SOME RESULTS ON MONOTONE METRIC SPACES

ALES NEKVINDA, DUSAN POKORNY AND VACLAV VLASAK

ABSTRACT. We give several new results on the recent topic of monotone met-
ric spaces. First, we prove that every 1-monotone metric space in R? has finite
1-dimensional Hausdorff measure. As a consequence we obtain that each con-
tinuous bounded curve has a finite length if and only if it can be written as
a finite sum of 1-monotone continuous bounded curves. Second, we construct
a continuous function f such that M has a zero Lebesgue measure provided
graph(f|M) is a monotone set in the plane. In the third part a differentiable
function is found with a monotone graph and unbounded variation.

1. INTRODUCTION

The concept of monotone metric spaces was introduced in [4] (for more informa-
tion and motivation of this definition see also [6]).

There exists a series of results on the concept of monotone metric spaces. For
instance in [3] a Cantor set in R? is found such that is not o-monotone. In [1] it
is proved that for each ¢ > 1 there is a continuous, almost nowhere differentiable
function with a symmetrically c-monotone graph. Consequently, such function has
an unbounded variation. From [8] an interesting result follows. Let X be a compact
metric space of Hausdorff dimension dimpg(X). Then for any e > 0 there exists
a monotone compact subset S C X with dimgy(S) > dimgy(X) —e . Further
information can be found in [2], [5] and [7].

In this paper we are investigating some properties of the concept of monotone
spaces. The paper is organized as follows. Section 2 contains basic notations,
definitions and assertions.

In Section 3 we prove that every 1-monotone bounded subspace of a Euclidean
space has finite length (see Theorem 3.8). Note at this moment that in [1, The-
orem 6.5] it is proved that every real continuous function with 1-monotone graph
has a bounded variation, which is a special case of our result. Moreover, as a con-
sequence we prove that a continuous bounded curve in R? has a finite length if
and only if it can be expressed as a finite sum of continuous bounded 1-monotone
curves.

Section 4 contains a construction of a continuous function f with small monotone
subgraphs. More precisely, if graph(f|M) is monotone then M is nowhere dense
and has a zero Lebesgue measure. This example improves a known example of a
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function from [1] where M is nowhere dense provided the restriction of the function
to M is monotone.

In Section 5 we give another example of a function. For ¢ > 1 we find a continuous
function defined on [0,1) with symmetrically c-monotone graph and unbounded
variation such that f'(0) =0 and f € C°°(0,1]. This answers [1, Question 8.4].

2. NOTATION AND DEFINITIONS

Given d € N denote as usually by R? the corresponding d-dimensional Euclidean
space. We will use the symbol B(z,r) for open ball with center z and radius r > 0
and |z| will mean the Euclidean norm of z. Let A(M) stand for the d-dimensional
Lebesgue measure of M C R?. Let I C R be interval and f : I — R be a function.
We denote Vi(f) as a variation of the function f on the interval I.

Recall a definition of a monotone and symmetrically monotone metric space.

Definition 2.1. Let ¢ > 1. A metric space (X, p) is called c-monotone if there
is an linear ordering < such that for every x,y,z € X with x < y < z we have
p(z,y) < cp(x,z). The space X is then called monotone, if it is c-monotone for
some c.

Definition 2.2. Let ¢ > 1. The metric space (X,p) is called symmetrically c-
monotone if there is an linear ordering < such that for every x,y,z € X with
x <y <z we have p(x,y) < cp(z,z) and p(z,y) < cp(z, ).

We say that A = {a;}, is (symmetrically) c-monotone sequence if A is (sym-
metrically) c-monotone with respect to the sequence ordering. We say that A =
{a;} | is a-separated if |a; —a;j| > «, for every i # j. Note that if A is I-monotone
then it is a-separated if and only if |a; — a;41| > « for every suitable 4.

We start with a definition introduced in [1].

Definition 2.3. Let ¢ > 0 and I C R. We say that a function f : I — R satisfy
condition P, if for every x,y € I such that f(x) = f(y), we have

(1) sup{[f(t) = f(2)]; t € (z,y)} < clz —y.

It can be found in [1] that every continuous function satisfying condition P,
has symmetrically (¢ 4+ 1)-monotone graph and also that every c-monotone set is
symmetrically (¢ + 1)-monotone.

Lemma 2.4. Let A = {a;}}; be 1-monotone sequence, then for every 1 <i < j <
k<m < N we have

la; — ax| < 2|a; — am.
Proof. Since {a;} ; is 1-monotone and symmetrically 2-monotone we can write

|aj — ak| < laj — am| < 2|a; — am|.

