + ε] ⊂ [0, 1] be a nondegenerated interval L > 0 and n ∈ N. Then

we define a continuous function fL,nI : [0, 1]→ [0, L] by formula

fL,nI :=

{
εLg

(
n
ε

(
x− a− kε

n

))
, x ∈

[
a+ kε

n , a+ (k+1)ε
n

]
, k = 0, ..., n− 1,

0, otherwise

Let Ω be a system of all continuous functions form [0, 1] to R that are locally
constant on the set of full measure, i.e. there is a sequence of pairwise disjoint
closed intervals Ik such that

∑
λ(Ik) = 1 and f is constant on each Ik. Given

L > 0 and n ∈ N. define operator ΥL,n : Ω → Ω by the following procedure: For
h ∈ Ω let I(h) be the system of all maximal nondegenerated intervals in which h
is constant. Then we put

ΥL,n(h) = h+
∑

I∈I(h)

fL,nI .

Let {ak}∞k=1 be the sequence 3, 4, 3, 4, 5, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, . . . and put Ln =
1

2an
. We define f0 ≡ 0 and put

fn+1 = ΥLn+1,2a2n+1
(fn).

Lemma 4.2. Let N ∈ N, ∆ > 0 and let

Xk =

[
∆

(
2k − 1

9

)
,∆

(
2k +

1

9

)]
×
[
0,

2∆

3

]
,

k = 0, ..., 2N2 and

Yk =

[
∆

(
2k + 1− 1

9

)
,∆

(
2k + 1 +

1

9

)]
×
[

∆(6N − 2)

3
,

∆(6N + 2)

3

]
,

k = 0, ..., 2N2 − 1.
Suppose that M is a symmetrically N

4 -monotone set in R2, then there is some k
such that Xk ∩M = ∅ or Yk ∩M = ∅.

Proof. Without loss of generality we can assume ∆ = 1. Suppose for a contradiction
that there are xk ∈ Xk ∩M and yk ∈ Yk ∩M for every k and let ≺ is a witnessing
ordering on M . Suppose that xi and yj are the minimal (with respect to ≺) among
all xk and yk, respectively. We will additionally assume that xi ≺ yj the second
case can be proved by the same way. There are two possibilities, either xk ≺ yj for
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every k or there are some xl ≺ yj ≺ xp. In the second case it is not difficult to see
that we can assume |l− p| = 1 which implies |xl − xp| < 4, moreover |xl − yj | > N.
This leads to

|xl − yj |
|xl − xp|

>
N

4

which is a contradiction. The first case implies that x0, x2N2 ≺ y0, y2N2 . If x0 ≺
x2N2 we consider x0, x2N2 , y0 with x0 ≺ x2N2 ≺ y0. Then |x0 − x2N2 | > 4N2 − 1
and |x0 − y0| < 3N. This leads to

|x0 − x2N2 |
|x0 − y0|

>
4N2 − 1

3N
>
N

4

and we have again a contradiction. If x0 � x2N2 we consider x0, x2N2 , y2N2 with
x2N2 ≺ x0 ≺ y2N2 and we continue analogously. �

Lemma 4.3. Let n ∈ N and I = [a, a+ ∆4a2
n+1] ∈ I(fn). Then

(a) 0 ≤ fn+1 − fn ≤ Ln+1|I| = 2∆an+1 on I,

(b) let J ∈ I(fn+1) such that J ⊂ I, then |J | ≤ |I|
12a2n+1

= ∆
3 ,

(c) for i = 0, ..., 2a2
n+1

(fn+1 − fn)

([
a+ 2i∆− ∆

64a2
n+1

, a+ 2i∆ +
∆

64a2
n+1

]
∩ I
)
⊂
[
0,

∆

4

]
,

(d) for i = 0, ..., 2a2
n+1 − 1

(fn+1 − fn)
([
a+ (2i+ 1) ∆− ∆

64a2n+1
, a+ (2i+ 1) ∆ + ∆

64a2n+1

])
⊂
[

(8an+1−1)∆
4 , (8an+1+1)∆

4

]
.

