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A simple and efficient BEM implementation of
quasistatic linear visco-elasticity

Christos G. Panagiotopoulos1, Vladislav Mantič1, Tomáš Roub́ıček2

Abstract: A simple, yet efficient procedure to solve quasistatic problems of special linear visco-elastic solids at small
strains with equal rheological response in all tensorial components, utilizing boundary element method (BEM), is
introduced. This procedure is based on the implicit discretisation in time (the so-called Rothe method) combined
with a simple “algebraic” transformation of variables, leading to a numerically stable procedure (proved explicitly
by discrete energy estimates), which can be easily implemented in a BEM code to solve initial-boundary value visco-
elastic problems by using the Kelvin elastostatic fundamental solution only. It is worth mentioning that no inverse
Laplace transform is required here. The formulation is straightforward for both 2D and 3D problems involving
unilateral frictionless contact. Although the focus is to the simplest Kelvin-Voigt rheology, a generalization to
Maxwell, Boltzmann, Jeffreys, and Burgers rheologies is proposed, discussed, and implemented in the BEM code
too. A few 2D and 3D initial-boundary value problems, one of them with unilateral frictionless contact, are solved
numerically.

Keywords: boundary element method, implicit time discretisation, quasistatic linear visco-elasticity, unilateral
contact, Kelvin-Voigt rheology, Maxwell rheology, standard linear solids, Jeffreys rheology, Burgers rheology.

1 Introduction

A large number of engineering and (e.g. geo-)physical applications consider materials that exhibit
visco-elastic behaviour. A typical example of such a behaviour is the mechanical response of
polymers and polymer-matrix composites, or rocks undergoing aseismic slip, etc. Visco-elasticity
accounts for the dependence of stresses and strains on time, and response of real visco-elastic solids
or structures is usually analysed numerically by the finite or boundary element methods (FEM or
BEM). When inertial effects are neglected, usually because of sufficiently slow external loading,
the model is addressed as quasistatic. The quasistatic linear visco-elasticity theory provides a
usable engineering approximation for many applications in polymer and composites engineering,
among others. There are several models describing visco-elastic behaviour of materials obtained
by a generalization of simple 1D models to 2D or 3D ones. One of these well-known models, often
adopted in designing procedures, is the Kelvin-Voigt model.

There are four main approaches to quasistatic linear visco-elastic analysis by BEM. The first
and most commonly applied approach uses the correspondence principle to establish an associated
elastic problem solved in the Laplace transform domain. Then, the solution in time domain is
recovered by a numerical inversion [5, 8, 18, 21, 30, 36]. The second approach is working directly
in the time domain, however it requires a time dependent fundamental solution [6, 19, 38]. The
third, a kind of mixed, approach also solves the problem in time domain, but uses the Laplace
transformed fundamental solutions with a convolution quadrature leading to a time stepping
procedure without the knowledge of the time dependent fundamental solution [34, 35, 37]. The
fourth, a kind of direct, approach which utilizes the Kelvin elastostatic fundamental solution
was introduced by Mesquita and Coda in [24, 25] for both Kelvin-Voigt and Boltzmann visco-
elastic models. The Somigliana displacement and stress indentities are rewritten to obtain visco-
elastic boundary-integral-representations (BIRs) for these models. After the BEM discretisation of
these BIRs, a finite difference approximation of velocities leads to a time marching scheme. This
approach was later applied to the problem of circular holes and elastic inclusions in a visco-elastic
plane [14, 15]. A brief presentation of several BEM procedures for problems of visco-elasticity
may be found in [23].

The novelty of the present approach consists in a particular application of the Rothe method
(i.e. the time discretisation by the implicit Euler formula, cf. e.g. [31]) to the governing partial
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differential equations (PDE), where after this time discretisation, a suitable variable transform is
carried out to convert it in each time step to a linear auxiliary elastostatic problem with proper
boundary conditions. Once this linear elastostatic problem is solved the actual displacements,
stresses and strains of the visco-elastic problem in this time step are recovered and used in the
next step, an efficient recursive procedure being obtained in this way. For the sake of simplicity of
explanation, the main steps of the procedure proposed are first explained for the simple Kelvin-
Voigt model, and then briefly generalized to other basic linear visco-elastic rheologies. The present
procedure can be implemented in any elastostatic FEM or BEM code. The present work is based
on the collocation BEM formulation due to its advantages as no domain variables appear in the
problem solution. Additionally the stability of the present time discretisation can be established.
Although there are evident similarities with the previous work by Mesquita and Coda, the present
theoretical formulation is much straightforward showing in a more transparent way that any
linear elastostatic BEM code can be applied to linear visco-elastic analysis requiring just minor
modifications.

Under these assumptions, the purpose of this work is to present and numerically verify a simple
yet efficient methodology for BEM analysis of quasistatic visco-elastic solids, initially scrutinizing
the Kelvin-Voigt material in Sections 2-3 and later, in Section 4, further extended to other models
usually found in engineering or physical applications. The approach may be considered as a time
domain one, where no special time-depended fundamental solution, neither domain integration, is
needed. Another important engineering problem treated in this work is a contact of visco-elastic
bodies [12].

