SOME RESULTS ON MONOTONE METRIC SPACES

ALEŠ NEKVINDA, DUŠAN POKORNÝ AND VÁCLAV VLASÁK

Abstract

We give several new results on the recent topic of monotone metric spaces. First, we prove that every 1-monotone metric space in \mathbb{R}^{d} has finite 1-dimensional Hausdorff measure. As a consequence we obtain that each continuous bounded curve has a finite length if and only if it can be written as a finite sum of 1-monotone continuous bounded curves. Second, we construct a continuous function f such that M has a zero Lebesgue measure provided $\operatorname{graph}(f \mid M)$ is a monotone set in the plane. In the third part a differentiable function is found with a monotone graph and unbounded variation.

1. Introduction

The concept of monotone metric spaces was introduced in [4] (for more information and motivation of this definition see also [6]).

There exists a series of results on the concept of monotone metric spaces. For instance in [3] a Cantor set in \mathbb{R}^{2} is found such that is not σ-monotone. In [1] it is proved that for each $c>1$ there is a continuous, almost nowhere differentiable function with a symmetrically c-monotone graph. Consequently, such function has an unbounded variation. From [8] an interesting result follows. Let X be a compact metric space of Hausdorff dimension $\operatorname{dim}_{H}(X)$. Then for any $\varepsilon>0$ there exists a monotone compact subset $S \subset X$ with $\operatorname{dim}_{H}(S) \geq \operatorname{dim}_{H}(X)-\varepsilon$. Further information can be found in [2], [5] and [7].

In this paper we are investigating some properties of the concept of monotone spaces. The paper is organized as follows. Section 2 contains basic notations, definitions and assertions.

In Section 3 we prove that every 1-monotone bounded subspace of a Euclidean space has finite length (see Theorem 3.8). Note at this moment that in [1, Theorem 6.5] it is proved that every real continuous function with 1-monotone graph has a bounded variation, which is a special case of our result. Moreover, as a consequence we prove that a continuous bounded curve in \mathbb{R}^{d} has a finite length if and only if it can be expressed as a finite sum of continuous bounded 1-monotone curves.

Section 4 contains a construction of a continuous function f with small monotone subgraphs. More precisely, if $\operatorname{graph}(f \mid M)$ is monotone then M is nowhere dense and has a zero Lebesgue measure. This example improves a known example of a

[^0]function from [1] where M is nowhere dense provided the restriction of the function to M is monotone.

In Section 5 we give another example of a function. For $c>1$ we find a continuous function defined on $[0,1)$ with symmetrically c-monotone graph and unbounded variation such that $f^{\prime}(0)=0$ and $f \in C^{\infty}(0,1]$. This answers [1, Question 8.4].

2. Notation and definitions

Given $d \in \mathbb{N}$ denote as usually by \mathbb{R}^{d} the corresponding d-dimensional Euclidean space. We will use the symbol $B(x, r)$ for open ball with center x and radius $r>0$ and $|z|$ will mean the Euclidean norm of z. Let $\lambda(M)$ stand for the d-dimensional Lebesgue measure of $M \subset \mathbb{R}^{d}$. Let $I \subset \mathbb{R}$ be interval and $f: I \rightarrow \mathbb{R}$ be a function. We denote $V_{I}(f)$ as a variation of the function f on the interval I.

Recall a definition of a monotone and symmetrically monotone metric space.
Definition 2.1. Let $c \geq 1$. A metric space (X, ρ) is called c-monotone if there is an linear ordering \prec such that for every $x, y, z \in X$ with $x \prec y \prec z$ we have $\rho(x, y) \leq c \rho(x, z)$. The space X is then called monotone, if it is c-monotone for some c.

Definition 2.2. Let $c \geq 1$. The metric space (X, ρ) is called symmetrically c monotone if there is an linear ordering \prec such that for every $x, y, z \in X$ with $x \prec y \prec z$ we have $\rho(x, y) \leq c \rho(x, z)$ and $\rho(z, y) \leq c \rho(z, x)$.

We say that $A=\left\{a_{i}\right\}_{i=1}^{N}$ is (symmetrically) c-monotone sequence if A is (symmetrically) c-monotone with respect to the sequence ordering. We say that $A=$ $\left\{a_{i}\right\}_{i=1}^{N}$ is α-separated if $\left|a_{i}-a_{j}\right| \geq \alpha$, for every $i \neq j$. Note that if A is 1-monotone then it is α-separated if and only if $\left|a_{i}-a_{i+1}\right| \geq \alpha$ for every suitable i.

We start with a definition introduced in [1].
Definition 2.3. Let $c \geq 0$ and $I \subset \mathbb{R}$. We say that a function $f: I \rightarrow \mathbb{R}$ satisfy condition P_{c} if for every $x, y \in I$ such that $f(x)=f(y)$, we have

$$
\begin{equation*}
\sup \{|f(t)-f(x)| ; t \in(x, y)\} \leq c|x-y| \tag{1}
\end{equation*}
$$

It can be found in [1] that every continuous function satisfying condition P_{c} has symmetrically $(c+1)$-monotone graph and also that every c-monotone set is symmetrically $(c+1)$-monotone.

Lemma 2.4. Let $A=\left\{a_{i}\right\}_{i=1}^{N}$ be 1-monotone sequence, then for every $1 \leq i \leq j \leq$ $k \leq m \leq N$ we have

$$
\left|a_{j}-a_{k}\right| \leq 2\left|a_{i}-a_{m}\right|
$$

Proof. Since $\left\{a_{i}\right\}_{i=1}^{N}$ is 1-monotone and symmetrically 2-monotone we can write

$$
\left|a_{j}-a_{k}\right| \leq\left|a_{j}-a_{m}\right| \leq 2\left|a_{i}-a_{m}\right| .
$$

3. Hausdorff measure of 1-monotone spaces

As a main result of this section we prove that each 1-monotone bounded subset of \mathbb{R}^{d} has a finite 1-dimensional Hausdorff outer measure.

Observation 3.1. Let $d \in \mathbb{N}$. There is a constant $\frac{1}{2}>\Omega(d)>0$ such that for every $z_{1}, \ldots, z_{d} \in \mathbb{R}^{d} \backslash\{0\}$ with the property that

$$
\left|\frac{z_{i}}{\left|z_{i}\right|} \cdot \frac{z_{j}}{\left|z_{j}\right|}\right| \leq \Omega(d) \quad \text { for every } \quad i, j \in\{1, \ldots, d\}, i \neq j
$$

we can find a Cartesian system of coordinates $\tilde{e}_{1}, \ldots, \tilde{e}_{d}$ such that

$$
\begin{equation*}
\tilde{e}_{i} \cdot \frac{z_{i}}{\left|z_{i}\right|} \geq 1-\frac{1}{32 d^{2}} \tag{2}
\end{equation*}
$$

for every $i=1, \ldots, d$.
We will need for $j \in \mathbb{N}_{0}$ some additional notation:

$$
\begin{aligned}
& r_{j}:=\left(1-\frac{\Omega(d)}{10}\right)^{j} \\
& \rho_{j}:=r_{j}-r_{j+1}=\frac{\Omega(d)}{10} \cdot\left(1-\frac{\Omega(d)}{10}\right)^{j} \\
& B(x, r, j):=B\left(x, r_{j} r\right) \backslash B\left(x, r_{j+1} r\right)
\end{aligned}
$$

κ_{d} maximal cardinality of $2 \rho_{0}$-separated subset of $B(x, 1,0)$.
Lemma 3.2. Let $x \in \mathbb{R}^{d}$ and $r>0$. Let $A \subset B(x, r)$ be a set with a cardinality n. Then there is $j \in \mathbb{N}$ such that $\operatorname{card}(A \cap B(x, r, j)) \geq \rho_{j}(n-1)$.

Proof. We set $c_{k}=\operatorname{card}(A \cap B(x, r, k))$ for every $k \geq 0$. Clearly, $\bigcup_{k=0}^{\infty} B(x, r, k)=$ $B(x, r) \backslash\{x\}$. Thus, we have $\sum_{k=0}^{\infty} c_{k}=\operatorname{card}(A \cap B(x, r) \backslash\{x\}) \geq n-1$. So, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \rho_{k} \frac{c_{k}}{\rho_{k}} \geq n-1 \tag{3}
\end{equation*}
$$

Clearly, $\sum_{k=0}^{\infty} \rho_{k}=1$. Using this and formula (3) we have that there exists $j \in \mathbb{N}_{0}$ such that $\frac{c_{j}}{\rho_{j}} \geq n-1$. So, we are done.

