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Abstract

Algorithms describing the topology of real algebraic curves search primarily the singular points and they are
usually based on algebraic techniques applied directly to the curve equation. We adopt a different approach,
which is primarily based on the identification and approximation of smooth monotonous curve segments,
which can in certain cases cross the singularities of the curve. We use not only the primary algebraic equation
of the planar curve but also (and more importantly) its implicit support function representation. This
representation is also used for an approximation of the segments. This way we obtain an approximate graph
of the entire curve which has several nice properties. It approximates the curve within a given Hausdorff
distance. The actual error can be measured efficiently and behaves as O(N−3) where N is the number of
segments. The approximate graph is rational and has rational offsets. In the simplest case it consists of arc
segments which are efficiently represented via the support function. The question of topological equivalence
of the approximate and precise graphs of the curve is also addressed and solved using bounding triangles
and axis projections. The theoretical description of the whole procedure is accompanied by several examples
which show the efficiency of our method.

Keywords: algebraic curve, support function, critical points, inflections approximation, arc-splines

1. Introduction

Solution of many problems in Computer Aided Geometric Design depends on an approximation of a
curve given by an implicitly defined bivariate polynomial with rational coefficients. It is very desirable to
visualize the curve in any required precision, to find the number of components or to test to which component
a given point belongs. All this information is fully contained in the planar graph topologically equivalent to
the curve whose vertices are points of the algebraic curve and edges correspond to regular arcs of the curve.

Known algorithms studying the topology of an algebraic curve have always two parts. First we find out
the critical points and then we connect them appropriately. There are two main types of algorithms. The
first type uses the same principle as the Cylindrical Algebraic Decomposition (CAD) algorithm, cf. [5, page
159]. The other approach is based on a subdivision of the given region.

Cylindrical Algebraic Decomposition based algorithms are usually divided into three phases: First find
the x-coordinates of critical points of C, then for each xi compute the intersection points Pi,j of C and the
vertical line x = xi and finally for every Pi,j determine the number of branches of C on the left and right
and use this information to connect the points appropriately.

The main problem of these algorithms is the second phase, because the x-coordinates of the critical points
are not necessarily rational numbers and therefore the polynomials f(xi, y) have non-rational coefficients.
There are several methods to deal with this problem for example in [6, 7, 8, 14, 19].
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The second type of algorithm is based on subdivision. The only certified algorithm (i.e. one which gives
the correct output for every input) based on subdivision is [3]. This algorithm subdivides the region D into
regular regions (the curve is smooth inside) and regions with singular points, which can be made sufficiently
small. The topology inside the regions containing a singular point is recovered from the information on the
boundary using the topological degree.

Our approach is rather novel. It consists in a decomposition of the curve into smooth segments, which
can be intersecting each other but which are monotonous in both x and y coordinates as well as with respect
to the moving tangent lines. These segments are identified by their end-points and end-tangents. In order to
determine such data (the points with their tangents) and their connectivity, we use both the primary curve
equation and its support function representation, which is a kind of a dual equation. This representation
is one of the classical tools in the field of convex geometry [12]. In this representation offsetting and
convolution of curves correspond to simple algebraic operations of the corresponding support functions. In
addition, it provides a computationally simple way to extract curvature information [9]. Applications of
this representation to problems from Computer Aided Design were foreseen in the classical paper [18] and
developed in several recent publications, see e.g., [1, 2, 4, 10, 11, 16, 20, 21].

The identified segments can not be parameterized rationally except for the zero-genus case. For this
reason we interpolate the boundary G1 data with a suitable (piecewise) rational segments. For this inter-
polation we exploit again the support function representation and obtain segments with certified Hausdorff
distance from the original curve. We are also able to evaluate efficiently the actual error. The collection of
approximated segments provides a good approximation of the given algebraic curve, but does not necessarily
posses the same topology. We provide an iterative test which in many cases proves that the right topology is
obtained. In remaining cases it identifies (very small) regions, where the topology differs. These regions are
then tested (or subdivided) using projections to contain only one critical point. Then the certified topology
inside these boxes follows from the theory of the topological degree.

The remainder of the paper is organized as follows. In Section 2 we recall some basic definitions and
facts about real planar algebraic curves. We also present our basic tools which are the support function
representation of a curve and the decomposition of a boxed curve into smooth segments. In Section 3 we
show how the collection of suitable G1 data can be identified and how to decide about their connectivity.
In Section 4 we interpolate the G1 data with segments represented via their support functions. In the
simplest case we use for each boundary data a bi-arc curve, which is very efficiently represented via its
support function. We show that our procedure exhibits the approximation order 3. In Section 4 we also
study the topological equivalence of the original curve with the union of the approximated segments. The
most important tool in this section is a bounding triangle of a curve segment and the topological degree.
Section 5 is devoted to a number of examples which carefully demonstrate the whole procedure. Eventually
we conclude the paper.