2 The mixed unilateral initial-boundary-value problem for Kelvin-

Voigt visco-elastic body

The following boundary-value problem on a domain Ω ⊂ R
d, d = 2, 3, is used in the subsequent

developments, where also the standard model of the frictionless unilateral Signorini contact is
considered, see Figure 1,

χC

C

x1

x2

ΓD

ΓN

ΓN

ΓC

Ω

Figure 1: 2D schematic illustration of the geometry and notation of the boundary-value problems
considered. In the bulk, a visco-elastic rheology from Fig. 2 is schematically depicted.

divCǫ+ f = 0 with ǫ = ǫ(u,
.

u) = e(u+χ
.

u) on Ω, (1a)

u = w on ΓD, (1b)

t(ǫ) =
(

Cǫ
)∣

∣

Γ
~n = g on ΓN, (1c)

u·~n ≤ 0, tn(ǫ) ≤ 0, (u·~n)tn(ǫ) = 0, tt(ǫ) = 0 on ΓC, (1d)

where u is the displacement and e = e(u) = 1

2
(∇u)⊤+1

2
∇u the small-strain tensor, and C is the

fourth order tensor of elastic moduli, while χ > 0 a given relaxation time. Furthermore, ~n = ~n(~x)
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is the unit outward normal to Γ = ∂Ω at x, tn(ǫ) = t(ǫ)·~n, and tt(ǫ) = t(ǫ) − tn(ǫ)~n. It is
straightforward to generalize the above problem formulation and all the results below to several
(visco-)elastic solids in contact with a non-negative gap defined at a possible contact zone ΓC (see
Example 5.3). Actually, pertinent indications in this sense will be given at some places below.
We further consider the initial-value problem for (1a-d) for time t > 0 by prescribing the initial
condition

u(0) = u0. (1e)

The mechanical 1D analog of the above model is shown in Figure 2. According to this figure,
since the two components of the model are arranged in parallel, the strains in each component
are identical and equal to e(u), while for the stress it holds,

σ = Ce(u) + χCe(
.

u), (2)

where the actual or total stress field is defined as the sum of the elastic and visco-elastic part.
The Kelvin-Voigt model is known to be very effective for predicting creep, but less at describing

χC

C

Figure 2: Mechanical analog of Kelvin-Voigt model.

the relaxation behavior. For this reason other advanced and more complex rheological models
exploiting auxiliary internal parameters have been defined and used. Eliminating these internal
parameters leads to higher order time derivatives involved in the model, cf. Section 4.

3 Discretisation in time and space

We perform the discretisation of the initial-boundary value problem (1) by the implicit formula
in time and by the boundary-element method in space.

3.1 Time discretisation

Using an equidistant partition of the time interval [0, T ] with a time step τ > 0 such that T/τ ∈ N,
we consider:

divCǫkτ + fk
τ = 0 with ǫkτ = e

(

ukτ + χ(ukτ−uk−1
τ )/τ

)

on Ω, (3a)

ukτ = wk
τ on ΓD, (3b)

t(ǫkτ ) =
(

Cǫkτ
)
∣

∣

Γ
~n = gkτ on ΓN, (3c)

ukτ ·~n ≤ 0, tn(ǫ
k
τ ) ≤ 0, (ukτ ·~n)tn(ǫ

k
τ ) = 0, tt(ǫ

k
τ ) = 0 on ΓC, (3d)

with wk
τ = w(kτ), fk

τ = f(kτ) and gkτ = g(kτ), and proceed recursively for k = 1, ..., T/τ with
starting for k = 1 from

u0τ = u0. (3e)

This implicit time discretisation is numerically stable in the sense that the discrete solution
ukτ stays bounded if τ → 0 in a suitable norm provided the data u0, f , and g are qualified
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appropriately. More specifically, this can be seen from the discrete variant (as an upper inequality)
of the continuous energy-conservation equality (30), introduced and discussed in Appendix, i.e.

E (ukτ ) +

k
∑

l=1

∫

Ω

χCe
(ulτ−ul−1

τ

τ

)

:e
(ulτ−ul−1

τ

τ

)

dx

≤ E (u0) +
k
∑

l=1

(
∫

Ω

f l
τ ·
ulτ−ul−1

τ

τ
dx+

∫

ΓN

glτ ·
ulτ−ul−1

τ

τ
dS

)

. (4)

The inequality in (4) rely on convexity of the stored energy E .