Lemma 3.3. Let $x \in \mathbb{R}^{d}, j \in \mathbb{N}_{0}$ and $r>0$. Let $A \subset B(x, r, j)$ be a set with cardinality n. Then there is an $y \in A$ such that

$$
\operatorname{card}\left(A \cap B\left(y, 2 r \rho_{j}\right)\right) \geq \frac{n}{\kappa_{d}} .
$$

Proof. We can assume $x=0$. Let C be some maximal $2 r \rho_{j}$-separated subset of A. Then $\left\{\frac{y}{r_{j} r} ; y \in C\right\}$ is $2 \rho_{0}$-separated subset of $B(x, 1,0)$. Thus, $\operatorname{card}(C) \leq \kappa_{d}$. By the maximality of C we have $\bigcup_{y \in C} A \cap B\left(y, 2 r \rho_{j}\right)=A$. Thus, there exists $y \in C$ such that

$$
\operatorname{card}\left(A \cap B\left(y, 2 r \rho_{j}\right)\right) \geq \frac{\operatorname{card}(A)}{\operatorname{card}(C)} \geq \frac{n}{\kappa_{d}}
$$

and we are done.
Definition 3.4. Let $x, y \in \mathbb{R}^{d}$. Define $C(x, y), D(x, y) \subset \mathbb{R}^{d}$ by formulas

$$
\begin{gathered}
C(x, y):=\overline{\left\{z \in \mathbb{R}^{d}: \frac{z-y}{|z-y|} \cdot \frac{x-y}{|x-y|} \leq-\frac{\Omega(d)}{2}\right\}} . \\
D(x, y):=\overline{\left\{z \in \mathbb{R}^{d}: \frac{z-y}{|z-y|} \cdot \frac{x-y}{|x-y|}>-\frac{\Omega(d)}{2} \text { and }|x-y| \leq|x-z|\right\} .} .
\end{gathered}
$$

Lemma 3.5. Suppose that $w_{1}, \ldots, w_{n} \in \mathbb{R}^{d}$ and $A:=\left\{a_{i}\right\}_{i=n+1}^{l} \subset \mathbb{R}^{d}$. Put $a_{j}=w_{j}$, $j=1, . ., n$ and suppose that the sequence $\left\{a_{i}\right\}_{i=1}^{l}$ is 1-monotone. Then there are $\gamma \in \mathbb{N}_{0}$ and indices
(4) $\quad n+1=i(0,+) \leq i(1,-) \leq \cdots \leq i(\gamma,-) \leq i(\gamma,+) \leq i(\gamma+1,-)=l$
such that for every $m=1, \ldots, \gamma$

$$
\begin{equation*}
\text { if } \quad i(m,-) \leq k<i(m,+) \quad \text { then } \quad a_{k+1} \in \bigcup_{j} C\left(w_{j}, a_{k}\right) \text {, } \tag{5}
\end{equation*}
$$

and for every $m=0, \ldots, \gamma$

$$
\begin{equation*}
\text { if } \quad i(m,+) \leq k<i(m+1,-) \quad \text { then } \quad a_{k} \in \bigcap_{j} D\left(w_{j}, a_{i(m,+)}\right) \text {, } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } m<\gamma \quad \text { then } \quad a_{i(m+1,-)} \in \bigcup_{j} C\left(w_{j}, a_{i(m,+)}\right) \tag{7}
\end{equation*}
$$

Proof. Since a_{k} is 1-monotone we can easily see that either $a_{k+1} \in \bigcup_{j} C\left(w_{j}, a_{k}\right)$ or $a_{k+1} \in \bigcap_{j} D\left(w_{j}, a_{k}\right)$. Now, the proof can be done by straightforward induction.
Lemma 3.6. Suppose that $w_{1}, \ldots, w_{n} \in \mathbb{R}^{d}$ and $A:=\left\{a_{i}\right\}_{i=n+1}^{l} \subset \mathbb{R}^{d}$. Put $a_{j}=w_{j}$, $j=1, . ., n$ and suppose that the sequence $\left\{a_{i}\right\}_{i=1}^{l}$ is α-separated 1-monotone. Pick $\left\{b_{i}\right\}_{i=0}^{L}$ be a subsequence of $\left\{a_{i}\right\}_{i=n+1}^{l}$. Suppose that $b_{k+1} \in \bigcup_{i} C\left(w_{i}, b_{k}\right)$ for every $0 \leq k<L$. Then for every k there is some i_{k} such that

$$
\left|b_{k+1}-w_{i_{k}}\right|-\left|b_{k}-w_{i_{k}}\right|>\frac{\alpha \Omega(d)}{2}
$$

In particular, there is some i such that

$$
\left|b_{L}-w_{i}\right|-\left|b_{0}-w_{i}\right|>\frac{\alpha \Omega(d)}{2 n} L
$$

Proof. The first inequality is a simple geometric fact. To see the second one set

$$
W_{i}=\left\{k \in\{0, \ldots, L-1\} ; i_{k}=i\right\}
$$

for every $i=1, \ldots, n$. Clearly there is a j such that $\operatorname{card}\left(W_{j}\right) \geq \frac{L}{n}$. Now, by 1-monotonicity we have

$$
\begin{aligned}
& \left|b_{L}-w_{j}\right|-\left|b_{0}-w_{j}\right|=\sum_{k=0}^{L-1}\left|b_{k}-w_{j}\right|-\left|b_{k}-w_{j}\right| \\
& \geq \sum_{k \in W_{j}}\left|b_{k}-w_{j}\right|-\left|b_{k}-w_{j}\right|>\operatorname{card}\left(W_{j}\right) \frac{\alpha \Omega(d)}{2} \geq \frac{\alpha \Omega(d) L}{2 n} .
\end{aligned}
$$

Lemma 3.7. Suppose that $\left\{a_{i}\right\}_{i=0}^{l}$ be an α-separated 1-monotone sequence. Choose $N, M, p_{1}, \ldots, p_{d} \in\{1, \ldots, l\}$ such that $p_{1}<p_{2}<\ldots<p_{d}<N<M$. Suppose that $\frac{2}{\Omega(d)}\left|a_{k}-a_{N}\right| \leq\left|a_{p_{i}}-a_{N}\right|$ for every $N<k \leq M$ and every $i=1, \ldots, d$.

Assume that for every $N \leq k \leq M$ and every $i, j \in\{1, \ldots, d\}, i \neq j$,

$$
\begin{equation*}
\left|\frac{a_{p_{i}}-a_{k}}{\left|a_{p_{i}}-a_{k}\right|} \cdot \frac{a_{p_{j}}-a_{k}}{\left|a_{p_{j}}-a_{k}\right|}\right| \leq \Omega(d) \tag{8}
\end{equation*}
$$

Then for every $N \leq k<M$ there is some i such that $\left|a_{k+1}-a_{p_{i}}\right|-\left|a_{k}-a_{p_{i}}\right|>\frac{\alpha}{6 d}$.

In particular, there is some i such that $\left|a_{M}-a_{p_{i}}\right|-\left|a_{N}-a_{p_{i}}\right|>\frac{\alpha(M-N)}{6 d^{2}}$.
Proof. Using Observation 3.1 we can can find unit vectors \widetilde{e}_{i} with

$$
\begin{equation*}
\cos \left(\gamma_{i}\right)=\tilde{e}_{i} \cdot \frac{a_{p_{i}}}{\left|a_{p_{i}}\right|} \geq 1-\frac{1}{32 d^{2}}, \tag{9}
\end{equation*}
$$

where γ_{i} is the angle between $a_{p_{i}}$ and \tilde{e}_{i}.
Take an arbitrary $N \leq k<M$ and consider $x=\sum_{j=1}^{d} x_{j} \widetilde{e}_{j}=a_{k}$ and $y=$ $\sum_{j=1}^{d} y_{j} \widetilde{e}_{j}=a_{k+1}$. Without any loss of generality we can suppose that $a_{k}=0$. First observe that there is some i with $\left|y_{i}\right| \geq \frac{|y|}{d}$. Without any loss of generality we can suppose that $i=1$.

The fact above with the help of the monotonicity of $\left\{a_{i}\right\}$ means that

$$
\cos (\beta)=\frac{y}{|y|} \cdot \tilde{e}_{1} \leq-\frac{1}{d}
$$

where β is the angle between y and \tilde{e}_{1}.
Let Δ be an angle between y and $a_{p_{1}}$, then

$$
\begin{aligned}
\frac{y}{|y|} \cdot \frac{a_{p_{1}}}{\left|a_{p_{1}}\right|} & =\cos (\Delta) \leq \cos (\beta) \cos \left(\gamma_{1}\right)+\left|\sin (\beta) \sin \left(\gamma_{1}\right)\right| \\
& \leq-\frac{1}{d}+\frac{1}{32 d^{3}}+\left|\sin \left(\gamma_{1}\right)\right| \leq-\frac{1}{2 d}+\sqrt{1-\cos ^{2}\left(\gamma_{1}\right)} \\
& \leq-\frac{1}{2 d}+\sqrt{1-\left(1-\frac{1}{32 d^{2}}\right)^{2}}=-\frac{1}{2 d}+\sqrt{\frac{1}{16 d^{2}}-\frac{1}{1024 d^{4}}} \\
& \leq-\frac{1}{2 d}+\frac{1}{4 d}=-\frac{1}{4 d} .
\end{aligned}
$$

Now, with use of the cosine formula for triangle with vertices $a_{p_{1}}, 0$ and y we obtain

$$
\begin{aligned}
\left|y-a_{p_{1}}\right|-\left|a_{p_{1}}\right| & =\frac{|y|^{2}-2|y| \cdot\left|a_{p_{1}}\right| \cdot \cos (\Delta)}{\left|a_{p_{1}}\right|+\left|y-a_{p_{1}}\right|} \\
& \geq|y|\left(\frac{|y|}{\left|a_{p_{1}}\right|+\left|y-a_{p_{1}}\right|}+\frac{2\left|a_{p_{1}}\right|}{4 d\left(\left|a_{p_{1}}\right|+\left|y-a_{p_{1}}\right|\right)}\right) \\
& \geq \frac{|y|}{2 d} \cdot \frac{\left|a_{p_{1}}\right|}{\left|a_{p_{1}}\right|+\left|y-a_{p_{1}}\right|} \geq \frac{|y|}{6 d} \geq \frac{\alpha}{6 d} .
\end{aligned}
$$

The last part of the statement of this Lemma is now straight forward application of the pigeonhole principle.