3. HAUSDORFF MEASURE OF 1-MONOTONE SPACES

As a main result of this section we prove that each 1-monotone bounded subset
of R? has a finite 1-dimensional Hausdorff outer measure.
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Observation 3.1. Let d € N. There is a constant % > Q(d) > 0 such that for
every 21, ..., zg € R4\ {0} with the property that

Zi Zj

<Qd)  for every i,5€{l,...,d}, i#]

EARNEA
we can find a Cartesian system of coordinates €1, ...,€q such that

2 G > 1
@ T 28

for everyi=1,....d.

We will need for j € Ny some additional notation:

() <19<d>>37

Pi= T i = 10
B(CC,’I‘,j) = B('T7Tjr) \ B(I,Tj+17‘),
kq maximal cardinality of 2pg-separated subset of B(z,1,0).

Lemma 3.2. Let x € R? and r > 0. Let A C B(w,r) be a set with a cardinality n.
Then there is j € N such that card(AN B(z,r, 7)) > pj(n —1).

Proof. We set ¢, = card(A N B(x,r, k)) for every k > 0. Clearly, ;.o B(z,r, k) =
B(z,r) \ {z}. Thus, we have Y ;7 ¢, = card(AN B(z,r) \ {z}) > n—1. So, we
have

[e'S) cn
(3) Z pr— >n—1.
o Pk
Clearly, > 72, pr, = 1. Using this and formula (3) we have that there exists j € Ny
such that ;—J >n — 1. So, we are done. O

Lemma 3.3. Let x € RY, j € Ny and r > 0. Let A C B(z,r,j) be a set with
cardinality n. Then there is an y € A such that

card(A N B(y,2rp;)) > .
Kd

Proof. We can assume = = 0. Let C be some maximal 2rp;-separated subset of A.
Then {T%;y € C} is 2pg-separated subset of B(z,1,0). Thus, card(C) < k4. By
the maximality of C' we have | AN B(y,2rp;) = A. Thus, there exists y € C
such that

yel

card(A) _ n
card(A N B(y,2rp;)) > card(C) = g

and we are done. O

Definition 3.4. Let x,y € R?. Define C(x,y), D(x,y) C R? by formulas

C(z,y) := {ze]Rd: Shmt A §—Q(d)}.
2=yl |z —yl 2

— — Qd
D(m,y)::{zeRd: Sk A ()and|x—y|§|x—z|}.
2=yl |z —yl 2
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Lemma 3.5. Suppose that wy, ..., w, € R? and A := {ai}ﬁzn+1 c R®. Put a; = wj,
7 =1,..,n and suppose that the sequence {ai}ézl is 1-monotone. Then there are
v € Ny and indices

4 n+1=0i0,4) <i(l,—) < <i(y,—) Sily,+) S iy +1,-) =1
such that for every m =1,...;y
(5) if i(m,—) <k<i(m,+) then ar1 €| JC(w),ap),
J
and for every m =0, ...,y

(6) if i(m,+) <k<ilm+1,—) then ai€ mD(wj,ai(m,Jr)),
J

and

(7) if m<~y then ajmi1,—) € UC(wj,ai(m_’H).

J

Proof. Since ay, is 1-monotone we can easily see that either ax11 € Uj C(wj,ax) or
ak+1 € (; D(wj, a). Now, the proof can be done by straightforward induction. [

Lemma 3.6. Suppose that wy, ..., w, € R? and A := {ai}ﬁan c R®. Put a; = wj,
j =1,..,n and suppose that the sequence {a;}'_, is a-separated 1-monotone. Pick
{b:} be a subsequence of {a;}._, . Suppose that b1 € J; C(w;, by) for every
0 <k < L. Then for every k there is some iy, such that

afd(d
bry1 — wi, | — |bk — wi, | > 2( )
In particular, there is some i such that
af)(d
b — wi| — |bo — wi| > #L
n

Proof. The first inequality is a simple geometric fact. To see the second one set
W, ={ke{0,...,L —1};ix, =i}
L

for every i = 1,...,n. Clearly there is a j such that card(W;) > . Now, by
1-monotonicity we have

L—-1
b, — wj| — [bo — wy| = > |bx — w;| — |bx — wy]|
k=0
afd(d) _ af2(d)L
> D bk —wjl =[x — wy| > card(Wy)— = > — =

keWw,;
U

Lemma 3.7. Suppose that {ai}ézo be an a-separated 1-monotone sequence. Choose
N,M,p1,....pqa € {1,...,1} such that p1 < pa < ... < pg < N < M. Suppose that
ﬁ\ak —an| < lap, —an| for every N <k < M and every i =1,...,d.

Assume that for every N <k < M and everyi,j € {1,...,d}, i # j,

ap, — G Qp; — Gk

(8)

< Q(d).

|api - akl |apj - ak‘ -

Then for every N < k < M there is some i such that |ag+1—ap, >

*‘akfapi 6%1‘
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a(M—N)
> 6d?