3.2 Transform of the visco-elastic to an auxiliary elastic-like problem

BEM standardly uses the so-called boundary integral operators which are explicitly known in
specific static cases, here for the homogeneous linear elastic material which we consider in what
follows. Yet, we have to calculate visco-elastic modification and here we benefit from choosing
the ansatz of the tensor of viscous moduli as simply proportional to the elastic moduli, i.e. χC.
Therefore we can use BEM with the same boundary integral operators as in the static case utilizing
a transformation originally proposed in [32] and numerically implemented in [33], by defining a
new auxiliary variable, in view of (1a), as

vkτ = ukτ + χ
ukτ−uk−1

τ

τ
. (5)

In terms of this new variable, one obviously has the Kelvin-Voigt strain ǫkτ = e(vkτ ), the velocity
(ukτ−uk−1

τ )/τ = (vkτ−uk−1
τ )/(τ+χ), and the displacement recovered by

ukτ = (τvkτ+χuk−1
τ )/(τ+χ), (6)

which is to be used in (3a)-(3c), where we assume ΓC = ∅, leading to the transformed time
discretized problem

divCe(vkτ ) + fk
τ = 0 on Ω, (7a)

vkτ =
χ+τ

τ
wk
τ −

χ

τ
wk−1
τ on ΓD, (7b)

t(e(vkτ )) =
(

Ce(vkτ )
)
∣

∣

Γ
~n = gkτ on ΓN, (7c)

with uk−1
τ = (τvk−1

τ +χuk−2
τ )/(τ+χ), and proceeding recursively for k = 1, ...T/τ ∈ N.

It might be easily observed from (7), that in terms of the auxiliary variable vkτ which gives
the equilibrium stress, the problem has the standard form of a linear elastic one and therefore
could be numerically solved using any standard numerical procedure. However, BEM seems to be
a natural choice, especially if we consider the case of zero body forces f=0, which we adopt for
the rest of this work.

What is actually computed by BEM is the auxiliary field vkτ , while we update the elastic field
ukτ by (6), keeping in mind that uk−1

τ is already known value at time step k. It is also important
to notice that transformation (5) appears also in the boundary condition on ΓD, see (7b), while
tractions on ΓN are equal to tractions in the original visco-elastic problem, as shown in (7c).

Taking into account the above explanation, the Somigliana displacement identity for the aux-
iliary variable vk can be written as

C(ξ)vkτ (ξ)+

∫

Γ

− vkτ (x)T (x, ξ) dSx=

∫

Γ

t(e(vkτ ))(x)U(x, ξ) dSx, (8)

where, the weakly and strongly singular integral kernels U(x, ξ) and T (x, ξ) are the usual Kelvin
fundamental solutions in displacements and tractions (two-point tensor fields) [29], C(ξ) is the
coefficient tensor of the free term [22], and the first integral represents the Cauchy principal value.
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3.3 Extension to multi-domain problems

In problems of several bodies, where some of them may be visco-elastic or merely elastic, we
need to consider compatibility of displacements and tractions equilibrium at common interfaces.
Special attention is needed since, while we solve the BEM system with respect to the auxiliary field
vkτ , compatibility of displacement has to be considered for the displacement field ukτ . Thus, at the
interface between two visco-elastic solids Ω1 and Ω2 with relaxation times χ1 and χ2, respectively,
the compatibility of displacements writes as

uk,1τ = uk,2τ ⇒
τ

τ+χ1

vk,1τ +
χ1

τ+χ1

uk−1,1
τ =

τ

τ+χ2

vk,2τ +
χ2

τ+χ2

uk−1,2
τ , (9)

where a variable qk,iτ refers to the domain Ωi at the kth time step. For the case of elastic solids,

where χ=0, eq. (9) cast to the usual equation considered in a BEM formulation, that is uk,1τ =uk,2τ

reduces to vk,1τ =vk,2τ , as in this case the auxiliary field vkτ obviously coincides with the displace-
ment field ukτ . Equilibrium of tractions is considered for the total stress field defined in (2) and
consequently for the tractions t that correspond to the auxiliary field vkτ and these tractions are
directly computed in the BEM formulation,

t
1(e(vkτ )) = −t

2(e(vkτ )). (10)

3.4 Extension to contact problems utilizing the energetic approach in BEM

Visco-elastic frictionless contact problems are numerically handled usually by utilizing FEM, cf.
[7, 1, 2, 9, 10, 20]. To our best knowledge, except for the specific case of rolling contact [16], it
is the first time that a BEM formulation for contact problems of visco-elastic solids is presented
and fully explored, although it has been also used in [33] and originally proposed in [32]. In
order to solve the unilateral and/or adhesive contact problem of an assemblage of solids under
(possible) contact to each other and/or some outer rigid obstacles, we follow the general framework
of energetic approaches to contact problems using BEM, as it is introduced in [27]. Under this
framework, the minimization of the potential energy, defined here in terms of the auxiliary variable
vkτ from (5),

G (kτ, vkτ ) =

∫

Ω

1

2
Ce(vkτ ):e(v

k
τ ) dx−

∫

ΓN

gkτ ·v
k
τ dS, (11)

is required. The same procedure has also been utilized in [33], however without a detailed presen-
tation and numerical testing of the BEM formulation for visco-elastic problems.

Here we assume a non-empty ΓC and write the discretized condition (3d) in the form

vkτ ·~n ≤ −
χ

τ
uk−1
τ ·~n, tn(e(v

k
τ )) ≤ 0, (vkτ ·~n)tn(e(v

k
τ )) = 0, tt(e(v

k
τ )) = 0 on ΓC, (12)

which completes the system of equations (7). Following the energetic approach in BEM, we obtain
a convex minimization problem in terms of the auxiliary field vkτ , in particular we have to solve
the quadratic-programming problem:

minimize G (kτ, vkτ )

subject to vkτ ·~n ≤ −χ

τ
uk−1
τ ·~n on ΓC

}

(13)

with G from (11). It is important to realize here that in the quadratic-programming problem
only the part of the auxiliary field defined on ΓC represent active variables in the minimization
procedure [27, 28].