Theorem 3.8. Let $1>\alpha>0$. For every $d \in \mathbb{N}$ there is a constant $\Lambda(d)$ such that every α-separated 1-monotone sequence $\left\{a_{i}\right\}_{i=0}^{K}$ in $B(0,1) \subset \mathbb{R}^{d}$ with $a_{0}=0$ we have $\alpha K \leq \Lambda(d)$. In particular, every bounded 1-monotone set in \mathbb{R}^{d} has finite 1-dimensional (outer) Hausdorff measure.
Proof. We first prove the last part of the theorem. Suppose that $\Gamma \subset B\left(0, \frac{1}{2}\right) \subset \mathbb{R}^{d}$ is 1 -monotone. Choose $1>\alpha>0$ and suppose that $\left\{\Gamma_{i}^{\alpha}\right\}_{i=1}^{N}$ is a maximal α separated subset of Γ and 1-monotone sequence. Then

$$
\Gamma \subset \bigcup_{i} B\left(\Gamma_{i}^{\alpha}, \alpha\right)
$$

and $\left\{\Gamma_{i}^{\alpha}-\Gamma_{1}^{\alpha}\right\}_{i=1}^{N} \subset B(0,1)$. By the first part of the theorem we have $\alpha(N-1) \leq$ $\Lambda(d)$. Thus

$$
\sum_{i} \operatorname{diam} B\left(\Gamma_{i}^{\alpha}, \alpha\right) \leq 2 \alpha N \leq 2 \alpha \cdot \frac{\Lambda(d)+\alpha}{\alpha}=2 \Lambda(d)+2 \alpha \leq 2 \Lambda(d)+2
$$

Therefore $\mathcal{H}^{1}(\Gamma) \leq 2 \Lambda(d)+2$.
Suppose that there is an α-separated 1 -monotone sequence $\left\{a_{i}\right\}_{i=0}^{K}$, with K greater than $\frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d} \cdot\left(\frac{100}{\Omega(d)}\right)^{d}$. Using a mathematical induction we will construct indices $p_{i}, N_{i}, M_{i}, i=1, \ldots, d$ such that the following conditions hold for every $1 \leq k \leq d$:
(a) $N_{k-1} \leq p_{k}<N_{k}<M_{k} \leq M_{k-1}$, (for sake of completeness we put $N_{0}=0$, $M_{0}=K$)
(b) $\frac{2}{\Omega(d)}\left|a_{l}-a_{M_{k}}\right| \leq\left|a_{p_{i}}-a_{N_{k}}\right|$ for every $N_{k} \leq l \leq M_{k}$ and every $i=1, \ldots, k$,
(c)

$$
\left|\frac{a_{p_{i}}-a_{l}}{\left|a_{p_{i}}-a_{l}\right|} \cdot \frac{a_{p_{j}}-a_{l}}{\left|a_{p_{j}}-a_{l}\right|}\right| \leq \Omega(d)
$$

for every $i, j \in\{1, \ldots, k\}, i \neq j$ and every $N_{k} \leq l \leq M_{k}$,
(d) $\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k} \cdot\left(\frac{100}{\Omega(d)}\right)^{d-k}\left|a_{M_{k}}-a_{N_{k}}\right| \leq \frac{\alpha}{6 d^{2}}\left(M_{k}-N_{k}\right)$.
(e) $10 \leq M_{k}-N_{k}$.

Case $k=1$: Put $p_{1}=0$.
Using Lemma 3.2 for $A=\left\{a_{i}\right\}_{i=N_{0}}^{M_{0}}, x=a_{N_{0}}$ and $r=\left|a_{M_{0}}-a_{N_{0}}\right|$ we obtain that there is some $q \in \mathbb{N}_{0}$ such that

$$
\operatorname{card}\left(A \cap B\left(a_{N_{0}},\left|a_{M_{0}}-a_{N_{0}}\right|, q\right)\right) \geq \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d}\left(\frac{100}{\Omega(d)}\right)^{d} \rho_{q}
$$

Since $\left\{a_{i}\right\}$ is 1-monotone we we can find such indices $N_{0}^{\prime} \leq M_{0}^{\prime}$ that $\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}=$ $A \cap B\left(a_{N_{0}},\left|a_{M_{0}}-a_{N_{0}}\right|, q\right)$.

Then using Lemma 3.3 we can find some $s, N_{1}^{\prime} \leq s \leq M_{1}^{\prime}$, such that

$$
\begin{align*}
& \operatorname{card}\left(B\left(a_{s}, 2\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}\right) \\
& \geq \frac{6 d^{2}}{\alpha}\left(\frac{d}{\Omega(d)}\right)^{d} \kappa_{d}^{d-1}\left(\frac{100}{\Omega(d)}\right)^{d} \rho_{q} . \tag{10}
\end{align*}
$$

Now, let N_{1} be the first index for which $a_{N_{1}} \in B\left(a_{s}, 2\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}$ and M_{1} be the last index for which $a_{M_{1}} \in B\left(a_{s}, 2\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}$. Then

$$
\begin{equation*}
\left\{a_{i}\right\}_{i=N_{1}}^{M_{1}} \subset B\left(a_{M_{1}}, 4\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \tag{11}
\end{equation*}
$$

To prove (e) note that

$$
\begin{align*}
& M_{1}-N_{1}+1 \geq \operatorname{card}\left(B\left(a_{s}, 2\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}\right) \\
& \stackrel{(10)}{\geq} \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-1}\left(\frac{100}{\Omega(d)}\right)^{d} \rho_{q} \geq \frac{60}{\alpha} r_{q} \geq 11 \tag{12}
\end{align*}
$$

Where the last inequality follows from

$$
\begin{equation*}
\alpha \leq\left|a_{N_{0}}-a_{N_{0}+1}\right| \leq r_{q}\left|a_{M_{0}}-a_{N_{0}}\right| \leq r_{q} \tag{13}
\end{equation*}
$$

Condition (a) is easy, we only need to verify $N_{1}<M_{1}$, which follows from (e). To prove (b) observe that $a_{N_{1}} \in B\left(a_{N_{0}},\left|a_{M_{0}}-a_{N_{0}}\right|, q\right)$ and by (11) we have for every $N_{1} \leq j \leq M_{1}$

$$
\begin{equation*}
\frac{2}{\Omega(d)}\left|a_{j}-a_{M_{1}}\right| \leq \frac{8}{\Omega(d)} \rho_{q}\left|a_{M_{0}}-a_{N_{0}}\right| \leq r_{q+1}\left|a_{M_{0}}-a_{N_{0}}\right| \leq\left|a_{N_{1}}-a_{p_{1}}\right| \tag{14}
\end{equation*}
$$

Condition (c) is empty in this case. Using (e) and (10) we obtain

$$
\begin{align*}
M_{1}-N_{1} & \geq \frac{10}{11} \cdot\left(M_{1}-N_{1}+1\right) \\
& \geq \frac{10}{11} \cdot \operatorname{card}\left(B\left(a_{s}, 2\left|a_{M_{0}}-a_{N_{0}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{1}^{\prime}}^{M_{1}^{\prime}}\right) \\
& \stackrel{(10)}{\geq} \frac{10}{11} \cdot \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d}{\Omega(d)}\right)^{d} \kappa_{d}^{d-1}\left(\frac{100}{\Omega(d)}\right)^{d} \rho_{q} \tag{15}\\
& \stackrel{(11)}{\geq} \frac{10}{11} \cdot \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-1}\left(\frac{100}{\Omega(d)}\right)^{d} \frac{\left|a_{M_{1}}-a_{N_{1}}\right|}{4\left|a_{M_{0}}-a_{N_{0}}\right|} \\
& \geq \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-1}\left(\frac{100}{\Omega(d)}\right)^{d-1}\left|a_{M_{1}}-a_{N_{1}}\right|
\end{align*}
$$

which proves (d).
Induction step. Suppose that $p_{i}, N_{i}, M_{i}, i=1, \ldots, k$ are already constructed for some $k<d$ we will now show how to construct $p_{k+1}, N_{k+1}, M_{k+1}$.