2. Properties of algebraic curves

In this section we recall several basic definitions and results related to planar algebraic curves. We also
prove several minor results useful in the remaining sections.

2.1. Curve, boxed curve and its segments

In the remainder of the paper we will suppose that f(x, y) ∈ Q [x, y] is an irreducible polynomial of two
variables with rational coefficients. We will denote by C the set of corresponding affine points

C = {(x, y) ∈ R2 | f(x, y) = 0}.

It will be sometimes useful to consider the projective closure of C i.e. to add the points at infinity and
consider the homogeneous version of the polynomial f . One can also consider the complex version of C and
take all complex points which nullify f .

We recall standard definitions of inflection points, regular and singular points, tangents and branches of
an algebraic curve. More details can be found e.g. in [23].
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We say that the point [x0, y0] ∈ C is regular, if ∇f(x0, y0) 6= 0, i.e. when at least one of the partial
derivatives is non zero. Other points of C are called singular. Multiplicity k of a point is defined as the order
of the lowest nonzero partial derivative (k = 1 for regular points).

Let us consider the graded bivariate Taylor expansion of f at [x0, y0]. All terms of the first non-vanishing
degree k form together a homogeneous polynomial fk in the variables (x−x0), (y−y0) which can be factored
into linear factors over C. Each of these factors defines a straight line (possible imaginary) which is called
tangent line to C at [x0, y0]. Multiplicity of a tangent is defined as the multiplicity of the corresponding
linear factor in the polynomial fk. We say, that a singularity is ordinary if it has only tangents of multiplicity
one.

Clearly the number of tangents (counted with the multiplicity) at a point is equal to the multiplicity of
the point. At a regular point of C we obtain precisely one tangent line, which coincides with usual tangent
line defined in the differential geometry.

We say that a regular point [x0, y0] ∈ C is an inflection if the tangent has at least a triple intersection
with C at [x0, y0]. Equivalently the linear term of the Taylor expansion divides the quadratic term.

The following definition is essential for our approach.

Definition 1. Let p be a point of C and t a tangent at p. We call the couple P = (p, t) a G1-point of C.

In the subsequent algorithm we will be looking for G1-points rather then just for points of the curve.
Clearly we have just one G1-point at regular points of C. In practice a G1-point will be represented by the
coordinates [xp, yp] of p and by the coordinates of the unit normal of t.

It follows from the theory of the local parameterization of algebraic curves [23, chapter IV], that the locus
of the curve in a neighborhood of a singular point is a union of several branches, which can be parameterized
(locally) using a Puiseux series [23, paragraph IV.3]. We call a branch through a point regular if its Puiseux
series have a nonzero derivative vector at the point, we will call it singular otherwise. Each G1-point is
tangent to one or more branches at a singular point.

We will restrict our investigations of the curve locus only to the graph of a real algebraic curve within a
given bounded box.

Definition 2. Let f ∈ Q [x, y] be a polynomial in two variables with rational coefficients and B = [x, x̄]×
[y, ȳ] ⊂ R2 a finite two dimensional box. Suppose that the four lines x = x, x = x̄, y = y and y = ȳ have
only trivial intersections with C, i.e. these lines does not pass through singularities nor inflections of C and
are not tangent to the curve. We define the boxed curve as the set

C̃ = {(x, y) ∈ B | f(x, y) = 0} = C ∩B.

The regularity of the curve intersection with the box boundary is included only for the seek of simplicity.
It would not be very difficult to relax this requirement by scanning for all particular points on the boundary.

Our strategy is based on the decomposition of C into smooth segments.

Definition 3. Let [a, b] ⊂ R be a closed real interval. We say, that the mapping c(t) : [a, b] → R2 is a
smooth curve segment if it is an injective smooth mapping and it has a nonzero derivative within (a, b).
Moreover we require, that the tangent line can be defined continuously on the whole interval t ∈ [a, b]. More
precisely the segment unit normal n(t) = c′(t)⊥/|c(t)|, which is continuous in (a, b) must have proper limits
at the end-points

n(a) := lim
t→a+

n(t), n(b) := lim
t→b−

n(t).

We say that c is a smooth segment of C if moreover f(c(t)) = 0 for t ∈ [a, b].