Since the auxiliary variable vkτ gives the equilibrium stress, in contrast to the elastic field ukτ ,
the domain integral appeared in G , under the assumption of zero body forces, can be expressed
as a boundary one through the so-called Clapeyron theorem, i.e.

∫

Ω

1

2
Ce(vkτ ):e(v

k
τ ) dx =

1

2

∫

Γ

t(e(vkτ )) · v
k
τ dx, (14)
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and finally the stored energy in terms of vkτ and in a boundary form, that we have to minimize, is
given as

G (kτ, vkτ ) =
1

2

∫

Γ

t(e(vkτ )) · v
k
τ dx−

∫

ΓN

gkτ ·v
k
τ dS (15)

for which, standard techniques presented in [27] might be used to numerically handle the above
minimization problem by utilizing BEM.

With the above strategy, we estimate the sum of the stored elastic energy and the dissipated
energy. However, we sometimes are interested in visualizing the spatial distribution of the ac-
cumulated dissipated energy due to viscosity, that is the term

∫ t

0
χCe(

.
u):e(

.
u) dt in (30). This is

meaningful for the vast majority of visco-elastic problems, and not only for contact problems we
study in this section. It is a standard procedure in BEM, that after solving the boundary value
problem we compute displacements as well as stresses and strains in the whole domain by using
the boundary values of displacements and tractions [29]. Having computed the stress and strain
tensors in the required internal points for any time tk, we may easily compute the above time
integral for any time by using the previous time history.

4 Other linear visco-elastic rheologies

The above method can be modified for other rheologies assuming again like in (2) that all the
viscous and the elastic responses have the same tensorial character and thus are fully described
just by only one tensor and several scalar constants. A generalized linear visco-elastic model,
consisting of an assemblage of the Maxwell and Kelvin-Voigt elements together with free springs
and dampers in series and/or parallel, might be represented by the following constitutive stress-
strain relation in the form of a differential equation [4]:

n
∑

k=0

ξk
dkσ

dtk
= Ce

(

m
∑

k=0

χk

dku

dtk

)

. (16)

Obviously, certain restrictions on coefficients χk and ξk exist, see a detailed discussion in [11].
Let us briefly present only a few special cases for which all the manipulation can lucidly

be demonstrated and which simultaneously cover rheological models standardly used in most
applications. Nevertheless, we could routinely continue for more complex rheologies with higher-
order time derivatives on both sides, but the algebraic manipulation would become complicated
and the requirement for an equal-tensorial character more restrictive. For simplicity, in this section
we do not consider the unilateral contact, i.e. ΓC = ∅, and, like before, we neglect inertial and
external bulk forces. We further restrict ourselves, for implementation and notational purposes,
to the case of the second-order stress-strain relation in (16), which for n = m = 2 is given in the
following form:

ξ2
..

σ + ξ1
.

σ + ξ0σ = Ce(χ2

..

u + χ1

.

u+ χ0u), (17)

requiring some initial conditions for displacements and stresses and their time derivatives of at
most of the first order, depending on the values of parameters χk and ξk. The general form of
equations that governs the system is,

div σ = 0 on Ω, (18a)

u = w on ΓD, (18b)

σ~n = g on ΓN. (18c)

The implicit time discretisation of eq. (17) assuming a fixed time step τ , leads to

ξ2
σk
τ−2σk−1

τ +σk−2
τ

τ2
+ ξ1

σk
τ−σk−1

τ

τ
+ ξ0σ

k
τ = Ce

(

χ2

ukτ−2uk−1
τ +uk−2

τ

τ2
+ χ1

ukτ−uk−1
τ

τ
+ χ0u

k
τ

)

(19)
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and, after an elementary algebra, the time-discrete variant of (17) and (18) reads as

div σk
τ = 0 with

σk
τ = Ce

(

χ2+τχ1+χ0τ
2

ξ2+τξ1+ξ0τ2
ukτ −

2χ2+τχ1

ξ2+τξ1+ξ0τ2
uk−1
τ +

χ2

ξ2+τξ1+ξ0τ2
uk−2
τ

)

+
2ξ2+τξ1

ξ2+τξ1+ξ0τ2
σk−1
τ −

ξ2
ξ2+τξ1+ξ0τ2

σk−2
τ on Ω, (20)

completed by the boundary conditions ukτ = wk
τ on ΓD and σk

τ~n = gkτ on ΓN.
The implementation of BEM relies on div σk−1

τ = 0 and div σk−2
τ = 0, and furthermore, likewise

in (5), on the definition of an auxiliary field of the general form

vkτ =
χ2+τχ1+χ0τ

2

ξ2+τξ1+ξ0τ2
ukτ −

2χ2+τχ1

ξ2+τξ1+ξ0τ2
uk−1
τ +

χ2

ξ2+τξ1+ξ0τ2
uk−2
τ , (21)

giving

σk
τ = Ce(vkτ ) +

2ξ2+τξ1
ξ2+τξ1+ξ0τ2

σk−1
τ −

ξ2
ξ2+τξ1+ξ0τ2

σk−2
τ on Ω. (22)