Using Lemma 3.5 for $w_{j}=a_{p_{j}}$ and the sequence $A=\left\{a_{i}\right\}_{i=N_{k}}^{M_{k}}$ we can find indices

$$
\begin{equation*}
N_{k}=i(0,+) \leq i(1,-) \leq \cdots \leq i(\gamma,-) \leq i(\gamma,+) \leq i(\gamma+1,-)=M_{k} \tag{16}
\end{equation*}
$$

such that (5), (6) and (7) hold.
Consider

$$
V:=\left\{N_{k} \leq i<M_{k}: i(\beta,-) \leq i \leq i(\beta,+), \beta=1, \ldots, \gamma\right\} .
$$

Define $W=\left\{N_{k}+1, \ldots, M_{k}-1\right\} \backslash V$. Using Lemma 3.6 for b_{i} being the subsequence obtained by restricting A to V and $w_{j}=a_{p_{j}}$ we obtain that either $\operatorname{card}(V) \leq 1$ or there is some i such that

$$
\begin{aligned}
\operatorname{card}(V) & \leq 2(\operatorname{card}(V)-1) \\
& \leq \frac{4 k}{\alpha \Omega(d)} \cdot\left(\left|a_{\max V}-a_{p_{i}}\right|-\left|a_{\min V}-a_{p_{i}}\right|\right) \\
& \leq \frac{4 k}{\alpha \Omega(d)} \cdot\left(\left|a_{M_{k}}-a_{p_{i}}\right|-\left|a_{N_{k}}-a_{p_{i}}\right|\right) \\
& \leq \frac{4 k}{\alpha \Omega(d)} \cdot\left|a_{M_{k}}-a_{N_{k}}\right| \\
& (d) \frac{4 k \alpha(\Omega(d))^{d-k}}{\leq d^{2} \alpha \Omega(d)\left(d \kappa_{d}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}} \cdot\left(M_{k}-N_{k}\right) \\
& \leq \frac{\left(M_{k}-N_{k}\right)}{10} .
\end{aligned}
$$

This and (e) from the induction step imply that $\operatorname{card}(W) \geq \frac{8\left(M_{k}-N_{k}\right)}{10}$. Clearly, we can find

$$
N_{k} \leq \iota(0,-)<\iota(0,+) \leq \iota(1,-)<\ldots<\iota(\Upsilon-1,+) \leq \iota(\Upsilon,-)<\iota(\Upsilon,+) \leq M_{k}
$$

such that

$$
W=\bigcup_{s=0}^{\Upsilon}\{i ; \iota(s,-)<i<\iota(s,+)\}
$$

and $\iota(s,-)<\iota(s,+)-1$ for every $s=0, \ldots, \Upsilon$.
Now, we will prove that there is an index $0 \leq \widetilde{s} \leq \Upsilon$ such that

$$
\begin{align*}
& \frac{1}{5}\left(\frac{d}{\Omega(d)}\right)^{d-k-1}\left(\kappa_{d}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left|a_{\iota(\tilde{s},+)-1}-a_{\iota(\tilde{s},-)}\right| \tag{17}\\
\leq & \frac{\alpha}{6 d^{2}}(\iota(\tilde{s},+)-\iota(\tilde{s},-)-1) .
\end{align*}
$$

First assume that $2(\iota(\Upsilon,+)-\iota(\Upsilon,-)-1) \geq \operatorname{card}(W)$. Then we have

$$
\begin{aligned}
& \frac{1}{5}\left(\frac{d}{\Omega(d)}\right)^{d-k-1}\left(\kappa_{d}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left|a_{\iota(\Upsilon,+)-1}-a_{\iota(\Upsilon,-)}\right| \\
& \quad \stackrel{\text { Lemma }}{\leq} \frac{2.4}{} \frac{1}{5}\left(\frac{d}{\Omega(d)}\right)^{d-k-1}\left(\kappa_{d}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k} 2\left|a_{M_{k}}-a_{N_{k}}\right| \\
& \quad \stackrel{(d)}{\leq} \frac{\alpha}{6 d^{2}} \frac{2\left(M_{k}-N_{k}\right)}{5} \\
& \quad \leq \frac{\alpha}{6 d^{2}}(\iota(\Upsilon,+)-\iota(\Upsilon,-)-1)
\end{aligned}
$$

and therefore we can put $\tilde{s}=\Upsilon$.
Now assume that $2(\iota(\Upsilon,+)-\iota(\Upsilon,-)-1) \leq \operatorname{card}(W)$. We will prove that there is $0 \leq \widetilde{s}<\Upsilon$ such that for every $i=1, \ldots, k$

$$
\begin{align*}
& \frac{2}{5 d}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left(\left|a_{\iota(\tilde{s},+)}-a_{p_{i}}\right|-\left|a_{\iota(\tilde{s},-)}-a_{p_{i}}\right|\right) \tag{18}\\
\leq & \frac{\alpha}{6 d^{2}}(\iota(\tilde{s},+)-\iota(\tilde{s},-)-1) .
\end{align*}
$$

For a contradiction suppose that for each $0 \leq s<\Upsilon$ there is some i_{s} such that

$$
\begin{aligned}
\frac{2}{5 d}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k} & \left(\frac{100}{\Omega(d)}\right)^{d-k}\left(\left|a_{\iota(s,+)}-a_{p_{i_{s}}}\right|-\left|a_{\iota(s,-)}-a_{p_{i_{s}}}\right|\right) \\
& >\frac{\alpha}{6 d^{2}}(\iota(s,+)-\iota(s,-)-1)
\end{aligned}
$$

Define

$$
W_{i}=\bigcup_{i_{s}=i}\{j ; \iota(s,-)<j<\iota(s,+)\}
$$

Find i such that $\operatorname{card}\left(W_{i}\right)$ is maximal. Then $\operatorname{card}\left(W_{i}\right) \geq \frac{\operatorname{card}(W)}{2 d} \geq \frac{2\left(M_{k}-N_{k}\right)}{5 d}$

Now,

$$
\begin{aligned}
\frac{\alpha}{6 d^{2}}\left(M_{k}-N_{k}\right) & \leq \frac{5 d}{2} \cdot \frac{\alpha}{6 d^{2}} \operatorname{card}\left(W_{i}\right) \\
& =\frac{5 d}{2} \cdot \frac{\alpha}{6 d^{2}}\left(\sum_{s: i_{s}=i}(\iota(s,+)-\iota(s,-)-1)\right) \\
& <\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left(\sum_{s: i_{s}=i}\left(\left|a_{\iota(s,+)}-a_{p_{i}}\right|-\left|a_{\iota(s,-)}-a_{p_{i}}\right|\right)\right) \\
& \leq\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left(\left|a_{M_{k}}-a_{p_{i}}\right|-\left|a_{N_{k}}-a_{p_{i}}\right|\right) \\
& \leq\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left|a_{M_{k}}-a_{N_{k}}\right| \\
& (d) \frac{\alpha}{6 d^{2}}\left(M_{k}-N_{k}\right)
\end{aligned}
$$

which is not possible. Since $\tilde{s}<\Upsilon$ we have that $\iota(\tilde{s},-), \iota(\tilde{s},+)$ are consecutive elements of V. Thus by (7) we have $a_{\iota(\tilde{s},+)} \in \bigcup_{i=1}^{k} C\left(a_{p_{i}}, a_{\iota}(\tilde{s},-)\right)$. So there exists $i \in\{1, \ldots, k\}$ such that

$$
\begin{aligned}
\Omega(d)\left|a_{\iota(\tilde{s},+)-1}-a_{\iota(\tilde{s},-)}\right| & \leq \Omega(d)\left|a_{\iota(\tilde{s},+)}-a_{\iota(\tilde{s},-)}\right| \\
& \leq 2\left(\left|a_{\iota(\tilde{s},+)}-a_{p_{i}}\right|-\left|a_{\iota(\tilde{s},-)}-a_{p_{i}}\right|\right) .
\end{aligned}
$$

Using this and (18) we obtain (17).
Put $p_{k+1}=\tilde{N}_{k+1}=\iota(\tilde{s},-)$ and $\tilde{M}_{k+1}=\iota(\tilde{s},+)-1$. This implies $p_{k+1} \geq N_{k}$. Observe that for every $i=1, \ldots, k$

$$
\begin{equation*}
\left\{a_{j}\right\}_{\tilde{N}_{k+1}+1}^{\tilde{M}_{k+1}} \subset D\left(a_{p_{i}}, a_{p_{k+1}}\right) . \tag{19}
\end{equation*}
$$

Now, we will find N_{k+1} and M_{k+1}. Consider $B\left(a_{p_{k+1}},\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right|\right)$. Then according to Lemma 3.2 there is some $q \in \mathbb{N}_{0}$ with

$$
\operatorname{card}\left(\left\{a_{j}\right\}_{\widetilde{N}_{k+1}}^{\widetilde{\widetilde{M}}_{k+1}} \cap B\left(a_{p_{k+1}},\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right|, q\right)\right) \geq \rho_{q}\left(\widetilde{M}_{k+1}-\widetilde{N}_{k+1}\right)
$$