Proposition 1. Any boxed curve C̃ can be decomposed into smooth segments with possibly some additional
isolated points. More precisely, there exists a finite set {ci} of smooth segments and additional points
{Pk} ⊂ B such that C̃ =

⋃
i ci ∪

⋃
k Pk, ci ∩ cj is either empty or consists of a finite number of points and

Pk 6∈ ci.
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Proof. We can smoothly parameterize a neighborhood of every regular point due to the implicit function
theorem. A real singularity with a real tangents has branches which can be locally parameterized using the
Puiseux series. If a branch is regular, the segment goes smoothly through the singularity. If a branch is
singular, the singularity can be taken as the end-point of the smooth segment. Points with no real branches
are isolated singularities {Pk} and form a finite set. The infinite set of smooth segments covering C̃ − {Pk}
can be reduced to a finite one, because the set C̃ − {Pk} is compact. Moreover the overlapping segments
can be merged and re-parametrized together. As a result, we obtain a finite number of segments covering
C̃ − {Pk} and having end-points at the boundary points and at the non-ordinary singularities. �

From now on, we will suppose that there are no isolated real singularities of C in the box B. Our strategy
will consist in the identification and approximation of suitable smooth segments ci. While doing so, we can
ask two principal questions, namely how big is the approximation error (measured as the Hausdorff distance)
and whether the topology of the curve is correctly represented.

Definition 4. Let C̃ be a boxed curve and G be a subset of R2 (typically a collection of segments and points
G =

⋃
i ci ∪

⋃
k Pk). We say, that the curve C̃ and the set G are topologically equivalent if and only if they

are isotopic as curves of Euclidean space, i.e., there exists a continuous map H : R2× [0, 1]→ R2, such that
H(x, t) is a homeomorphism for all t ∈ [0, 1], H(C̃, 0) = C̃ and H(C̃, 1) = G.

2.2. Implicit support function representation of algebraic curves

For an algebraic planar curve C defined by a bivariate polynomial equation f(x, y) = 0 we define the
support function h as a (possibly multivalued) function defined on a subset of the unit circle

h : S1 ⊃ U → R1

by which is any unit normal n = (n1, n2) associated with the distance(s) from the origin to the corresponding
tangent line(s) of the curve.

As proved in [21] we can recover the curve C from h as the envelope of the system of tangent lines
{n · x− h(n) = 0 : n ∈ U}. This envelope is locally parameterized via the formula

ch(n) = h(n)n +∇S1h(φ) = h(n)n(φ) + ḣ(φ)ṅ(φ), (1)

where ∇S1 denotes the intrinsic gradient with respect to the unit circle, which is alternatively expressed
using the following arc length parameterization of S1

n(φ) = (cos(φ), sin(φ)), ṅ(φ) = (− sin(φ), cos(φ)). (2)

The curvature of the curve at the corresponding point can be expressed easily via the support function as

κ = − 1

h+ ḧ
(3)

and points where h+ ḧ = 0 correspond to cusps.
For an algebraic curve C defined as the zero set of a polynomial f(x, y) = 0 we typically do not obtain

an explicit expression of h but rather an implicit one, which is closely related to the notion of dual curve.

Definition 5. Let C be a curve in projective plane. The dual of C is the Zariski closure of the set in the
dual projective plane consisting of tangent lines of C.

The equation of the dual curve D(h,n) = 0 can be computed by eliminating x and y from the following
system of equations:

n · ∇f = 0, n · [x, y] = h. (4)

Definition 6. The dual equation D(h,n) = 0 together with the algebraic constraint n21 + n22 = 1 is called
the implicit definition of the support function h or simply the implicit support function.
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If the partial derivative ∂D/∂h does not vanish at (n0, h0) then D(h,n) implicitly defines the support
function in a certain neighborhood of (n0, h0) ∈ R3.

The (implicit) support function is obviously a kind of dual representation which takes into account
the Euclidean metric. It has many nice properties and in particular simplifies the offset and convolution
computation cf. [18, 21]. Let us remark that a G1-point contains also an information of the corresponding
support function, because h = n · [x0, y0].

3. Determination of monotonous curve segments

In this section we will identify the monotonous segments of C̃ by their boundary G1-points. We first define
and identify the critical G1-points which are the only possible points which can disturb the monotonicity of
segments. Then we define a set of rules to determine which couples of G1-points are actually connected by
curve segments.

Definition 7. A smooth curve segment is called monotonous if it is monotonous in the x and y coordinates
and with respect to its tangent. More precisely c(t) = (cx(t), cy(t)), with the moving unit normal n(φ(t)) is
called monotonous if the functions cx(t), cy(t) and φ(t) are monotonous.