In particular, there is some i such that |ap — ap,| — lan — ap,
Proof. Using Observation 3.1 we can can find unit vectors e; with

b
= 328

Ap,

|ap,

where +; is the angle between a,, and é;.
Take an arbitrary N < k£ < M and consider z = ijl zj€; = ap and y =

(9) cos(vi) = & -

2?21 Y;j€; = ap41. Without any loss of generality we can suppose that a; = 0.
First observe that there is some 4 with |y;| > %. Without any loss of generality we
can suppose that ¢ = 1.

The fact above with the help of the monotonicity of {a;} means that
1

cos(pB) = Y -6 < vt

[l
where f is the angle between y and é;.
Let A be an angle between y and ay,, then
Y .
lyl lap,|

= cos(A) < cos(B) cos(y1) + | sin(B) sin(1 )|

L + oo ! + |sin(y1)| < 7T V1 2(
= sin - — COS
= d 32d3 71 71

1 / 1
7z 32d2 16d2 102444

= 2d+4d 4d

Now, with use of the cosine formula for triangle with vertices a,,,0 and y we
obtain

/\

yl* = 2Jy| - |ap, | - cos(A)
|ap1| + |y - a‘pll

|y7aP1‘7|aP1|:

- |ap1|+‘y_ap1| (|a’pl‘+|y_a;01|)
Syl |9, | S ol

“2d ap, |+ [y — ap,| 6d N 6d
The last part of the statement of this Lemma is now straight forward application
of the pigeonhole principle. ([l

Theorem 3.8. Let 1 > a > 0. For every d € N there is a constant A(d) such
that every a-separated 1-monotone sequence {a;}X, in B(0,1) C RY with ag = 0
we have ol < A(d). In particular, every bounded 1-monotone set in R? has finite
1-dimensional (outer) Hausdorff measure.

Proof. We first prove the last part of the theorem. Suppose that I' C B(0, %) C R4
is 1-monotone. Choose 1 > a > 0 and suppose that {T'¢}Y | is a maximal a-
separated subset of I' and 1-monotone sequence. Then

rcl|JBry,q)
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and {I'¢ —T'¢}Y, C B(0,1). By the first part of the theorem we have a(N — 1) <
A(d). Thus

A
> diam B(I'Y', ) < 2aN < 2a- Ad)+a _ 2A(d) + 200 < 2A(d) + 2.
) (0%

Therefore H!(T') < 2A(d) + 2.
Suppose that there is an a-separated l-monotone sequence {ai}iK:O, with K

d
greater than % . (g’(‘””;))d . %) . Using a mathematical induction we will con-

struct indices p;, N;, M;, ¢ = 1,...,d such that the following conditions hold for
every 1 <k <d:
(a) Np—1 < pr < Ni < My < My_1, (for sake of completeness we put Ny = 0,
My =K)
(b) ﬁml —ap,| < lap, — an,| for every N <1< M, and every i =1, ..., k,

(c)

a/pi — qay apj — aj

< Q(d)

|a;0i - CL[‘ |apj - al‘ N
for every i,j € {1,...,k}, i # j and every Ny <1 < My,
d—k d—k

@ (&%) - (3%) lans, — an] < 535 (M — N,

(e) 10 < Mk — Nk.
Case k=1:Put p; =0.

Using Lemma 3.2 for A = {ai}f\iONO, x = apn, and r = |ap, — an,| we obtain
that there is some ¢ € Ny such that

6d2 [ drg \" / 100 \*
_ > — | —= Y7 :
card(AN Blany, |arr, = anyl,q) > — (Q(d)) (Q(d)) hu

Since {a;} is 1-monotone we we can find such indices N} < M{ that {ai}?ilN{ =

AN .B((],NO7 \aMO — (lNO|, q).
Then using Lemma 3.3 we can find some s, N; < s < M{, such that

card(B(as, 2lans, — anglpg) N {ait iy, )
(10) 62 [ d \* 100 \
>— o ) 50 o ) Pa
a \Q@) Q(d)

Now, let N7 be the first index for which an, € B(as, 2|an, — any|pq) N {ai}iAi{N{
and M, be the last index for which ays, € B(as,2|anm, — an,|pg) N {ai}ﬁ{N{. Then
(11) {a;} 1y, € Blan,, 4lan, — anylpg)-

To prove (e) note that

My — Ny + 1 > card(B(as, 2lar, — anylpg) N {ai}ily,)
12 06d? ( dra 100\ >0 1
= "o \Q(d) Q@) P1=qh=
Where the last inequality follows from

(13) a <lan, — ang+1] < rlan, — any| <1y
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Condition (a) is easy, we only need to verify Ny < Mj, which follows from (e). To
prove (b) observe that an, € B(an,, |arm, — an,l|,q) and by (11) we have for every
Ny <j<M

2 8
(14) wMj - aM1‘ < @PH“MO - aNoI < Tq+1‘aM0 - aNo' < |a'N1 - apl"
Condition (c) is empty in this case. Using (e) and (10) we obtain
10
M, — Ny Zﬁ-(M1—N1+1)
10 M/
217 - card(B(as, 2lans, — anolpg) N{aitiyy)
010 6 ( d 7 4y (10037
(15) =11 o \aw@) " \a@) "

(

010 64> (dra 7" (100 \* Jans, —an,|
— 11 (% Q(d) Q(d) 4|aMO — CLNO|

_6d% (dra \"" (100 d‘1| ~on]
“"a T\ Q@) Q(d) Gy =GNy
which proves (d).