The transformed system of equations that we actually solve using BEM has the form

divCe(vkτ ) = 0 on Ω, (23a)

vkτ =
χ2+τχ1+χ0τ

2

ξ2+τξ1+ξ0τ2
wk
τ −

2χ2+τχ1

ξ2+τξ1+ξ0τ2
wk−1
τ +

χ2

ξ2+τξ1+ξ0τ2
wk−2
τ on ΓD, (23b)

t(e(vkτ )) =
(

Ce(vkτ )
)∣

∣

Γ
~n = gkτ −

2ξ2+ξ1τ

ξ2+ξ1τ+ξ0τ2
gk−1
τ +

ξ2
ξ2+ξ1τ+ξ0τ2

gk−2
τ on ΓN. (23c)

Solving the above system with BEM we obtain the pair vkτ and t(e(vkτ )), for each time step k.
Then, we may also compute σk

τ , by evaluating Ce(vkτ ) in Ω by standard BIR [29] and adding σk−1

and σk−2 according to (22). The reconstruction of the physical displacement field is carried out
by solving eq. (21) for ukτ ,

ukτ =
ξ2+τξ1+ξ0τ

2

χ2+τχ1+χ0τ2
vkτ +

2χ2+τχ1

χ2+τχ1+χ0τ2
uk−1
τ −

χ2

χ2+τχ1+χ0τ2
uk−2
τ , (24)

and, following (22), the total traction (physical traction) field pkτ = σk
τ~n is reconstructed by

pkτ = t(e(vkτ )) +
2ξ2+ξ1τ

ξ2+ξ1τ+ξ0τ2
pk−1
τ −

ξ2
ξ2+ξ1τ+ξ0τ2

pk−2
τ . (25)

All the necessary initial values, appearing above for discrete time lower than zero, are assumed
to be equal to zero. Calculation of characteristic physical parameters is just a post-processing pro-
cedure and depends on each specific model. E.g., elastic stresses of the Kelvin-Voigt model can
be obtained recursively by applying the elastic stress operator Ce(·) to (6), which is a particu-
larization of (24). Some of the models that could be represented by the second order differential
equation (17) are listed in Table 1; see also [4]. It is worth mentioning that the system of equations
(23) could obviously be solved by any other appropriate numerical method (e.g., FEM as in [25]),
and that more complicated visco-elastic models of a higher-order, i.e. m > 2 or n > 2 in (16),
could be accomplished within the current framework with the only difference that higher order
derivatives will appear.

Within the class of constitutive relations defined by (17), we will consider several selected
rheologies shown in Table 1. The discrete energy estimates like (4) can be derived for each of
them after suitable, sometimes rather complicated manipulation (not performed in this article,
however).
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Table 1: Some models that could be represented by the constitutive differential equation (17) with
pertinent coefficients χ and ξ, present (6= 0) indicated by X or absent (= 0) by ×.

Model Name χ0 χ1 χ2 ξ0 ξ1 ξ2

Elastic (Hooke) solid X × × X × ×

Viscous (Newton) fluid × X × X × ×

Maxwell fluid × X × X X ×

Kelvin-Voigt solid X X × X × ×

Boltzmann or Standard linear
or 3-parameter solid X X × X X ×

Jeffreys or 3-parameter fluid × X X X X ×

Burgers or 4-parameter fluid × X X X X X

4-parameter solid X X X X X ×

5 Numerical examples

The above introduced framework has been implemented in an open BEM Java code [26] with
capabilities of 2D and 3D elastostatic analysis, among others. This code is supplied with all the
necessary “modules” for the energetic approach in BEM used for contact problems, and has also
been employed in several related works of the authors [33, 27, 28].

5.1 Visco-elastic creep behaviour

This first example might be seen as a “benchmark”, since it is one of the most frequent examples,
met in the literature in order to compare numerical to analytical solutions of visco-elasticity (e.g.
in [24]).

Figure 3 depicts the geometry and boundary conditions of the problem together with a physical
interpretation of the visco-elastic mechanism of the material. The physical properties and the
geometry of the problem are given in Table 2, where for the first variant of the problem we
assume a Kelvin-Voigt material with viscosity µ1, without the spring αC and the damper µ2C

depicted in Figure 3. The uniform BEM mesh for this problem has 180 linear elements. Two time
steps have been used, a coarse and a fine one, τc=10 (days) and τf=1 (day) respectively, in order
to observe numerically the accuracy of the time integration scheme. Prescribed tractions on the
right-hand side of the domain have normal and tangential components pn=5 (N/mm2) and pt=0,
respectively. The total time of analysis is T=800 (days). The external loading is removed at time
tr=400 (days), i.e. after this time pn = 0.