Since $\left\{a_{j}\right\}_{\widetilde{N}_{k+1}}^{\widetilde{M}_{k+1}}$ is 1-monotone we have some indices $N_{k+1}^{\prime}, M_{k+1}^{\prime}$ such that $\widetilde{N}_{k+1}<$ $N_{k+1}^{\prime} \leq M_{k+1}^{\prime} \leq \widetilde{M}_{k+1}$ and

$$
\left\{a_{j}\right\}_{N_{k+1}^{\prime}}^{M_{k+1}^{\prime}}=\left\{a_{j}\right\}_{\widetilde{N}_{k+1}}^{\widetilde{M}_{k+1}} \cap B\left(a_{p_{k+1}},\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right|, q\right) .
$$

Further, due to Lemma 3.3 and (17) there is some index s with $N_{k+1}^{\prime} \leq s \leq M_{k+1}^{\prime}$ and

$$
\operatorname{card}\left(\left\{a_{i}\right\}_{i=N_{k+1}^{\prime}}^{M_{k+1}^{\prime}} \cap B\left(a_{s}, 2\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right| \varrho_{q}\right)\right) \geq \frac{\rho_{q}}{\kappa_{d}}\left(\widetilde{M}_{k+1}-\widetilde{N}_{k+1}\right)
$$

$$
\begin{equation*}
\stackrel{(17)}{\geq} \frac{1}{5} \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k} \rho_{q}\left|a_{\widetilde{M}_{k+1}}-a_{\widetilde{N}_{k+1}}\right| . \tag{20}
\end{equation*}
$$

Let M_{k+1}, N_{k+1} be a smallest and greatest indeces from $\{j\}_{N_{k+1}^{\prime}}^{M_{k+1}^{\prime}}$ for which $a_{N_{k+1}}, a_{M_{k+1}} \in$ $B\left(a_{s}, 2\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right| \varrho_{q}\right)$. Then

$$
\begin{equation*}
\left\{a_{j}\right\}_{N_{k+1}}^{M_{k+1}} \subset B\left(a_{M_{k+1}}, 4\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right| \varrho_{q}\right) \tag{21}
\end{equation*}
$$

Evidently,

$$
\begin{equation*}
\tilde{N}_{k+1}<N_{k+1} \leq M_{k+1} \leq \tilde{M}_{k+1} \tag{22}
\end{equation*}
$$

Let us prove (c). Assume $N_{k+1} \leq j \leq M_{k+1}$ and $i=1, \ldots, k$. By the 1-monotonicity we have

$$
\left|a_{j}-a_{p_{k+1}}\right| \leq\left|a_{p_{k+1}}-a_{M_{k}}\right| \leq \frac{(b)}{\leq} \frac{\Omega(d)}{2}\left|a_{p_{i}}-a_{N_{k}}\right| \leq \frac{\Omega(d)}{2}\left|a_{p_{i}}-a_{p_{k+1}}\right|
$$

which implies

$$
\begin{equation*}
\frac{\Omega(d)}{2}\left|a_{p_{i}}-a_{p_{k+1}}\right|+\left|a_{j}-a_{p_{k+1}}\right| \leq \Omega(d)\left|a_{p_{i}}-a_{p_{k+1}}\right| \leq \Omega(d)\left|a_{p_{i}}-a_{j}\right| \tag{23}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
& 0 \geq\left(a_{j}-a_{p_{k+1}}\right) \cdot\left(a_{p_{i}}-a_{j}\right) \\
&=\left(a_{j}-a_{p_{k+1}}\right) \cdot\left(\left(a_{p_{i}}-a_{p_{k+1}}\right)+\left(a_{p_{k+1}}-a_{j}\right)\right) \\
&=\left(a_{j}-a_{p_{k+1}}\right) \cdot\left(a_{p_{i}}-a_{p_{k+1}}\right)+\left(a_{j}-a_{p_{k+1}}\right) \cdot\left(a_{p_{k+1}}-a_{j}\right) \\
& \stackrel{(19)}{\geq}-\frac{\Omega(d)\left|a_{p_{k+1}}-a_{j}\right| \cdot\left|a_{p_{i}}-a_{p_{k+1}}\right|}{2}-\left|a_{j}-a_{p_{k+1}}\right|^{2} \\
& \stackrel{(23)}{\geq}-\Omega(d)\left|a_{p_{k+1}}-a_{j}\right| \cdot\left|a_{p_{i}}-a_{j}\right|,
\end{aligned}
$$

where the first inequality follows from 1-monotonicity of $\left\{a_{j}\right\}$. Now, the fact $N_{k} \leq$ $N_{k+1} \leq M_{k+1} \leq M_{k}$ completes (c).

Let us prove (b). Consider $N_{k+1} \leq l \leq M_{k+1}$. By (21) we have

$$
\frac{2}{\Omega(d)}\left|a_{l}-a_{M_{k+1}}\right| \leq \frac{8}{\Omega(d)}\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right| \varrho_{q} \leq r_{q+1}\left|a_{\widetilde{M}_{k+1}}-a_{p_{k+1}}\right| \leq\left|a_{N_{k+1}}-a_{p_{k+1}}\right|
$$

which proves (b) for $i=k+1$. Assume now $1 \leq i \leq k$. Then by 1-monotonicity we obtain

$$
\frac{2}{\Omega(d)}\left|a_{l}-a_{M_{k+1}}\right| \leq \frac{2}{\Omega(d)}\left|a_{l}-a_{M_{k}}\right| \stackrel{(b)}{\leq}\left|a_{p_{i}}-a_{N_{k}}\right| \leq\left|a_{p_{i}}-a_{N_{k+1}}\right|
$$

which finishes the proof of (b).
Using (20) and following the calculation showed in (12) and (13) we obtain

$$
M_{k+1}-N_{k+1}+1 \geq \operatorname{card}\left(B\left(a_{s}, 2\left|a_{\tilde{M}_{k+1}}-a_{\tilde{N}_{k+1}}\right| \rho_{q}\right) \cap\left\{a_{i}\right\}_{i=N_{k+1}^{\prime}}^{M_{k+1}^{\prime}}\right)
$$

$$
\begin{align*}
& \stackrel{(20)}{\geq} \frac{1}{5} \cdot \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k} \rho_{q}\left|a_{\tilde{M}_{k+1}}-a_{\tilde{N}_{k+1}}\right| \tag{24}\\
& =2 \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k-1} r_{q}\left|a_{\tilde{M}_{k+1}}-a_{\tilde{N}_{k+1}}\right| \\
& \geq 11 .
\end{align*}
$$

Thus, $M_{k+1}-N_{k+1} \geq 10$ which proves (e).

Moreover, by (24) and (e) we obtain

$$
\begin{aligned}
M_{k+1}-N_{k+1} & \geq \frac{10}{11}\left(M_{k+1}-N_{k+1}+1\right) \\
& \stackrel{(24)}{\geq} \frac{10}{11} \cdot \frac{1}{5} \cdot \frac{6 d^{2}}{\alpha}\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k} \rho_{q}\left|a_{\tilde{M}_{k+1}}-a_{\tilde{N}_{k+1}}\right| \\
& \stackrel{(21)}{\geq} \frac{2}{11} \cdot \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k} \frac{\left|a_{M_{k+1}}-a_{N_{k+1}}\right|}{4} \\
& =\frac{1}{22} \cdot \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k}\left|a_{M_{k+1}}-a_{N_{k+1}}\right| \\
& \geq \frac{6 d^{2}}{\alpha} \cdot\left(\frac{d \kappa_{d}}{\Omega(d)}\right)^{d-k-1}\left(\frac{100}{\Omega(d)}\right)^{d-k-1}\left|a_{M_{k+1}}-a_{N_{k+1}}\right|
\end{aligned}
$$

which proves (d).
To finish the construction note that (a) follows from (e) and the induction procedure.

Now, using Lemma 3.7 for our choice of $p_{i}, N=N_{d}, M=M_{d}$ we obtain that for some i

$$
\left|a_{M_{d}}-a_{N_{d}}\right| \geq\left|a_{M_{d}}-a_{p_{i}}\right|-\left|a_{N_{d}}-a_{p_{i}}\right|>\frac{\alpha}{6 d^{2}}\left(M_{d}-N_{d}\right),
$$

which is in contradiction with (d) for $k=d$. Note that we can use Lemma 3.7 due to $(a)-(c)$.

Remark that an analogous theorem cannot hold in an infinite dimensional Hilbert space H because a 1-monotone space of Hausdorff dimension greater than 1 can be found in H.

Corollary 3.9. Let $\Gamma:[0,1] \rightarrow \mathbb{R}^{d}$ be continuous curve. Then graph of Γ has finite 1-dimensional Hausdorff measure if and only if Γ is a linear combination of continuous curves with 1-monotone graphs.

Proof. Let $\Gamma=\left(f_{1}, \ldots, f_{d}\right):[0,1] \rightarrow \mathbb{R}^{d}$ be continuous curve. Clearly, Γ has finite 1-dimensional Hausdorff measure if and only if $V_{[0,1]}\left(f_{i}\right)$ is finite for every $i=1, \ldots, d$. This and Theorem 3.8 give that a linear combination of continuous curves with 1-monotone graphs has a finite 1-dimensional Hausdorff measure.