3.1. Critical G1-points

We want to detect the G1-points of C̃, where the smooth curve segments can possibly lose their mono-
tonicity. These will be the boundary points, points with horizontal or vertical tangents, inflections and
points with singular curve branches. Note that we do not need to detect all singularities of C̃, because often
all branches are regular and the segments go through such points smoothly.

For the determination of critical points we will exploit the support function representation, in particular
in the search for cusps and points with a given tangent. On the other hand the determination of boundary
points and inflection points is easier using the primary curve equation f(x, y) = 0.

Between the critical G1-points we have to include the boundary points, i.e. the intersections of the curve
C with the sides of the box B. These are simply solutions of the univariate polynomial equations

f(x, y) = 0, f(x, y) = 0, f(x, y) = 0, f(x, y) = 0.

As we assumed, on the boundary there are only the regular points, the corresponding G1-points are therefore
uniquely defined.

Definition 8. We say, that a G1-point of C̃ is x-extremal or y-extremal, if it has a vertical or horizontal
tangent, respectively. More precisely if the G1-point normal is equal to (±1, 0) or to (0,±1), respectively.

Note that compared to the standard definition of extremal points, we admit that extremal point is singular
point which is extremal with respect to at least one branch of the given curve. For example the origin in
tacnode x4 + x2y2 − y2 = 0 with the normal (0, 1) is y-extremal.

Due to the dual nature of the (implicit) support function representation it is particularly easy to find
any point with given normal vector, as shown in the following

Lemma 1. Let h be the support function of curve C implicitly defined by D(h,n) = 0. The points on C with
given normal n0 are the solutions of the polynomial univariate equation in h

D(h,n0) = 0. (5)

The Lemma 1 can be obviously used to determine the extremal points and also points with another
prescribed auxiliary tangent, which we will use for determination of the connectivity of critical G1-points.

The monotonicity with respect to the tangent can be broken only at inflections or cusps.

Definition 9. We say that a G1-point is an inflection, if it is tangent to an inflection branch in a (possibly
singular) point.
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To find these points we can use the well known theorem, see [13].

Proposition 2. The intersections of a curve with its Hessian lie one at each inflexion, six at each node,
and eight at each cusp of the given curve.

We can use this theorem to find all standard inflections, but also all inflection G1-points, i.e. nodes which
have at least on one branch inflection. To identify that a given point really contains inflection point at at
least one branch, we can use the following proposition, see [13] or [23].

Proposition 3. Let f be the equation of curve C and let fr be the first nonzero derivative of f . At least
one branch of C has an inflection point at p = [x0, y0] ∈ C if and only if fr(p)|fr+1(p).

Monotonicity in x, y or n can be disturbed not only at extremal points or inflections, but also at cusps.

Definition 10. We say that a G1-point is a cusp point if it is tangent to a singular branch at a singular
point of C̃.

Proposition 4. All cusp G1-points can be determined via the support function by solving the equation

h+ ḧ = 0 (6)

or they are inflection G1-points.

Proof. Let B be a singular branch through cusp G1-point p = [0, 0] of order r > 1 with tangent (1, 0).
Therefore h = 0. Assume that p satisfies (6). Assume that s is class of p (multiplicity of the tangent at p
minus one). From [23], we know that class and order are mutually dual. Let the tilde sign the duality. The
implicit support function has r̃ = s. We distinguish two cases. First s = 1, then the dual point is regular
and s̃ = r > 1. The dual point is inflection and ḧ = 0. The equation (1) follows. Second case is s > 1. In
this case p has tangent of multiplicity at least three and the point p is found as an inflection G1-point. �

Proposition 5. If only the implicit support function D(h,n) = 0 is available, the condition h + ḧ = 0
becomes

h− n21
D3
h

(D2
hDn2n2

+DhhD
2
n2
− 2DhDhn2

Dn2
)− n1Dn1

Dh
+

+
n22
D3
h

(D2
hDn1n1

+DhhD
2
n1
− 2DhDhn1

Dn1
)− n2Dn2

Dh
+ (7)

+
2n1n2
D3
h

(DhDhn2
Dn1

+DhDhn1
Dn2

+DhhDn1
Dn2
−D2

hDn1n2
) = 0 ,

where the subscripts denote corresponding partial derivatives.