µ2C

µ1C

C αCh

L

p(t)

Figure 3: Geometry of the problem and physical interpretation.
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Table 2: Elastic and geometrical properties of models used in Example A.

L (mm) 800
h (mm) 100

µ1 (days) 45.454545
E (kN/mm2) 11
ν 0.0

Figure 4: Displacement for the Kelvin-Voigt material, fine time partition solution shown here with
one time point per four steps.

Computed displacements are plotted in time in Figure 4 together with the analytic solution,
which can be easily deduced for this simple problem. Both numerical solutions for a coarse and a
fine time step, are plotted. Notice that the fine-time-step solution is not shown in the plot for all
time steps but only for those of the coarse partition of the time interval. An excellent agreement
of the fine-time-step solution with the analytic one is observed, the coarse-time-step solution being
also very good. Figure 5 shows the evolution in time of the total stresses at the geometric center
of the solid. Recall that for the present case of the Kelvin-Voigt model, the total stress field,
σk
τ = Ce(vkτ ), corresponds directly to the auxiliary field vkτ , while the elastic stress field, Ce(ukτ ),

corresponds to the ukτ field. Then, the viscous stresses can be computed as the difference of the
total minus elastic stresses.

In the second variant of this problem, the prescribed tractions on the right-hand side have
components pn=0 and pt =5 (N/mm2), with the loading applied from the time ti = 80 (days)
to tr = 533.33 (days), while T = 800 (days). Numerical results are obtained using time step
τ=1 (day). In this case we show the spatial distribution of the dissipated energy density due to
the viscosity over the time interval [0, T ] for the Kelvin-Voigt model, and compare the kinematic
response of several visco-elastic rheologies presented in this article.

Figure 6 shows the BEMmesh (used for both variants of the problem) together with a deformed
configuration for the case of vertical loading. In the next Figure 7 the spatial distribution of the

dissipated energy density
∫ T

0
χCe(

.
u):e(

.
u) dt, in (J/m2), is visualized. It can be observed there,

that the main part of the dissipated energy is accumulated, during the evolution in time, in a
region close to the left fixed side of the solid where the highest normal stresses σxx can be expected.

For the other visco-elastic models studied we use the parameter values α=2, µ2=µ1, where
their nonzero values are required. For example, we may assume existence of the damper µ2 and
the spring of stiffness C, with simultaneous absence of the other two components, in order to
simulate the Maxwell model. The results are shown in Figure 8, where models have been divided
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Figure 5: Stress σxx, for the Kelvin-Voigt material, at the centroid of the solid with one time
point shown per ten steps, which means that only 80 time points are plotted, instead of 800 that
actually have been calculated.

Figure 6: Deformed configuration, for the Kelvin-Voigt material, for the case of vertical loading,
at time t = T/2.

Figure 7: Spatial distribution of the dissipated energy density
∫ T

0
χCe(

.
u):e(

.
u) dt, in (J/m2), for

the case of vertical loading and the Kelvin-Voigt material.

into two categories: (a) solid-type and (b) fluid-type, because of different order of response values.
It might be observed in this figure the ability of the algorithm to compute a jump in displacement
due to a jump of forces for the case of both the Hooke and Boltzmann models in contrast to the
Kelvin-Voigt model, where a smoother increase of displacement takes place.

5.2 3D analysis of an ellipsoidal cavity embedded in an infinite medium

This example shows the capabilities of the procedure developed and implemented also for 3D
visco-elastic problems, see [35, 13], for other 3D BEM implementations. The problem of an
ellipsoidal cavity in a visco-elastic medium under remote stress field is solved. The Kelvin-Voigt
material considered has Young’s modulus E=70 (GPa), Poisson’s ratio ν=0.35 and relaxation
time χ=45.454545 (days). The remote stress field is applied on a cube with side length L=36 (m)
representing an infinite visco-elastic medium with an embedded ellipsoidal cavity placed in its
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(a) (b)

Figure 8: Vertical displacement of the right-hand edge computed by six different rheology models,
distinguished as (a) solid-type and (b) fluid-type.

center. The geometry of the ellipsoid is defined in Cartesian coordinates by the equation

x2

a2
+

y2

b2
+

z2

c2
= 1, (26)

with a =0.8 (m), b =0.9 (m) and c=1 (m). The BEMmesh of the ellipsoid consists of 264 four node
isoparametric quadrilateral elements, while the cube boundary is discretised by 96 elements, see
Figure 9. Uniform normal tractions σx=25 (GPa), σy=25 (GPa) and σz=100 (GPa) are applied

(a) (b)

Figure 9: (a) Undeformed and deformed BEM mesh of cube with the embedded ellipsoidal cavity,
shown in detail in (b), at time t =400(sec). Scale factor of 500 is used to magnify displacements.

on the cube faces perpendicular to the x-, y- and z-axis, respectively. The cavity boundary is
free. The time pattern of the load has three parts: initially the load increases linearly with time,
then it is constant in time, and finally it jumps down to zero, as can be seen in Figure 10. As
only Neumann boundary conditions are prescribed, to avoid rigid body motions we apply the F1
method of [3]; to the best of our knowledge, first time implemented in the 3D case.