Proof. The first part is obvious and the fact that the biggest interval of constantness
on the Cantor function has length 1

3 . The last two parts follow directly from the
facts that for the standard Cantor function F we have F (x) ≤

√
x and therefore

F

([
0,

1

64a2
n+1

])
⊂
[
0,

1

8an+1

]
,

together with the symmetry of F . �

Due to Lemma 4.3 we know that the sequance {fn} is uniformly convergent (and
monotone) and we can now define the continuous function f = supn fn.

Lemma 4.4. Let n ∈ N and I = [a, a+ ∆4a2
n+1] ∈ I(fn). Then

(1) 0 ≤ f − fn ≤ |I|
(2) for i = 0, ..., 2a2

n+1

(f − fn)

([
a+ 2i∆− ∆

64a2
n+1

, a+ 2i∆ +
∆

64a2
n+1

]
∩ I
)
⊂
[
0,

2∆

3

]
(3) for i = 0, ..., 2a2

n+1 − 1

(f − fn)
([
a+ (2i+ 1) ∆− ∆

64a2n+1
, a+ (2i+ 1) ∆ + ∆

64a2n+1

])
⊂
[

(6an+1−2)∆
3 , (6an+1+2)∆

3

]
.
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Proof. Property (1) follows from properties (a) and (b) as follows

0 ≤ f − fn =

∞∑
i=1

(fn+i − fn+i−1) ≤ 1

2

∞∑
i=1

|I|2−i+1 = |I|.

To prove property (2) we write

0 ≤ f − fn = f − fn+1 + fn+1 − fn
(1)&(b)

≤ ∆

3
+ fn+1 − fn

(c)

≤ ∆

3
+

∆

4
<

2∆

3
.

Property (3) can be proved following the same lines. �

Theorem 4.5. Let M ⊂ [0, 1] and suppose that graph(f |M ) is monotone. Then
λ(M) = 0 and moreover, M is nowhere dense.

Proof. Fix c ≥ 2 and M ⊂ [0, 1] and suppose that graph(f |M ) is c-monotone. Then
graph(f |M ) is symmetrically (c+ 1)-monotone.

Consider An := [0, 1] \
⋃
I∈I(fn) I and put A =

⋃
An. Then A has measure

0. Suppose for contradiction that M has positive measure. Then also M \ A has
positive measure. This means that there is a Lebesgue point of x ∈M \A. From the
definition of the Lebesgue point we can find δ0 > 0 such that for every δ0 > δ > 0
we have

λ(M ∩ [x− δ, x+ δ])

2δ
≥ 1− 1

2000000c4
.

From the construction of the function f we can find n such that 4c+4 ≤ an+1 ≤ 7c
and such that there is some I = [a, b] ∈ I(fn) with x ∈ I ⊂ [x − δ0, x + δ0]. Put
δ = max(|x−a|, |x−b|). Then I ⊂ [x−δ, x+δ] and |a−b| ≥ δ. Now, by Lemma 4.2

and Lemma 4.4 we obtain that there is an interval J of length |a−b|
256a4n+1

such that

J ∩M \A = ∅ and we can write

1− 1

2000000c4
≤λ(M ∩ [x− δ, x+ δ])

2δ
≤

2δ − |a−b|
256a4n+1

2δ

≤
2δ − δ

256a4n+1

2δ
≤

2− 1
256(7c)4

2
= 1− 1

512(7c)4
< 1− 1

2000000c4
.

Note that we proved λ(M) = 0 in fact. Consequently, M is nowhere dense. �

Note that if we ask for a continuous function f such that no set M ⊂ graph f
of positive 1-dimensional Hausdorff measure (equipped with the Euclidean metric)
is monotone, the situation is completely different. In fact, for every such f there is
always a monotone function h : [min f,max f ]→ R such that graphh−1 ⊂ graph f
(see e.g. [5]). Note that for M = graphh we have |M | ≥ max f −min f and M is
symmetrically 1-monotone.

5. Smooth function witt unbounded variation and monotone graph

In this section we will construct for every c > 1 a smooth function with sym-
metrically c-monotone graph and unbounded variation.