Proof. Let n(s) = (n1(s), n2(s)) be a parametrization of the unit circle by arc-length s and suppose that
we locally have h(n(s)). Using the chain rule we get following derivatives:

ḣ = hn1
ṅ1 + hn2

ṅ2 = −hn1
n2 + hn2

n1 (8)

ḧ = hn1n1
ṅ21 + hn1n2

ṅ1ṅ2 + hn1
n̈1 + hn2n2

ṅ22 + hn2n1
ṅ1ṅ2 + hn2

n̈2 =

= hn1n1n
2
2 − hn1n2n2n1 − hn1n1 + hn2n2n

2
1 − hn2n1n1n2 − hn2n2 , (9)

where the dot denotes the derivative with respect to arc length s and the subscript denotes the partial
derivative. The second equality in (8) and in (9) is deduced using the equality (ṅ1, ṅ2) = (−n2, n1).

The partial derivatives of h can be deduced from its implicit definition. For example:

∂

∂n1
D(h(n), n1, n2) = Dn1

(h, n1, n2) + hn1
Dh(h, n1, n2) = 0 .
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And therefore

hn1 = −Dn1
(h, n1, n2)

Dh(h, n1, n2)
.

Similarly we can deduce all partial derivatives of h and substitute them into (9). That equation we
substitute into (6) to get a necessary condition (7) for cusps in variable n. �

In concrete computations the cusps will be found by simultaneous solving equation (6) and the funda-
mental equations D(h,n) = 0 and n21 +n22−1 = 0. Having the normal vector, the G1-points are fully defined
by (1). When the cusp corresponds in the implicit support function to the singular point, we have to define
the tangent vector as described in Section 2. Using the envelope formula (1) we can recover G1-points on C.

Proposition 6. If a smooth segment c of C̃ does not contain in its interior any boundary points, extremal
points, inflections nor cusps of C̃, then it is a monotonous segment.

Proof. If the segment is not monotonous in its x-coordinate (y-coordinate) it must contain an x-extremal
(y-extremal) point. If it is not monotonous with respect to its tangent it must contain an inflection. If there
is no cusp in the interior of a segment it can be parameterized smoothly. �

The following proposition sumarize the results of this subsection.

Proposition 7. Any boxed curve C̃ can be decomposed into smooth monotonous segments connecting bound-
ary points, extremal points, inflections and cusps.

Proof. There exists a decomposition into smooth segments due to Proposition 1. We can add as splitting
points all the critical G1-points. �

3.2. Connectivity of G1-points

In the previous section we have detected all critical G1-points Pi. Let us recall, that Pi contains the
point position [xi, yi] and the non-oriented unit normal ni. Along with the point and normal coordinates
we also obtain information about the kind of curve branches passing through each G1-point, in particular
whether there is an inflection or a cusp.

A set of rules will be now formulated in order to decide which of Pi are actually connected by smooth
monotonous curve segments. From the equations of critical G1-points we obtain the information about the
number of smooth segments going to Pi. Boundary points are connected only by one segment and the other
G1-points are always connected by a pair number of segments 2m. The precise number is determined by the
total multiplicity m of the corresponding roots of all equations of critical points described in the previous
section.

The monotonicity condition together with the G1 nature of the information which we have for each Pi

provide following strong rules which allow us to determine the connectivity of the G1-points.

1. Two connected points has two consecutive normal vectors. To make the whole procedure more system-
atic we add for any existing Pi all G1-points with the same normal. This can be done efficiently using
the Lemma 1. After this addition only G1-points with neighboring normals can be connected. Note
that the normals are not oriented, we thus essentially choose an orientation of the projective line of
directions in the plane and connect two consecutive normal directions. Clearly the “distance” of two
possible normals is at most π/2.

2. The normal determines the quadrants where the connected points can lie. The normal of a G1-point P
points towards one quadrant (with respect of the x, y coordinates). The opposite quadrant must be
also considered as the normals are non-oriented. The connected points must lie in the two remaining
quadrants. For the boundary points only one quadrant is possible because the other one falls outside
the box B.

3. A G1-point which is not a cusp nor extremal point has branches in both opposite quadrants determined
by the previous rule. The cusps and extremal points are the only points where a branch does not
continue smoothly - from one quadrant to the opposite one.
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Figure 1: Ilustration of rules 2 (left) and 4 (right).

4. Every non-inflection G1-point is connected to the points points which are on the same side of the
tangent line. If the point is not an inflection, the monotonicity of the tangent direction will continue
through the point and the both branches will wile on the same side of the tangent. On the other hand,
in the first order inflection the side of branches will change.