5.3 Visco-elastic solid in contact

A problem including frictionless contact between a viscoelastic solid and a rigid obstacle is solved
by the BEM, to the best of our knowledge, for the first time. The Kelvin-Voigt rheology is
assumed. In particular, the indentation of a half disk against a rigid foundation is considered
under plane strain conditions. In this advancing contact problem the length of the contact zone
depends on the load value. The problem geometry is shown in Figure 11. The radius of the disk
is r=0.75m. The potential contact zone is defined by the angle φ=13.5(◦). Normal tractions are
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Figure 10: Time evolution of the displacement of the positive Z pole of ellipsoid, normalized
by the maximum value of this displacement in the elastic case (umax

e = 2.224mm). (a) Elas-
tic material, (b) Visco-elastic Kelvin-Voigt material (the maximum value of this displacement
is umax

v = 2.218mm). The time evolution pattern of the external loading coincides with the
displacement evolution in the elastic case.

pn

r

rφ

Figure 11: A visco-elastic half disk pressed against the rigid foundation.

increased linearly in time from zero to pn=-250 (GPa) at time tp=250 (days) and then they are
removed. We study the response up to the total time T=500 (days). Tangential tractions along
the whole straight edge of the half disk are zero. Due to the problem symmetry only the quarter
disc is modeled. The Kelvin-Voigt material has Young’s modulus E=70 (GPa) and Poisson’s ratio
ν=0.35. For comparison purposes, three relaxation times are considered: χ = 0, χ =45 (days)
and χ =22.5 (days).

The numerical solution of this problem, which includes the determination of the contact zone,
is accomplished as described in Section 3.4, through the minimization of the potential energy.
The BEM mesh of the quarter disk consists of 270 linear elements with 60 elements along the
possible contact zone defined by the angle φ, 170 elements for the rest of the circular curve and
20 elements for each one of the two straight lines. The time step of τ=2.5 (days) is used, for the
three relaxation times considered, resulting in 200 time steps.

The advancing contact problem is non-linear and this can be verified from Figure 12-(a), where
for the non-viscous case and after the loading is removed the solution directly returns to the initial
configuration. It might be seen there, that the straight line that connects the “peak” loading point
back to the initial configuration is different from the non-linear path computed from the initial
undeformed configuration to the peak point. The behaviour of the visco-elastic cases is different,
where we observe that the greater the viscosity the greater the difference from the elastic case. For
the viscous cases, we notice that after the loading vanishes at the time tp, the total force jumps to
zero as well, while elastic and viscous forces of opposite signs still remain and vanish progressively.
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(a) (b)

Figure 12: (a) Total resultant vertical force on the horizontal side of the half disk versus the
absolute value of the vertical displacement of the central point of this side. (b) Normal elastic
tractions along the possible contact zone at the time of peak loading tp.

(a) (b)

Figure 13: (a) Elastic resultant force with time. (b) Viscous resultant force with time.

It is also easily verified from Figure 12-(b) that the length of the contact zone depends on χ value.
It can been observed there that the greater the viscosity, lower the length of the contact zone and
lower the maximum absolute value of the normal elastic tractions. This last observation may also
be noticed in Figure 13-(a), where the evolution in time of the elastic part of the resultant force is
plotted for all three viscosity cases. Finally, in Figure 13-(b) the evolution of the viscous part of
the resultant force is plotted, where it is interesting to observe a jump and a finite peak in these
viscous forces at the time of the loading removal tp for χ > 0.

6 Conclusions

In this paper, an advanced formulation for the solution of quasistatic linear visco-elastic problems
for a broad spectrum of rheologies, which further develops the original proposal by Mesquita,
Coda and co-workers [24, 25], has been presented. The resulting problem can be solved using
standard numerical methods such as FEM and BEM.

We have confined ourselves to materials responding on the mechanical loading in such a way
that, roughly speaking, the tensorial and the rheological features are separated; this means only
one tensor is used to describe all the elastic and viscous processes which then are distinguished
only be scalar constants. Since, we have been able to cast the problem using boundary formulas
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only, and then BEM appears as the most reasonable method in order to solve both 2D and
3D problems. After a certain “computational cheap” algebraic manipulation, only the standard
Kelvin’s fundamental solution of elasticity is required for the BEM implementation. Furthermore,
an extension and implementation to contact problems of visco-elastic continua is presented as
well.

Using this formulation, the well known Kelvin-Voigt model has been scrutinized and it has been
shown that several other, more complex models, can be confronted. A quite detailed presentation
has been given for several models using the Maxwell, Boltzmann, Jeffreys and Burgers rheologies.

Incorporation of this framework to existing BEM codes is very easy, at least for problems
of visco-elasticity, since just a transformed auxiliary field has to be defined. After solving the
problem for this auxiliary field, the actual stresses and displacements can be easily reconstructed.
For unilateral contact problems, further features of the energetic approach in BEM are needed.
Numerical solutions of problems presented in this paper are accomplished by an in-house open
BEM code, implemented in Java.