Induction step. Suppose that p;, N;, M;, i = 1, ...,k are already constructed for
some k < d we will now show how to construct pgy1, Np+1, Mg41-

Using Lemma 3.5 for w; = a,, and the sequence A = {ai}ij\i’}vk we can find
indices

(16)  Ne=i(0,+) <i(l,—) <+ <i(y,—) iy, +) Si(y+1,-) = My

such that (5), (6) and (7) hold.
Consider

Vi={Ny <i< M:i(8,-) <i<i(B,+), s=1,..,v}.

Define W = {Ny+1, ..., M — 1} \ V. Using Lemma 3.6 for b; being the subsequence
obtained by restricting A to V' and w; = a,, we obtain that either card(V') <1 or
there is some ¢ such that

card(V) <2(card(V) — 1)

4k

SaQ(d) “(lamax v = ap,| = [amin v — ap,])
4k

SaQ(d) (lan, = ap,| = lan, = ap,])

< 4k | |

SaQ(d) M T N

(d) 4ka(Q(d))4—F

6d2a)(d)(drq)d—k (%3))
(=N

10
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This and (e) from the induction step imply that card(W) > W. Clearly, we
can find

Np <0(0,—) < ¢(0,4) <e(l,=) < ... < (T =1,4) <u(T,—) < (Y, 4+) < M.

such that
T

W = U{z, s, =) <i<i(s,+)}

s=0

and ¢(s, —) < ¢(s,+) — 1 for every s =0,...,7T.
Now, we will prove that there is an index 0 < § < T such that

L/ d 100\
(17) 5 <Q(d)> (sa)** (Q(d)) |au(5,4)-1 — (s,
<o (6, +) =G~ 1),

First assume that 2(c(T,+) — ¢(T,—) — 1) > card(W). Then we have

1/ d \“FY /100 \¢F
s(aw) = (o) o o

Lemma 2.4 ]| d d=k—1 d—k 100 d=k
<o “k (2} 9lap, —
= 5@@) (ka) @w) lase, = am,

a 2(Mg — Ny)
6d? )
< (T 4) = (X, ) = 1)

INS

(=2}

and therefore we can put § = 1.

Now assume that 2(¢(T, +) — (Y, —) — 1) < card(W). We will prove that there
is 0 < s < T such that for every i = 1,..., k

v salis) (am) oo

< (t(5,4) —u(5,—) = 1).

)

— lays,—y — ap,
e
6d?

For a contradiction suppose that for each 0 < s < Y there is some 75 such that

2 (drg \" (100 d*’“(‘a .
5d \ Q(d) Q(d) dot) T

(e(s,+) = e(s,=) = 1).

)

= |au(s,—) — ap,,

>

&
6d2
Define

Wi = (s els.—) < j < els,+)}-

1s=1

Find ¢ such that card(W;) is maximal. Then card(W;) > carg((iW) > Q(M’g;Nk)
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Now,
« 5d «
@(Mk — Nk) S; . @ card(Wi)
5d «
=5 2 ( D (s, +) = uls, =) — 1))

< (g%)d_k (é?ﬂ%)d_k <S;i(|%(s,+> = ap;| = lays,—) — ap; )>

(5?d>>d_k (éﬁ%)dk I

< — lan, — ap,)
_ ( dra 100 \ 4% @ — am |

=\ Q) Q(d) M T

(d) «

< @(Mk - Nk)7

which is not possible. Since § < T we have that ¢(5, —), (5, +) are consecutive

elements of V. Thus by (7) we have a,(s ) € Ule C(ap,;,a,(5,—)). So there exists
i €{1,...,k} such that

Qd)|ay,4+)—1 — auiz,—)| <QUd)|ayi,4) — aus,-)l
<2(la,,4) — ap,

).