5. The interval between boundary normals must contain a vector perpendicular to the vector given by the
points. The distance of normals must be at most π/2. This can be obtained by possibly changing
the orientation of the normal at one point. Now the two normals delimit an interval which contains
a perpendicular vector to the difference vector. Indeed, the tangent at this point is parallel to the
difference vector and such a point must occure in any smooth segment (not necessarily monotonous).

In many cases these rules yield directly the connectivity of the G1-points, this is the case of examples 2,
3, 4. If there is a connectivity ambiguity, we add points with additional normal directions using Lemma 1.
In example 1 the addition of one normal direction was sufficient and in example 5 the connectivity was
resolved adding two normal directions. Although we were not able to provide a formal proof that the unique
possible connectivity will always be obtained, the rules seem to be very strong (due to the G1 nature of the
data) and resolved the connectivity in all examples we have studied.

4. Approximate graph of the curve

As we have seen in the previous section, the boxed curve C̃ is decomposed into monotonous smooth seg-
ments and each of these segments is identified by its boundary G1-points. In this section we will interpolate
these G1-points with suitable smooth segments which will thus approximate the actual curve segments. We
also study the problem of the preservation of the curve topology.

4.1. Support function based approximation of the curve segments

Let P0, P1 be two G1-points of C̃ connected by a smooth segment of C̃. The normals are non oriented,
but by the segment monotonicity we know, that the smooth transition along c will rotate the normal by at
most π/2. We can change the orientation of the unit normals of P0 and P1 so that their angle is ≤ π/2. By
possibly switching the order of the G1-points and using the parameterization (2) we can put the boundary
data to the form

P0 = {[x0, y0],n(φ0)} and P1 = {[x1, y1],n(φ1)}, where 0 < φ1 − φ0 ≤ π/2. (10)

We will interpolate this G1 boundary data using the support function. More precisely we look for
a function h defined over the interval [φ0, φ1], so that the curve segment obtained via the formula (1)
interpolates the boundary points.

From the form of (1) it is clear, that the position of a point provides values of the support function and
its derivative. The G1 interpolation by a smooth segment is thus transformed into the standard problem of
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the functional Hermite interpolation of the first order at the two values φ0 and φ1. We can use any suitable
linear space of functions to obtain this interpolant. Natural choices of the basis functions are trigonometric
polynomials [21], trigonometric polynomial with rational non-integer arguments [4] and rational trigono-
metric functions [11]. All these spaces will provide geometric invariance and the rationality of the resulting
smooth segments.

It is a great advantage of the support function, that its approximation error will translate to the identical
behavior of the Hausdorff distance of corresponding segments.

Proposition 8. Let h, g be two support functions defined on the interval U = [φ0, φ1], such that

g(φi) = h(φi), ġ(φi) = ḣ(φi), i ∈ 0, 1 .

Suppose, that the corresponding curve segments ch, cg are cusp-free on U . Then their Hausdorff distance is
equal to the error in support functions

||ch − cg||H = ||h− g||∞ . (11)

Proof. Due to boundary conditions and absence of singular points (cusps), the Hausdorff distance is
realized by a common normal line to both curve segments. The distance of the points on this line is equal to
the absolute value of the difference of the support functions. For a more formal proof see [21, Proposition 14].

�

If we used functions which are at least C2 on the interval [φ0, φ1] we would obtain the approximation
order 4, as it is usual in the case of the C1 Hermite interpolation at two values. In our examples we will
however use a slightly different approach. We will give up one degree of the approximation order to obtain
a greater geometric simplicity of the resulting curve graph. We will interpolate the boundary data with two
first order trigonometric polynomials

p0(φ) = A0 cos(φ) +B0 sin(φ) + C0 and p1(φ) = A1 cos(φ) +B1 sin(φ) + C1, (12)

which are smoothly connected (with C1 continuity) at an additional point. This problem has always one
solution as proved in the following

Proposition 9. Let two G1-points (10) and φ̃ ∈ (φ0, φ1) are given. Then there is precisely one pair of
polynomials (12) smoothly connected at φ̃ so that the resulting curve segment satisfies

cp0(φ0) = [x0, y0], cp1(φ1) = [x1, y1], cp0(φ0) = cp1(φ1). (13)

These segments have the form of two circular arcs connected in a G1 manner.