If Γ has a finite 1-dimensional Hausdorff measure then we can define functions $f_{i}^{j}:[0,1] \rightarrow \mathbb{R}$ for every $i=1, \ldots, d$ and $j=0,1$ by

$$
\begin{array}{r}
f_{i}^{0}(t)=V_{[0, t]}\left(f_{i}\right), \\
f_{i}^{1}(t)=f_{i}(t)-V_{[0, t]}\left(f_{i}\right)
\end{array}
$$

Now, we define $F^{s}:[0,1] \rightarrow \mathbb{R}^{d}$ for every $s \in\{0,1\}^{d}$ by

$$
F^{s}(t)=\left(f_{1}^{s(1)}(t), \ldots, f_{d}^{s(d)}(t)\right)
$$

Since functions f_{i}^{j} are monotone we easily obtain that functions F^{s} are continuous and have 1-monotone graph. Clearly,

$$
\Gamma=2^{1-d} \sum_{s \in\{0,1\}^{d}} F^{s}
$$

So, we proved that Γ is a linear combination of continuous curves with 1-monotone graphs.

4. Function with small monotone subspaces

In this section we construct an example of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ with the following property: if $\operatorname{graph}(f \mid M)$ is a monotone set in the plane for some $M \subset[0,1]$ then $\lambda(M)=0$ and M is nowhere dense.

Definition 4.1. Let $F:[0,1] \rightarrow[0,1]$ be the standard (triadic) Cantor function and let $g:[0,1] \rightarrow[0,1]$ be a continuous function defined by

$$
g:= \begin{cases}F(2 x), & x \in\left[0, \frac{1}{2}\right] \\ F(2-2 x), & x \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Let $I=[a, a+\varepsilon] \subset[0,1]$ be a nondegenerated interval $L>0$ and $n \in \mathbb{N}$. Then we define a continuous function $f_{I}^{L, n}:[0,1] \rightarrow[0, L]$ by formula

$$
f_{I}^{L, n}:= \begin{cases}\varepsilon L g\left(\frac{n}{\varepsilon}\left(x-a-\frac{k \varepsilon}{n}\right)\right), & x \in\left[a+\frac{k \varepsilon}{n}, a+\frac{(k+1) \varepsilon}{n}\right], k=0, \ldots, n-1 \\ 0, & \text { otherwise }\end{cases}
$$

Let Ω be a system of all continuous functions form $[0,1]$ to \mathbb{R} that are locally constant on the set of full measure, i.e. there is a sequence of pairwise disjoint closed intervals I_{k} such that $\sum \lambda\left(I_{k}\right)=1$ and f is constant on each I_{k}. Given $L>0$ and $n \in \mathbb{N}$. define operator $\Upsilon_{L, n}: \Omega \rightarrow \Omega$ by the following procedure: For $h \in \Omega$ let $\mathcal{I}(h)$ be the system of all maximal nondegenerated intervals in which h is constant. Then we put

$$
\Upsilon_{L, n}(h)=h+\sum_{I \in \mathcal{I}(h)} f_{I}^{L, n} .
$$

Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be the sequence $3,4,3,4,5,3,4,5,6,3,4,5,6,7,3,4, \ldots$ and put $L_{n}=$ $\frac{1}{2 a_{n}}$. We define $f_{0} \equiv 0$ and put

$$
f_{n+1}=\Upsilon_{L_{n+1}, 2 a_{n+1}^{2}}\left(f_{n}\right)
$$

Lemma 4.2. Let $N \in \mathbb{N}, \Delta>0$ and let

$$
X_{k}=\left[\Delta\left(2 k-\frac{1}{9}\right), \Delta\left(2 k+\frac{1}{9}\right)\right] \times\left[0, \frac{2 \Delta}{3}\right]
$$

$k=0, \ldots, 2 N^{2}$ and
$Y_{k}=\left[\Delta\left(2 k+1-\frac{1}{9}\right), \Delta\left(2 k+1+\frac{1}{9}\right)\right] \times\left[\frac{\Delta(6 N-2)}{3}, \frac{\Delta(6 N+2)}{3}\right]$,
$k=0, \ldots, 2 N^{2}-1$.
Suppose that M is a symmetrically $\frac{N}{4}$-monotone set in \mathbb{R}^{2}, then there is some k such that $X_{k} \cap M=\emptyset$ or $Y_{k} \cap M=\emptyset$.
Proof. Without loss of generality we can assume $\Delta=1$. Suppose for a contradiction that there are $x_{k} \in X_{k} \cap M$ and $y_{k} \in Y_{k} \cap M$ for every k and let \prec is a witnessing ordering on M. Suppose that x_{i} and y_{j} are the minimal (with respect to \prec) among all x_{k} and y_{k}, respectively. We will additionally assume that $x_{i} \prec y_{j}$ the second case can be proved by the same way. There are two possibilities, either $x_{k} \prec y_{j}$ for
every k or there are some $x_{l} \prec y_{j} \prec x_{p}$. In the second case it is not difficult to see that we can assume $|l-p|=1$ which implies $\left|x_{l}-x_{p}\right|<4$, moreover $\left|x_{l}-y_{j}\right|>N$. This leads to

$$
\frac{\left|x_{l}-y_{j}\right|}{\left|x_{l}-x_{p}\right|}>\frac{N}{4}
$$

which is a contradiction. The first case implies that $x_{0}, x_{2 N^{2}} \prec y_{0}, y_{2 N^{2}}$. If $x_{0} \prec$ $x_{2 N^{2}}$ we consider $x_{0}, x_{2 N^{2}}, y_{0}$ with $x_{0} \prec x_{2 N^{2}} \prec y_{0}$. Then $\left|x_{0}-x_{2 N^{2}}\right|>4 N^{2}-1$ and $\left|x_{0}-y_{0}\right|<3 N$. This leads to

$$
\frac{\left|x_{0}-x_{2 N^{2}}\right|}{\left|x_{0}-y_{0}\right|}>\frac{4 N^{2}-1}{3 N}>\frac{N}{4}
$$

and we have again a contradiction. If $x_{0} \succ x_{2 N^{2}}$ we consider $x_{0}, x_{2 N^{2}}, y_{2 N^{2}}$ with $x_{2 N^{2}} \prec x_{0} \prec y_{2 N^{2}}$ and we continue analogously.

Lemma 4.3. Let $n \in \mathbb{N}$ and $I=\left[a, a+\Delta 4 a_{n+1}^{2}\right] \in \mathcal{I}\left(f_{n}\right)$. Then
(a) $0 \leq f_{n+1}-f_{n} \leq L_{n+1}|I|=2 \Delta a_{n+1}$ on I,
(b) let $J \in \mathcal{I}\left(f_{n+1}\right)$ such that $J \subset I$, then $|J| \leq \frac{|I|}{12 a_{n+1}^{2}}=\frac{\Delta}{3}$,
(c) for $i=0, \ldots, 2 a_{n+1}^{2}$

$$
\left(f_{n+1}-f_{n}\right)\left(\left[a+2 i \Delta-\frac{\Delta}{64 a_{n+1}^{2}}, a+2 i \Delta+\frac{\Delta}{64 a_{n+1}^{2}}\right] \cap I\right) \subset\left[0, \frac{\Delta}{4}\right]
$$

(d) for $i=0, \ldots, 2 a_{n+1}^{2}-1$

$$
\begin{gathered}
\left(f_{n+1}-f_{n}\right)\left(\left[a+(2 i+1) \Delta-\frac{\Delta}{64 a_{n+1}^{2}}, a+(2 i+1) \Delta+\frac{\Delta}{64 a_{n+1}^{2}}\right]\right) \\
\subset\left[\frac{\left(8 a_{n+1}-1\right) \Delta}{4}, \frac{\left(8 a_{n+1}+1\right) \Delta}{4}\right]
\end{gathered}
$$

Proof. The first part is obvious and the fact that the biggest interval of constantness on the Cantor function has length $\frac{1}{3}$. The last two parts follow directly from the facts that for the standard Cantor function F we have $F(x) \leq \sqrt{x}$ and therefore

$$
F\left(\left[0, \frac{1}{64 a_{n+1}^{2}}\right]\right) \subset\left[0, \frac{1}{8 a_{n+1}}\right]
$$

together with the symmetry of F.
Due to Lemma 4.3 we know that the sequance $\left\{f_{n}\right\}$ is uniformly convergent (and monotone) and we can now define the continuous function $f=\sup _{n} f_{n}$.