= lays,—) — ap,

Using this and (18) we obtain (17).
Put pri1 = Nk+1 = (8, 7) and Mk+1 = 1(5,4) — 1. This implies pg+1 > Ng.
Observe that for every i =1,.... k

M
(19) { J}Nl:j—ll_,,_l D(apmakarl)'

Now, we will find Ny, and Mj,. Consider B(ay,.,, — ap,.,|). Then

157, .
according to Lemma 3.2 there is some g € Ny with

v — ~
card ({aj}ﬁ::f M B(apk-u? |azﬁk+1 — Qpjiy |, q)) > pq(Mk+1 - Nk+1)'
: ) J\Z/Yk+1
Since {a]}Nk+1

/ /
Nipr < Mjpy < My and

is 1-monotone we have some indices N,Q_H, M,Q_H such that Nii1 <

M’ M,
{aj}N’:_:rll = {aj}ﬁ::ll N B(am-,+17 ‘aﬁk+l ~ Opjia q)-

Further, due to Lemma 3.3 and (17) there is some index s with N, <s < M;_,
and

M Pq  ~ ~
card ({az}z k]\?l 0 B(asﬂ‘aﬁkﬂ - am-,+1|9q)) > ?Z(Mk+1 — Ni+1)

(1>7) 1 642 ( dkq )d—k—l < 100

(20)
5 a \Q(d) Q(d)) pq‘aﬂkﬂiaﬁwlk
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. M, .
Let My 1, Nik11 be a smallest and greatest indeces from {]}N;’f: for which an,, ,,an, ., €
B(as,2|a]\7k+1 — ap, ., |0q). Then

M
(21) {aj}N;:rll C B(aMk+1’4|aMk+l - apk+1|9q)'
Evidently,
(22) Nii1 < N1 € My < M.

Let us prove (¢). Assume Nigy1 < j < Myyq and i = 1, ..., k. By the 1-monotonicity
we have
®) Q(d)

|aj - apk+1| < |a’Pk+1 - a‘Mk| < T|apt - G“Nk| <

Q(d)

|a‘Pi — Qpyy |
which implies

Q(d)

(23 =

|a‘p7’, - apk+1| + |aj - aPk+1| S Q(d)‘apq - apk+1| S Q(d)‘a.ﬁq — Gj].
Thus,
0

%

(aj - al)k+1) : (al)i - aj)
:(aj - aPk+1) . ((api - apk+1) + (apk+1 - aj))
(a’j - apk+1) : (a‘pi - apk+1) + (a’j - apk+1) ' (apk+1 - aj)

W) _ )y = ]|y, — |
= 2

|a‘j — Qppys |2

23
> - Q(d)‘apk+1 - aj| : ‘O’Pi - a’j"

where the first inequality follows from 1-monotonicity of {a;}. Now, the fact N}, <

Ni+1 < M1 < My, completes (c¢).
Let us prove (b). Consider Ngy; <1 < Myiq. By (21) we have

2

Q(d) ‘al - aMk+1| < WMM,C_H — Qppiq |Qq < Tq-‘rl|a]\ﬂ4',€_*_1 - apk+1| < ‘aNk+1 - apk+1‘

which proves (b) for ¢ = k+ 1. Assume now 1 <4 < k. Then by l-monotonicity we
obtain
2 2 (b)
@'al - aMk+1‘ < @'al - aMk| < |a:Di - a’Nk| < |a17i - aNk+1‘

which finishes the proof of (b).
Using (20) and following the calculation showed in (12) and (13) we obtain

M/
My11 — Nggq + 1 > card(B(as, 2|aMk+1 —ag,., lpg) N {ai}i:'}:,’gﬂ)

201 6d? (dmd )d"“‘l ( 100

d—k
(24) =5 o \a@) q) i o

6d% [ drg NP1 /100 \ R
=2— | =~ — relag  —ax. | |
a \Q@) Q(d) 2N g1 ™ CNep

>11.
Thus, My4+1 — Nk41 > 10 which proves (e).
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Moreover, by (24) and (e) we obtain
10
M1 — Niga Zﬁ(Mk+1 — Npp1+1)
@10 1 64> [ drg \" "' [ 100 \ "
I aur ) e, s
11 5 a \Qd) Q(d) M1 “Nin

(2>1)£ % d/{d okt 100 -k |G‘Mk+1 - aNM-l‘
=11 o \@ Q(d) 4

642 ( drg \“7' (100 \
=2 o '\ o) e TNl
6

1
1
2
>d2.<dﬁd)d—k—1 (m)d_k_lmM e
T a Q(d) Q(d) e e
which proves (d).

To finish the construction note that (a) follows from (e) and the induction pro-
cedure.

Now, using Lemma 3.7 for our choice of p;, N = Ny, M = M, we obtain that
for some 1

(0%
lant, — any| 2 lan, — ap,| = lan, —ap,| > —5 (Mg — Na),
6d?

which is in contradiction with (d) for k = d. Note that we can use Lemma 3.7 due
to (a) — (c). O

Remark that an analogous theorem cannot hold in an infinite dimensional Hilbert
space H because a 1-monotone space of Hausdorff dimension greater than 1 can be
found in H.