Proof. The conditions (13) lead to the following system of 6 linear equations

1 0 cos(φ0) 0 0 0
0 1 sin(φ0) 0 0 0
0 0 0 1 0 cos(φ1)
0 0 0 0 1 sin(φ1)

1 0 cos(φ̃) −1 0 − cos(φ̃)

0 1 sin(φ̃) 0 −1 − sin(φ̃)




A0

B0

C0

A1

B1

C1

 =


x0
y0
x1
y1
0
0

 . (14)

The determinant of the matrix is equal to sin(φ̃− φ0) + sin(φ1 − φ̃)− sin(φ1 − φ0), which is non-zero unless
at least two of the angles φ0, φ̃, φ1 coincide. The system of equations thus has solution for any right-hand
side. A straightforward evaluation of the formula (1) provides

cpi(φ) = [Ai, Bi] + Ci[cos(φ), sin(φ)], (15)

i.e. equation of two circles with one common point cp1(φ̃) = cp0(φ̃) and the common normal n(φ̃) at this
point. �

9



The two circular arcs are connected in a G1 way, they can not be connected in an inflection (the normal
is monotonous), but can be connected at a cusp. A cusp occur if and only if the two circles are differently
oriented, i.e. if the signs of C0 and C1 are different. Indeed certain boundary data can not be connected in
an inflection and cusp free way. This is however not the case of boundary data of a monotonous segment of
C̃. We still have to be careful about the right choice of the breaking value φ̃.

Proposition 10. Let two G1-points (10) be boundary points of a smooth monotonous segment of C̃. Then
there is precisely one value φ̃ ∈ (φ0, φ1) so that n(φ̃) ⊥ ([x1, y1] − [x0, y0]) and the two arcs constructed
using Proposition 9 are connected in a smooth cusp-free way. The whole interpolating curve is called parallel
tangent bi-arc and its approximation order is ε3, where ε is the distance of the boundary points.

Proof. The existence of the desired value of φ̃ follows from the rule 5 of the previous section. Its uniqueness
is due to the size of the interval φ1−φ0 ≤ π/2. For this particular value of φ̃ a laborious but straightforward
computation gives

C0 · C1 =
(x1 − x0)2 + (y1 − y0)2

2(1− cos(φ1 − φ0))
> 0

and C0, C1 thus have the same sign and the two circles are oriented in the same way. The tangent at the
breaking point is obviously parallel to the difference vector ([x1, y1] − [x0, y0]). This is a standard case in
the bi-arc interpolation and it has approximation order equal 3 as shown in [17]. �

Let us stress the fact, that bi-arcs are piecewise rational rational curves. Their union, which approximate
the whole algebraic curve can therefore be represented in the NURBS format.

Let us conclude this paragraph by summarizing results obtained so far in the following

Proposition 11. The procedure consisting in determination of the critical boundary G1-points and properly
connecting them with bi-arcs as described in Proposition 10 provides collection of N circular arcs. The union
of circular arcs and C̃ has the Hausdorff distance which decreases as O(N−3).

4.2. Verifying and enforcing the correct curve topology

The previous approximation procedure yields an approximation of C̃ within any desired accuracy, but
does not provide informations about the correct topology of the result. Indeed, while the approximated
monotonous smooth segments start and end at critical points, it is still possible that they intersect in a
different way that the exact curve segments. We propose the concept of a bounding triangle as a strong
tool, which can prove the correct topology or localize the topology problems to small areas, where they can
be handled using algebraic methods.

Definition 11. Let P1, P2 be two G1-points connected by a smooth monotonous segment of C̃. The tangent
triangle T (P1, P2) is the triangle bounded by the tangents of P1 and P2 and by the segment P1P2.

This triangle provides a natural bounding area of the connecting segment.

Proposition 12. The monotonous segment c connecting P1, P2 lies in the interior of the tangent triangle
T (P1, P2).

Proof. Denote by t1 and t2 the tangent vectors at P1 and P2 respectively. Due to the smoothness and
monotonicity of c in x, y, and n it can be after suitable rotation parameterized as a graph of a function
without inflections. Without loss of generality we can suppose that this function is strictly convex. From
the definition of convexity, the arc lies above both tangents and below the segment P1P2. �

Due to this proposition both exact and approximate curve segments will lie with the same tangent
triangle. If the tangent triangles of all segments are non-intersecting, the correct topology is ensured,
because the continuous transition required in Definition 4 will be realized for each segment independently
within the tangent triangle. This is e.g. the case of examples displayed on Figures 3, left and 4, right. Indeed
the triangles meet only by they corners at the same G1-point.

It turns out, that a transversal intersection of two triangles can also ensure the correct topology.

10



P1

P ′1
P2

P ′2

Figure 2: Two curve segments and their tangent triangles. The intersection of segments lies inside the intersection of tangent
triangles.