Definition 5.1. Let n ∈ N and I = [a, a + ∆] ⊂ [0, 1] be a closed nondegenerated
interval. Put

Iin :=

[
a+ i∆

2n+ 3

6n+ 6
, a+ i∆

2n+ 3

6n+ 6
+

∆n

3n+ 3

]
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for i ∈ {0, 1, 2} and define AIn :=
{
I0
n, I

1
n, I

2
n

}
.

Clearly, we can fix some f In ∈ C∞([0, 1]) such that

(a) f In(x) = 0 for x ∈ I0
n ∪ I2

n ∪ ([0, 1] \ I),

(b) f In(x) =
|I1n|

2 for x ∈ I1
n,

(c) (f In)′(x) 6= 0 for x ∈ I \ (I0
n ∪ I1

n ∪ I2
n).

For every n ≥ 0 we inductively define functions fn : [0, 1] → R and a collection
of closed intervals An. We put f0 ≡ 0 and A0 = {[0, 1]}. Assume that we already
have fn and An. We define

fn+1 = fn +
∑
I∈An

f In+1,

An+1 =
⋃
I∈An

AIn+1.

Lemma 5.2. The following statements hold.

(i) Let n ∈ N, i ∈ {0, 1, 2} and I be a closed interval. Then Iin ⊂ I.
(ii) Let n ≥ 0. Then the elements of An are mutually disjoint.
(iii) |

⋃
An| = 1

n+1 for every n ≥ 0.

(iv) Let n ≥ 0 and I ∈ An. Then |I| = 1
(n+1)3n .

(v) Let n ≥ 0 and I ∈ An. Then 0 ≤ f In+1(x) ≤ 1
2·3n+1(n+2) for every x ∈ [0, 1].

(vi) Let n ≥ 0. Then fn(x) ≤ 1
4 for every x ∈ [0, 1].

(vii) Let n ≥ 0. Then fn ∈ C∞([0, 1]) and (fn)
(i)
+ (0) = (fn)

(i)
− (1) = 0 for every

i ≥ 0.
(viii) Let n ≥ 0 and I ∈ An. Then fn is constant on I.

(ix) V[0,1](fn) = 1
3

∑n
i=1

1
i+1 for every n ∈ N.

(x) Let 0 ≤ k < n, I ∈ Ak and x, y ∈ I. Then

|fn(x)− fn(y)| ≤
n∑

i=k+1

1

2 · 3i(i+ 1)
.

(xi) The function fn satisfy condition P1 for every n ≥ 0.

Proof. Statements (i), (ii), (vii) and (viii) are trivial.
We prove (iii) by induction. Clearly, |

⋃
A0| = 1. Assume, we had already shown

|
⋃
An| = 1

n+1 . Since |
⋃
AIn+1| =

|I|(n+1)
n+2 for every closed interval I we have

∣∣∣⋃An+1

∣∣∣ =
n+ 1

n+ 2

∣∣∣⋃An∣∣∣ =
1

n+ 2
.

Clearly card(An) = 3n and all elements of An have same length. Thus, by (iii)
and (ii) we obtain (iv).

Using (iv) we clearly obtain (v).
By (v) and (ii) we have fn ≤

∑n
i=1

1
2·3i(i+1) ≤

1
4 . Thus we have (vi).
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We prove (ix) by induction. Since f1 = f
[0,1]
1 we have V[0,1](f1) = |[0, 1]11| = 1

6 .

Assume we had already shown V[0,1](fn) = 1
3

∑n
i=1

1
i+1 . Clearly,

V[0,1](fn+1)
(ii),(viii)

= V[0,1](fn) +
∑
I∈An

VI(f
I
n+1) =

1

3

n∑
i=1

1

i+ 1
+
∑
I∈An

|I1
n+1|

(iv)
=

1

3

n∑
i=1

1

i+ 1
+ 3n

1

(n+ 2)3n+1
=

1

3

n+1∑
i=1

1

i+ 1
.