Corollary 3.9. Let ' : [0,1] — R? be continuous curve. Then graph of T has
finite 1-dimensional Hausdorff measure if and only if I' is a linear combination of
continuous curves with 1-monotone graphs.

Proof. Let T' = (f1,...,f4) : [0,1] — R be continuous curve. Clearly, I' has
finite 1-dimensional Hausdorff measure if and only if Vig )(f;) is finite for every
i =1,...,d. This and Theorem 3.8 give that a linear combination of continuous
curves with 1-monotone graphs has a finite 1-dimensional Hausdorff measure.
If I' has a finite 1-dimensional Hausdorff measure then we can define functions
f:00,1] > Rforeveryi=1,...,d and j = 0,1 by
£t = Vi, (f),
fil(t) = fz(t) - V[o,t](fz‘)-

Now, we define £ : [0,1] — R? for every s € {0,1}¢ by
Ft) = (00, f590) .

Since functions fZJ are monotone we easily obtain that functions F'® are continuous
and have 1-monotone graph. Clearly,

=24 Z Fs.

s€{0,1}4
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So, we proved that I" is a linear combination of continuous curves with 1-monotone
graphs.
O

4. FUNCTION WITH SMALL MONOTONE SUBSPACES

In this section we construct an example of a continuous function f : [0,1] — R
with the following property: if graph(f|M) is a monotone set in the plane for some
M c [0,1] then A(M) = 0 and M is nowhere dense.

Definition 4.1. Let F : [0,1] — [0,1] be the standard (triadic) Cantor function
and let g : [0,1] — [0, 1] be a continuous function defined by

| F(2w), z €0, 3]
T\ FE-22), zeli 1]
Let I = a,a + €] C [0,1] be a nondegenerated interval L > 0 and n € N. Then
we define a continuous function fIL" :[0,1] = [0, L] by formula

Lin ._ {ELQ(Z (r—a-%)), ze [a+%,a+ “““)E} k=0,..,n—1,

n n
I .
0, otherwise

Let © be a system of all continuous functions form [0, 1] to R that are locally
constant on the set of full measure, i.e. there is a sequence of pairwise disjoint
closed intervals I, such that > A(I;) = 1 and f is constant on each I;. Given
L > 0 and n € N. define operator Y, ,, :  — Q by the following procedure: For
h € Q let Z(h) be the system of all maximal nondegenerated intervals in which h
is constant. Then we put

Yinh)=h+ > f"
1€Z(h)
Let {ax }72 | be the sequence 3,4, 3,4,5,3,4,5,6,3,4,5,6,7,3,4,... and put L,, =
i. We define fy = 0 and put
fn+1 = TLn+1,2ai+l (fn)

Lemma 4.2. Let N €e N, A > 0 and let
1 1 2A
k=0,..2N? and

Y = {A(2k+1;>,A<2k+l+;)] x [A(GJ\;_Z),A(GJ\;JF?)],

k=0,..,2N? - 1.
Suppose that M is a symmetrically %—monotone set in R?, then there is some k
such that Xo "M =0 or Y, N M = 0.

Proof. Without loss of generality we can assume A = 1. Suppose for a contradiction
that there are x; € X N M and yi € Y N M for every k and let < is a witnessing
ordering on M. Suppose that z; and y; are the minimal (with respect to <) among
all zj and yy, respectively. We will additionally assume that z; < y; the second
case can be proved by the same way. There are two possibilities, either z < y; for
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every k or there are some x; < y; < x,,. In the second case it is not difficult to see
that we can assume |l — p| = 1 which implies |z; — x| < 4, moreover |z; —y;| > N.

This leads to
|z —y;l N
|z — x| 4
which is a contradiction. The first case implies that zo, xon2 < yo,yon2. If zg <
Ton2 we consider xg, Tonz, Yo With 29 < Zan2 < yo. Then |vg — zon2| > 4N2 — 1
and |zo — yo| < 3N. This leads to

- 4N?2 -1 N
|.’L'0 $2N2| >

> —_

|zo — Yol 3N 4
and we have again a contradiction. If zg > zon2 we consider xg, Tonz,Yyonz With
Ton2 < Tg < Yan2 and we continue analogously. O

Lemma 4.3. Let n € N and I = [a,a + Ada? ] € Z(f,). Then
(a) 0< fn+1 —fn < Ln+1|I| = 2Aan+1 on I,
(b) let J € Z(fay1) such that J C I, then |J| < pe— = &,

12ai+1
(¢) fori=0,...,2a2 4
A A A
nt1— fn 21A — ———, 2IA+ ———|NIT)C|0,—]|,
(i1 f)([a—i— ' 64ai+1 et +64a%+1} ) [ 4}

(d) fori=0,...,2a2,, —1

(osr = ) (Ja+ @+ DA~ G ot @i+ ) A+ gA—])

c [Bani—1A Bant1)A
4 ’ 4 :