Lemma 4.4. Let $n \in \mathbb{N}$ and $I=\left[a, a+\Delta 4 a_{n+1}^{2}\right] \in \mathcal{I}\left(f_{n}\right)$. Then
(1) $0 \leq f-f_{n} \leq|I|$
(2) for $i=0, \ldots, 2 a_{n+1}^{2}$

$$
\left(f-f_{n}\right)\left(\left[a+2 i \Delta-\frac{\Delta}{64 a_{n+1}^{2}}, a+2 i \Delta+\frac{\Delta}{64 a_{n+1}^{2}}\right] \cap I\right) \subset\left[0, \frac{2 \Delta}{3}\right]
$$

(3) for $i=0, \ldots, 2 a_{n+1}^{2}-1$

$$
\begin{gathered}
\left(f-f_{n}\right)\left(\left[a+(2 i+1) \Delta-\frac{\Delta}{64 a_{n+1}^{2}}, a+(2 i+1) \Delta+\frac{\Delta}{64 a_{n+1}^{2}}\right]\right) \\
\subset\left[\frac{\left(6 a_{n+1}-2\right) \Delta}{3}, \frac{\left(6 a_{n+1}+2\right) \Delta}{3}\right] .
\end{gathered}
$$

Proof. Property (1) follows from properties (a) and (b) as follows

$$
0 \leq f-f_{n}=\sum_{i=1}^{\infty}\left(f_{n+i}-f_{n+i-1}\right) \leq \frac{1}{2} \sum_{i=1}^{\infty}|I| 2^{-i+1}=|I| .
$$

To prove property (2) we write

$$
0 \leq f-f_{n}=f-f_{n+1}+f_{n+1}-f_{n} \stackrel{(1) \&(b)}{\leq} \frac{\Delta}{3}+f_{n+1}-f_{n} \stackrel{(c)}{\leq} \frac{\Delta}{3}+\frac{\Delta}{4}<\frac{2 \Delta}{3}
$$

Property (3) can be proved following the same lines.
Theorem 4.5. Let $M \subset[0,1]$ and suppose that $\operatorname{graph}\left(\left.f\right|_{M}\right)$ is monotone. Then $\lambda(M)=0$ and moreover, M is nowhere dense.
Proof. Fix $c \geq 2$ and $M \subset[0,1]$ and suppose that $\operatorname{graph}\left(\left.f\right|_{M}\right)$ is c-monotone. Then $\operatorname{graph}\left(\left.f\right|_{\bar{M}}\right)$ is symmetrically $(c+1)$-monotone.

Consider $A_{n}:=[0,1] \backslash \bigcup_{I \in \mathcal{I}\left(f_{n}\right)} I$ and put $A=\bigcup A_{n}$. Then A has measure 0 . Suppose for contradiction that \bar{M} has positive measure. Then also $\bar{M} \backslash A$ has positive measure. This means that there is a Lebesgue point of $x \in \bar{M} \backslash A$. From the definition of the Lebesgue point we can find $\delta_{0}>0$ such that for every $\delta_{0}>\delta>0$ we have

$$
\frac{\lambda(\bar{M} \cap[x-\delta, x+\delta])}{2 \delta} \geq 1-\frac{1}{2000000 c^{4}}
$$

From the construction of the function f we can find n such that $4 c+4 \leq a_{n+1} \leq 7 c$ and such that there is some $I=[a, b] \in \mathcal{I}\left(f_{n}\right)$ with $x \in I \subset\left[x-\delta_{0}, x+\delta_{0}\right]$. Put $\delta=\max (|x-a|,|x-b|)$. Then $I \subset[x-\delta, x+\delta]$ and $|a-b| \geq \delta$. Now, by Lemma 4.2 and Lemma 4.4 we obtain that there is an interval J of length $\frac{|a-b|}{256 a_{n+1}^{4}}$ such that $J \cap \bar{M} \backslash A=\emptyset$ and we can write

$$
\begin{aligned}
1-\frac{1}{2000000 c^{4}} & \leq \frac{\lambda(\bar{M} \cap[x-\delta, x+\delta])}{2 \delta} \leq \frac{2 \delta-\frac{|a-b|}{256 a_{n+1}^{4}}}{2 \delta} \\
& \leq \frac{2 \delta-\frac{\delta}{256 a_{n+1}^{4}}}{2 \delta} \leq \frac{2-\frac{1}{256(7 c)^{4}}}{2}=1-\frac{1}{512(7 c)^{4}}<1-\frac{1}{2000000 c^{4}} .
\end{aligned}
$$

Note that we proved $\lambda(\bar{M})=0$ in fact. Consequently, M is nowhere dense.
Note that if we ask for a continuous function f such that no set $M \subset \operatorname{graph} f$ of positive 1-dimensional Hausdorff measure (equipped with the Euclidean metric) is monotone, the situation is completely different. In fact, for every such f there is always a monotone function $h:[\min f, \max f] \rightarrow \mathbb{R}$ such that graph $h^{-1} \subset \operatorname{graph} f$ (see e.g. [5]). Note that for $M=\operatorname{graph} h$ we have $|M| \geq \max f-\min f$ and M is symmetrically 1-monotone.

5. Smooth function witt unbounded variation and monotone graph

In this section we will construct for every $c>1$ a smooth function with symmetrically c-monotone graph and unbounded variation.
Definition 5.1. Let $n \in \mathbb{N}$ and $I=[a, a+\Delta] \subset[0,1]$ be a closed nondegenerated interval. Put

$$
I_{n}^{i}:=\left[a+i \Delta \frac{2 n+3}{6 n+6}, a+i \Delta \frac{2 n+3}{6 n+6}+\frac{\Delta n}{3 n+3}\right]
$$

for $i \in\{0,1,2\}$ and define $\mathcal{A}_{n}^{I}:=\left\{I_{n}^{0}, I_{n}^{1}, I_{n}^{2}\right\}$.
Clearly, we can fix some $f_{n}^{I} \in C^{\infty}([0,1])$ such that
(a) $f_{n}^{I}(x)=0$ for $x \in I_{n}^{0} \cup I_{n}^{2} \cup([0,1] \backslash I)$,
(b) $f_{n}^{I}(x)=\frac{\left|I_{n}^{1}\right|}{2}$ for $x \in I_{n}^{1}$,
(c) $\left(f_{n}^{I}\right)^{\prime}(x) \neq 0$ for $x \in I \backslash\left(I_{n}^{0} \cup I_{n}^{1} \cup I_{n}^{2}\right)$.

For every $n \geq 0$ we inductively define functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and a collection of closed intervals \mathcal{A}_{n}. We put $f_{0} \equiv 0$ and $\mathcal{A}_{0}=\{[0,1]\}$. Assume that we already have f_{n} and \mathcal{A}_{n}. We define

$$
\begin{array}{r}
f_{n+1}=f_{n}+\sum_{I \in \mathcal{A}_{n}} f_{n+1}^{I}, \\
\mathcal{A}_{n+1}=\bigcup_{I \in \mathcal{A}_{n}} \mathcal{A}_{n+1}^{I} .
\end{array}
$$

Lemma 5.2. The following statements hold.
(i) Let $n \in \mathbb{N}, i \in\{0,1,2\}$ and I be a closed interval. Then $I_{n}^{i} \subset I$.
(ii) Let $n \geq 0$. Then the elements of \mathcal{A}_{n} are mutually disjoint.
(iii) $\left|\bigcup \mathcal{A}_{n}\right|=\frac{1}{n+1}$ for every $n \geq 0$.
(iv) Let $n \geq 0$ and $I \in \mathcal{A}_{n}$. Then $|I|=\frac{1}{(n+1) 3^{n}}$.
(v) Let $n \geq 0$ and $I \in \mathcal{A}_{n}$. Then $0 \leq f_{n+1}^{I}(x) \leq \frac{1}{2 \cdot 3^{n+1}(n+2)}$ for every $x \in[0,1]$.
(vi) Let $n \geq 0$. Then $f_{n}(x) \leq \frac{1}{4}$ for every $x \in[0,1]$.
(vii) Let $n \geq 0$. Then $f_{n} \in C^{\infty}([0,1])$ and $\left(f_{n}\right)_{+}^{(i)}(0)=\left(f_{n}\right)_{-}^{(i)}(1)=0$ for every $i \geq 0$.
(viii) Let $n \geq 0$ and $I \in \mathcal{A}_{n}$. Then f_{n} is constant on I.
(ix) $V_{[0,1]}\left(f_{n}\right)=\frac{1}{3} \sum_{i=1}^{n} \frac{1}{i+1}$ for every $n \in \mathbb{N}$.
(x) Let $0 \leq k<n, I \in \mathcal{A}_{k}$ and $x, y \in I$. Then

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq \sum_{i=k+1}^{n} \frac{1}{2 \cdot 3^{i}(i+1)}
$$

(xi) The function f_{n} satisfy condition P_{1} for every $n \geq 0$.

Proof. Statements $(i),(i i),(v i i)$ and (viii) are trivial.
We prove (iii) by induction. Clearly, $\left|\bigcup \mathcal{A}_{0}\right|=1$. Assume, we had already shown $\left|\bigcup \mathcal{A}_{n}\right|=\frac{1}{n+1}$. Since $\left|\bigcup \mathcal{A}_{n+1}^{I}\right|=\frac{|I|(n+1)}{n+2}$ for every closed interval I we have

$$
\left|\bigcup \mathcal{A}_{n+1}\right|=\frac{n+1}{n+2}\left|\bigcup \mathcal{A}_{n}\right|=\frac{1}{n+2} .
$$

Clearly $\operatorname{card}\left(\mathcal{A}_{n}\right)=3^{n}$ and all elements of \mathcal{A}_{n} have same length. Thus, by (iii) and (ii) we obtain (iv).