Now we prove (x). Since x, y ∈ I ∈ Ak and (viii) we have fk(x) = fk(y). Since
fn ≥ fk we have |fn(x) − fn(y)| ≤ max{fn(t) − fk(t); t ∈ I}. By (ii) and (v) we
have

max{fn(t)− fk(t); t ∈ I} ≤
n∑

i=k+1

1

2 · 3i(i+ 1)
.

Finally, we prove (xi). Let x < y ∈ [0, 1] be arbitrary such that fn(x) = fn(y).
We find z ∈ (x, y) such that

|fn(z)− fn(x)| = max{|fn(t)− fn(x)|; t ∈ [x, y]}.(25)

By Definition 5.1(c) we have z ∈
⋃
An. We can assume fn(x) 6= fn(z). Thus,

x, y /∈
⋃
An and consequently, we can find maximal 0 ≤ k < n such that there

exists I ∈ Ak such that x, z ∈ I or z, y ∈ I. By the maximality of k there exists
J ∈ Ak+1 such that x, y /∈ J and z ∈ J . Thus J ⊂ (x, y) and

|x− y| > |J | = 1

(k + 2)3k+1
.(26)

By (x) we have

|f(x)− f(z)| ≤
n∑

i=k+1

1

2 · 3i(i+ 1)
≤ 1

2 · 3k+1(k + 2)

n−k−1∑
i=0

3−i ≤ 1

(k + 2)3k+1
.

Using this,(25) and (26) we are done.
�

Lemma 5.3. Let c > 0 and I ⊂ [0, 1] be a closed non degenerated interval. Then
there exists gIc ∈ C∞([0, 1]) such that

(a) gIc (x) = 0 for every x ∈ [0, 1] \ I,
(b) 0 ≤ gIc ≤ c,
(c) gIc satisfy condition P1,
(d) V[0,1](g

I
c ) ≥ 1.

Proof. Let I = [a, b]. We can assume c ≤ 1. By Lemma 5.2(ix) we can find n ∈ N
such that (b− a)cV[0,1](fn) ≥ 1. We define

gIc (x) :=

{
0, x ∈ [0, 1] \ I,
c(b− a)fn

(
x−a
b−a

)
, x ∈ I.

(27)

By Lemma 5.2 we have gIc ∈ C∞([0, 1]) and conditions (a), (b), (c) and (d) are
satisfied.

�

Theorem 5.4. Let c > 1. Then there exists a continuous function F : [0, 1] → R
such that



SOME RESULTS ON MONOTONE METRIC SPACES 17

(A) F is infinitely differentiable at every x ∈ (0, 1],
(B) F ′+(0) = 0,
(C) V[0,1](F ) =∞,
(D) F has c-symmetrically monotone graph.

Proof. For every n ∈ N we put Jn := [2−2n+1, 2−2n+2]. We define a function
G : [0, 1]→ R by

G(x) :=

∞∑
n=1

gJn4−2n+1(x),

where gIc are functions from Lemma 5.3.
By Lemma 5.3 we easily obtain (A).
If x ∈ [0, 1] \

⋃∞
n=1 Jn then G(x)=0. If x ∈ Jn then

0 ≤ G(x) = gJn4−2n+1(x)
L5.3(b)

≤ 4−2n+1 ≤ x2.

Thus, we have (B).
By Lemma 5.3(d) we have (C).
Now, we prove that G satisfy condition P1. Let x < y ∈ [0, 1] such that G(x) =

G(y). We can assume that there is no w ∈ (x, y) such that G(w) = G(x). Thus,
there exist k ≤ n such that x ∈ Jn and y ∈ Jk. If n = k then condition P1 follows
from Lemma 5.3(c). If k < n then y − x ≥ 2−2n+1. Thus we have

max{|G(t)−G(x)|; t ∈ (x, y)} ≤ max{G(t); t ∈ Jn}
L5.3(b)

≤ 4−2n+1 ≤ |x− y|

and condition P1 is satisfied.
We put F = (c−1)G. Clearly F satisfy (A), (B), (C) and condition Pc−1. Thus

F has c-symmetrically monotone graph.
�
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