Proof. The first part is obvious and the fact that the biggest interval of constantness
on the Cantor function has length % The last two parts follow directly from the
facts that for the standard Cantor function F' we have F(x) < /2 and therefore

1 1
F(10,——1]c]|o, ;
(o)) o]

together with the symmetry of F. O

Due to Lemma 4.3 we know that the sequance {f,} is uniformly convergent (and
monotone) and we can now define the continuous function f = sup,, fn-

Lemma 4.4. Let n € N and I = [a,a + Ada? ] € Z(f,). Then

(1) 0< f—fa< |
(2) fori=0,...,2a2

A A 2A
— fn 2N — ———, 2A+ ——1| N1 , —
(f f)([a+ 7 64a%+1 a+2i +64a%+1}m )C[O 3}

(3) fori=0,...,2a7,, —1

(= f) ([a+ @it DA = gh—at @i+ DA+ 52-])

c |:(6an+1—2)A (6an+1+2)A]
3 ’ 3 :
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Proof. Property (1) follows from properties (a) and (b) as follows

oo o0

0< f fu= D s~ fasi) < 5 D27 = 1]

=1 i=1

To prove property (2) we write

L&) A A A 2A
ng_fn:f_fn+1+fn+1_fn S §+fn+1_fn§§+z<?~
Property (3) can be proved following the same lines. O

Theorem 4.5. Let M C [0,1] and suppose that graph(f|ar) is monotone. Then
A(M) =0 and moreover, M is nowhere dense.

Proof. Fix ¢ > 2 and M C [0, 1] and suppose that graph(f|as) is c-monotone. Then
graph(f|y7) is symmetrically (¢ + 1)-monotone.
Consider A, := [0,1] \ Usez(y,) I and put A = [JA,. Then A has measure

0. Suppose for contradiction that M has positive measure. Then also M \ A has
positive measure. This means that there is a Lebesgue point of z € M\ A. From the
definition of the Lebesgue point we can find §g > 0 such that for every dy > 9§ > 0

we have L
)\(Mﬂ[x—57x+5])>l_ 1
20 - 2000000c¢*
From the construction of the function f we can find n such that 4dc+4 < a,1 < 7c
and such that there is some I = [a,b] € Z(f,) with © € I C [z — do,x + o). Put
0 = max(|z —al,|z—"b|). Then I C [x—9,z+ ] and |a—b| > §. Now, by Lemma 4.2
la—b]

and Lemma 4.4 we obtain that there is an interval J of length S5aT such that
_ n41
JNM\ A={ and we can write
7 2§ — ot
1 AM N[z —0,z+9)) 25647,
1-— < <
2000000¢* — 20 - 20
5
26 - 25642 2- 256(17c)4 1 1
< < =1- <1- .
20 2 512(7c)* 2000000c¢*
Note that we proved A(M) = 0 in fact. Consequently, M is nowhere dense. O

Note that if we ask for a continuous function f such that no set M C graph f
of positive 1-dimensional Hausdorff measure (equipped with the Euclidean metric)
is monotone, the situation is completely different. In fact, for every such f there is
always a monotone function A : [min f, max f] — R such that graph h~! C graph f
(see e.g. [5]). Note that for M = graph h we have |M| > max f — min f and M is
symmetrically 1-monotone.

5. SMOOTH FUNCTION WITT UNBOUNDED VARIATION AND MONOTONE GRAPH

In this section we will construct for every ¢ > 1 a smooth function with sym-
metrically c-monotone graph and unbounded variation.

Definition 5.1. Letn € N and I = [a,a + A] C [0,1] be a closed nondegenerated
interval. Put

- 2 3 2 3 A
I = |a+iA nt ,a+iA nt + i
6n + 6 6n+6 3n+3
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fori€{0,1,2} and define AL .= {13, I}, 12}.

n’ ni > n
Clearly, we can fir some fI € C°°([0,1]) such that
(a) falz) =0 forz e [ UIZU([0, 1]\ 1),

(b) fl@) =Tl forwe 1l
() (f1)(z) #0 forw € I\ (IOUTILUT2).

For every n > 0 we inductively define functions fy, : [0,1] = R and a collection
of closed intervals A,. We put fo =0 and Ay = {[0,1]}. Assume that we already
have f, and A,,. We define

fn+1 = fnJF Z vaL+17

IeA,

7l+1 U An+1

IcA,
Lemma 5.2. The following statements hold.