Using $(i v)$ we clearly obtain (v).
By (v) and (ii) we have $f_{n} \leq \sum_{i=1}^{n} \frac{1}{2 \cdot 3^{i}(i+1)} \leq \frac{1}{4}$. Thus we have (vi).

We prove $(i x)$ by induction. Since $f_{1}=f_{1}^{[0,1]}$ we have $V_{[0,1]}\left(f_{1}\right)=\left|[0,1]_{1}^{1}\right|=\frac{1}{6}$. Assume we had already shown $V_{[0,1]}\left(f_{n}\right)=\frac{1}{3} \sum_{i=1}^{n} \frac{1}{i+1}$. Clearly,

$$
\begin{aligned}
V_{[0,1]}\left(f_{n+1}\right) & \stackrel{(i i),(v i i i)}{=} \\
& V_{[0,1]}\left(f_{n}\right)+\sum_{I \in \mathcal{A}_{n}} V_{I}\left(f_{n+1}^{I}\right)=\frac{1}{3} \sum_{i=1}^{n} \frac{1}{i+1}+\sum_{I \in \mathcal{A}_{n}}\left|I_{n+1}^{1}\right| \\
& \stackrel{(i v)}{=} \\
& \frac{1}{3} \sum_{i=1}^{n} \frac{1}{i+1}+3^{n} \frac{1}{(n+2) 3^{n+1}}=\frac{1}{3} \sum_{i=1}^{n+1} \frac{1}{i+1} .
\end{aligned}
$$

Now we prove (x). Since $x, y \in I \in \mathcal{A}_{k}$ and (viii) we have $f_{k}(x)=f_{k}(y)$. Since $f_{n} \geq f_{k}$ we have $\left|f_{n}(x)-f_{n}(y)\right| \leq \max \left\{f_{n}(t)-f_{k}(t) ; t \in I\right\}$. By (ii) and (v) we have

$$
\max \left\{f_{n}(t)-f_{k}(t) ; t \in I\right\} \leq \sum_{i=k+1}^{n} \frac{1}{2 \cdot 3^{i}(i+1)}
$$

Finally, we prove $(x i)$. Let $x<y \in[0,1]$ be arbitrary such that $f_{n}(x)=f_{n}(y)$. We find $z \in(x, y)$ such that

$$
\begin{equation*}
\left|f_{n}(z)-f_{n}(x)\right|=\max \left\{\left|f_{n}(t)-f_{n}(x)\right| ; t \in[x, y]\right\} . \tag{25}
\end{equation*}
$$

By Definition 5.1(c) we have $z \in \bigcup \mathcal{A}_{n}$. We can assume $f_{n}(x) \neq f_{n}(z)$. Thus, $x, y \notin \bigcup \mathcal{A}_{n}$ and consequently, we can find maximal $0 \leq k<n$ such that there exists $I \in \mathcal{A}_{k}$ such that $x, z \in I$ or $z, y \in I$. By the maximality of k there exists $J \in \mathcal{A}_{k+1}$ such that $x, y \notin J$ and $z \in J$. Thus $J \subset(x, y)$ and

$$
\begin{equation*}
|x-y|>|J|=\frac{1}{(k+2) 3^{k+1}} \tag{26}
\end{equation*}
$$

By (x) we have

$$
|f(x)-f(z)| \leq \sum_{i=k+1}^{n} \frac{1}{2 \cdot 3^{i}(i+1)} \leq \frac{1}{2 \cdot 3^{k+1}(k+2)} \sum_{i=0}^{n-k-1} 3^{-i} \leq \frac{1}{(k+2) 3^{k+1}}
$$

Using this,(25) and (26) we are done.

Lemma 5.3. Let $c>0$ and $I \subset[0,1]$ be a closed non degenerated interval. Then there exists $g_{c}^{I} \in C^{\infty}([0,1])$ such that
(a) $g_{c}^{I}(x)=0$ for every $x \in[0,1] \backslash I$,
(b) $0 \leq g_{c}^{I} \leq c$,
(c) g_{c}^{I} satisfy condition P_{1},
(d) $V_{[0,1]}\left(g_{c}^{I}\right) \geq 1$.

Proof. Let $I=[a, b]$. We can assume $c \leq 1$. By Lemma 5.2(ix) we can find $n \in \mathbb{N}$ such that $(b-a) c V_{[0,1]}\left(f_{n}\right) \geq 1$. We define

$$
g_{c}^{I}(x):= \begin{cases}0, & x \in[0,1] \backslash I, \tag{27}\\ c(b-a) f_{n}\left(\frac{x-a}{b-a}\right), & x \in I .\end{cases}
$$

By Lemma 5.2 we have $g_{c}^{I} \in C^{\infty}([0,1])$ and conditions $(a),(b),(c)$ and (d) are satisfied.

Theorem 5.4. Let $c>1$. Then there exists a continuous function $F:[0,1] \rightarrow \mathbb{R}$ such that
(A) F is infinitely differentiable at every $x \in(0,1]$,
(B) $F_{+}^{\prime}(0)=0$,
(C) $V_{[0,1]}(F)=\infty$,
(D) F has c-symmetrically monotone graph.

Proof. For every $n \in \mathbb{N}$ we put $J_{n}:=\left[2^{-2 n+1}, 2^{-2 n+2}\right]$. We define a function $G:[0,1] \rightarrow \mathbb{R}$ by

$$
G(x):=\sum_{n=1}^{\infty} g_{4^{-2 n+1}}^{J_{n}}(x),
$$

where g_{c}^{I} are functions from Lemma 5.3.
By Lemma 5.3 we easily obtain (A).
If $x \in[0,1] \backslash \bigcup_{n=1}^{\infty} J_{n}$ then $\mathrm{G}(\mathrm{x})=0$. If $x \in J_{n}$ then

$$
0 \leq G(x)=g_{4^{-2 n+1}}^{J_{n}}(x) \stackrel{L 5.3(b)}{\leq} 4^{-2 n+1} \leq x^{2}
$$

Thus, we have (B).
By Lemma $5.3(d)$ we have (C).
Now, we prove that G satisfy condition P_{1}. Let $x<y \in[0,1]$ such that $G(x)=$ $G(y)$. We can assume that there is no $w \in(x, y)$ such that $G(w)=G(x)$. Thus, there exist $k \leq n$ such that $x \in J_{n}$ and $y \in J_{k}$. If $n=k$ then condition P_{1} follows from Lemma 5.3(c). If $k<n$ then $y-x \geq 2^{-2 n+1}$. Thus we have

$$
\max \{|G(t)-G(x)| ; t \in(x, y)\} \leq \max \left\{G(t) ; t \in J_{n}\right\} \stackrel{L 5.3(b)}{\leq} 4^{-2 n+1} \leq|x-y|
$$

and condition P_{1} is satisfied.
We put $F=(c-1) G$. Clearly F satisfy $(A),(B),(C)$ and condition P_{c-1}. Thus F has c-symmetrically monotone graph.

References

[1] M. Hrušák, T. Matrai, A. Nekvinda, V. Vlasák and O. Zindulka, Properties of functions with monotone graphs. Department of Mathematics, Faculty of Civil Engineering CTU, Prague, Preprint no. 2/2011, April 2011, available at http://mat.fsv.cvut.cz/nales/preprints/.
[2] M. Hrušák, and O. Zindulka, Cardinal invariants of monotone and porous sets. Department of Mathematics, Faculty of Civil Engineering CTU, Prague, Preprint no. 7/2010, November 2010, available at http://mat.fsv.cvut.cz/nales/preprints/.
[3] A. Nekvinda and O. Zindulka, A Cantor set in the plane that is not σ-monotone. Fundamenta Mathematica 213, (2011), 221-232.
[4] A. Nekvinda and O. Zindulka, Monotone metric spaces. Order 29, no. 3, (2012), 545-558.
[5] T. C. O'Neil, Graphs of continuous functions from \mathbb{R} to \mathbb{R} are not purely unrectifiable. Real Anal. Exchange 26, no. 3, (2000/0), 445-447.
[6] O. Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps. Fund. Math. 218, no. 3, (2012), 95-119.
[7] O. Zindulka, Monotone spaces and nearly Lipschitz maps. Department of Mathematics, Faculty of Civil Engineering CTU, Prague, Preprint no. 4/2010, February 2010, available at http://mat.fsv.cvut.cz/nales/preprints/.
[8] M. Mendel and A. Naor, Ultrametric subsets with large Hausdorff dimension. Cornell University Library, June 2011, available at http://arxiv.org/abs/1106.0879.

Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 18675 Praha 8, Czech Republic

E-mail address: nales@mat.fsv.cvut.cz
E-mail address: dpokorny@karlin.mff.cuni.cz
E-mail address: vlasakv@karlin.mff.cuni.cz

[^0]: 2000 Mathematics Subject Classification. 26A27, 26A48, 28A78, 54F05.
 Key words and phrases. Monotone metric spaces, Hausdorff measure, Graphs of continuous functions.

 The first author was supported by the grant 201/08/0383 of the Grant Agency of the Czech Republic, the second author was supported by a cooperation grant of the Czech and the German science foundation, GAČR project no. P201/10/J039 and the last author is a (junior) researcher in the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (Math MAC).