Some standard problems of 2D and 3D visco-elasticity as well as a problem of contact mechanics
have been numerical solved and analysed in order to validate the suitability of the methodology
developed for solving realistic visco-elasticity problems.

An extension of the current framework to problems of adhesive contact or also to more complex
problems, where interface damage and/or interface plasticity are taken into account, is possible
and into some extent has already been accomplished in other concurrent works of the authors
(e.g. [17, 33]).
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minimization of the total potential energy to solve contact problems using the collocation
BEM. In A. Sellier and M. Aliabadi, editors, Advances in Boundary Element Techniques &
Meshless Techniques XIV, pages 292–297. EC, Eastleigh, 2013.
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[31] T. Roub́ıček. Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag,
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[35] M. Schanz, H. Antes, and T. Rüberg. Convolution quadrature boundary element method for
quasi-static visco- and poroelastic continua. Computers and Structures, 83:673–684, 2005.
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Appendix: The energetics of selected rheological models

All rheological models above allow for clear energetic balance, which is important in many respects.
We will illustrate it only for the standard linear solid and, as special cases, for the Maxwell and
the Kelvin-Voigt models, i.e. (16) for m ≤ 1 and n ≤ 1.

The energetics for the standard linear solid (and for Maxwell material too) needs an intro-
duction of one internal variable with the meaning of a strain, let us denote it by π, acting in an
additive decomposition of the total strain e(u), i.e.

e(u) = eel + π. (27)
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The elastic strain eel occurs on the “serial” elastic spring (let us denote its elastic-moduli tensor
by CM) while π occurs on the “parallel” elastic spring (with the elastic moduli CKV) and on the
damper (with the viscous moduli tensor D), cf. the 5th row in Table 1. The stored energy is then

E(eel, π) =

∫

Ω

(1

2
CMeel:eel +

1

2
CKVπ:π

)

dx (28)

while the dissipation rate is D
.
π:
.
π. Abbreviating E (u, π) = E(e(u)−π, π), testing (18a) by

.
u and

using the rheological ansatz (16) and the boundary conditions (18b,c), after a little calculus one
obtains the total energy balance in the form:

E (u(t), π(t)) +

∫ t

0

∫

Ω

D
.

π:
.

π dxdt = E (u0, π0) +

∫ t

0

(
∫

Ω

f ·
.

udx+

∫

ΓN

g·
.

udS

)

dt. (29)

For simplicity, here we assumed homogeneous Dirichlet condition w = 0. The time integrals on
the left- and right-hand side of (29) represent the dissipated energy due to viscosity and the work
of external forces done over the time interval [0, t], respectively. Note that we need to prescribe
the initial conditions both u(0, ·) = u0 and π(0, ·) = π0. In a general case if w 6= 0, one can first
make a substitution of u−w̄ with an extension w̄ of the boundary data w inside the bulk domain
and then formulate an energy balance for a “shifted” solution satisfying homogeneous Dirichlet
condition but with a modified loading f and g while the internal variable π remains unaffected.

As a special case, we can get both the Kelvin-Voigt model and the Maxwell model. The former
model results as the limit for CM → ∞, which yields eel = 0 so that simply e(u) = π and, for
D = χC, the energy balance (29) simplifies as

E (u(t)) +

∫ t

0

∫

Ω

χCe(
.

u):e(
.

u) dxdt = E (u0) +

∫ t

0

(
∫

Ω

f ·
.

udx+

∫

ΓN

g·
.

udS

)

dt, (30)

with E (u) =
∫

Ω

1

2
Ce(u):e(u) dx. The Maxwell model results as the limit for CKV → 0; the splitting

(27) and in particular the internal variable π remains in this model.
The other, higher-order models need more involved considerations and we will not present it

here. In particular, the 4-parameter solid uses again (27) but the Burgers rheology, having two
“free nodes” (cf. the rheological scheme at the 7th row in Table 1), needs introduction of two
internal variable and decomposition of e(u) in (27) into 3 terms.

Under appropriate qualification of the external loading and the initial conditions, energy bal-
ance (30) gives also a-priori estimates of the solutions in respective norms by using typically the
Gronwall, the Young, and the Hölder inequalities. Due to convexity of the energy E (·), this ma-
nipulation can be reflected to the implicit time-discretisation schemes considered in this paper,
yielding numerical stability and convergence of such schemes for τ → 0. In our linear situation,
this convergence is indeed simple.

Evaluation and visualization of the spatial distribution of the energies occurring in balances like
(29) or (30) may be of a special interest, since it shows in which regions of the body the dissipation
takes place, see the numerical example of Section 5.1 or [33]. This energy dissipation leads to a heat
production (not considered here, however), and thus its spatial distribution would be important
when solving the heat-transfer problem in a possibly full thermomechanical coupling. These forms
of energetics are also of interest, since they could be used to solve contact problems of visco-elastic
bodies, see Section 5.3, or even more complex problems where also inelastic phenomena take place
on the boundaries (or interfaces) of the viscous bodies, cf. [33]. Techniques for the evaluation of
these energies in combination with BEM have been briefly described in Sections 3.4 and 4, and
employed in Section 5.