) Letn €N, i € {0,1,2} and I be a closed interval. Then I C I.
) Let n > 0. Then the elements of A, are mutually disjoint.
) TUAR| = n%'_l for every m > 0.
(iv) Let n >0 and I € A,. Then |I| = m
) Letn>0and I € A,. ThenO<fI 1(z) < mﬂ)reveryfce [0,1].
) Let n > 0. Then f,(z) < % for every z € [0 1}
) Let n > 0. Then f, € COO([O 1]) and (fn) ( ) = (fn) ( ) =0 for every
1> 0.
(viii) Letn >0 and I € A,. Then f, is constant on I.
(ix) Vi) (fa) = 3 Yoty 737 Jor every n € N.
(x) Let 0< k<n, I €A, and x,y € I. Then

n

1

(xi) The function f, satisfy condition Py for every n > 0.

Proof. Statements (4), (i), (vii) and (viii) are trivial.
We prove (zm) by induction. Clearly, ||JAog| = 1. Assume, we had already shown

UAn| = . Since [J AL, 4| = % for every closed interval I we have
n+1
’UA"H‘ n+2

Clearly card(A,,) = 3" and all elements of A,, have same length. Thus, by (i)
and (i7) we obtain (iv).
Using (iv) we clearly obtain (v).

By (v) and (ii) we have f, <> Thus we have (vi).

i=1 231(1+1) = 4
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We prove (ixz) by induction. Since f; = fl[o’l] we have Vjo 1(f1) = |[0,1]{] = &.
Assume we had already shown Vo 1(fn) = %Z?_l H%l Clearly,

(44), (viii) 1<
Vo (fart) =" V() + Y- Vilfin *522_’_1 > Mol

IeA, IcA,

m n+1

(iv) T 1 1 1+ 1
= - 3" == .
3;i+1+ (n 4+ 2)3n+1 3;i+1

Now we prove (x). Since z,y € I € Ay and (viii) we have fi(z) = fr(y). Since

fn > fr we have |f,(z) — fn(y)| < max{f,(t) — fx(t); t € I}. By (i¢) and (v) we
have

n

1
max{f(t) = fu(t); t € I} < i=;|-1 CREIEVE

Finally, we prove (zi). Let x <y € [0, 1] be arbitrary such that f,(z) = fn(y).
We find z € (z,y) such that
(25) [fn(2) = fu(@)] = max{[fa(t) = fu(2)]; t € [z, 9]}
By Definition 5.1(c) we have z € |JA,. We can assume f,(z) # fn(z). Thus,
z,y ¢ |JA, and consequently, we can find maximal 0 < k < n such that there

exists I € Ay such that z,z € I or z,y € I. By the maximality of k there exists
J € Agy1 such that z,y ¢ J and z € J. Thus J C (z,y) and

1
(26) \x—y|>|J|—m~
By (z) we have
LTSIyt S S . S
S A 23 1) T 23 (k+2) & T T (k23T

Using this,(25) and (26) we are done.
O

Lemma 5.3. Let ¢ > 0 and I C [0,1] be a closed non degenerated interval. Then
there exists gl € C°°([0,1]) such that

(a) gé(x) =0 for every z € [0,1]\ I,

(b) 0<g! <c,
(c) gl satisfy condition Py,
(d) Vi, (9) = 1.

Proof. Let I = [a,b]. We can assume ¢ < 1. By Lemma 5.2(ix) we can find n € N
such that (b —a)cVjp11(fn) > 1. We define

. , 0, ze 0,1\ 1,
(27) ge(x) := ( ) sel
By Lemma 5.2 we have gl € C°°([ 1]) and conditions (a), (b), (¢) and (d) are

satisfied.
O

Theorem 5.4. Let ¢ > 1. Then there exists a continuous function F :[0,1] = R
such that
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(A)
(B)
(©)
(D)

Fis znﬁmtely differentiable at every x € (0,1],
F(0) =

Vio,y(F )= 00,

F has c-symmetrically monotone graph.

Proof. For every n € N we put J, := [2727F1 27272 We define a function
G:[0,1] = R by

o0
= Z 94{7—12n+1 (),
n=1

where g! are functions from Lemma 5.3.
By Lemma 5.3 we easily obtain (A).
If z € [0,1]\ U~ /5 then G(x)=0. If z € J,, then

J, L5.3(b) 2n+1 2
0<G@) = g{"sn(z) < 472 <

Thus, we have (B).

By Lemma 5.3(d) we have (C).

Now, we prove that G satisfy condition P;. Let x < y € [0, 1] such that G(z) =
G(y). We can assume that there is no w € (x,y) such that G(w) = G(z). Thus,
there exist k < n such that x € J,, and y € Ji. If n = k then condition P; follows
from Lemma 5.3(c). If k < n then y —x > 2721, Thus we have

L5.3(b)
max{|G(t) — G(z)|; t € (x,y)} <max{G(t); t € J,} < 472+ < |z — y|

and condition P; is satisfied.
We put F' = (¢—1)G. Clearly F satisty (A), (B), (C) and condition P._;. Thus
F' has c-symmetrically monotone graph.
O
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