Proposition 13. Let c1 and c2 be two curve segments and their bounding triangles T1 = T (P1, P
′
1) and

T2 = T (P2, P
′
2) intersect in the following way: The edge P1P

′
1 intersects the edge P2P

′
2, P1, P

′
1 /∈ T2 and

P2, P
′
2 /∈ T1. Then the segments have precisely one transversal intersection and it lies in T1 ∩ T2.

Proof. Existence of the intersection follows from the transversal intersection of the triangles. The unique-
ness is ensured by the convexity of both curve segments within the bounding tangent triangles. �

If we have only two triangle intersecting in the given area, we are sure, that the segments will intersect
in one ordinary double point. The continuous transition required in Definition 4 can be realized for each
of both segments independently within the tangent triangle, because it will not change the nature of the
intersection due to Proposition 13. Often, this tool is sufficient to prove the correct topology. This is e.g. the
case of the example displayed on Figure 5.

Other mutual positions of bounding tangent triangles must be handled more carefully. We must consider
two cases

1. More then two triangles intersect at the same point.
2. Two triangles intersect in a different way then described in Proposition 13.

Both cases one must also consider if they would occur after slight perturbation of the triangle corners,
because their position can be influenced by a computational error. Note, that this is not the case in all
previously mentioned examples, because there the only proximity occurred between two triangles sharing
the same G1-point.

If one of previous cases occur, we can use two projections to detect boxes containing only one critical
point. We realize the projection as the determinant (i.e. resultant of the function with its derivative) with
respect to the direction of the projection. Let B = I1×I2 be a box, where we want to resolve the topology.
We isolate roots of discriminant of f with respect to x (resp. y) by intervals I1, . . . , Ik resp. J1, . . . , Il, then
in each smaller box Ii × Jj there is at most one singular point. To handle the topology inside such a box
we need the concept of topological degree used in [3].

Definition 12. Let B ⊂ R2, G : B → R2 be C2 bivariate function and a ∈ R2. Suppose that no root of
G(x, y) = a is on the boundary of B. Let d be a regular point of G and let d be in the component R2−G(∂B)
containing b. Then the topological degree of G at a inside B is defined by

Deg(G,B, a) =
∑

b∈B,G(b)=d

sign detJG(b). (16)

The topological degree can be computed using only the information on the boundary of the box. For
more details and proof see [22].

Proposition 14. Suppose that G = (G1, G2) as above. Let the boundary of the box B is couter-clockwise
decomposed into segments [pi, pi+1], where i ∈ {1, 2, . . . , k} and pk+1 = p1. Assume that on each segment
Gj has a constant nonzero sign. Then

Deg(G,B, (0, 0)) =
1

8

k∑
i=1

(−1)αi−1
∣∣∣∣ sign(Gαi

(pi)) sign(Gαi
(pi+1))

sign(Gαi+1
(pi)) sign(Gαi+1

(pi+1))

∣∣∣∣ , (17)

where αi ∈ {1, 2} and G3 = G1.
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Finally, using the combination of the previous and the following proposition we can deduce the topology
inside the box.

Proposition 15 (Khimšiašvili, [15]). Let p be the only singular point of curve C in bouding box B. Then
the number of branches of C at p is 1−Deg(∇f,B, (0, 0)).

At the examples displayed on Figures 3, right and 4, left several tangent triangles meet at the complicated
singularity. Projection technique is used to determine that inside some small box is only one singularity
with topological degree −1, i.e. the branches meets at one point.

5. Examples

In this section we demonstrate our algorithm on several examples. For each boxed curve we first determine
its critical G1-points as described in 3.1 and their connectivity using the rules of 3.2. Then we interpolate
boundary G1-points with bi-arcs following 4.1. and eventually check or modify the topology as explained in
Section 4.2.

Example 1 - see Figure 3, left.

We consider the equation f(x, y) = 2x−2x3 +x4−2y2 + y4 inside the box [−2, 2]× [−2, 2]. We compute
the implicit support function and the critical G1-points:

D(h,n) = 16h6 + 8n41n
2
2 − 3n21n

4
2 + 11n62 − 48h4(n21 + n22) + h2(64n41 + 24n21n

2
2 + 21n42) + h(32n51 + 54n1n

4
2),

point point type normal vector coordinates
A cusp (0, 1) [1, 1]
B cusp (0, 1) [1,−1]
C extremal (0, 1) [−0.5,−1.51626]
D extremal (0, 1) [−0.5, 1.51626]
E extremal (1, 0) [0, 0]
F extremal (1, 0) [−0.83929, 0]
G extremal (1, 0) [−1, 1]
H extremal (1, 0) [−1,−1]
I inflection (0.43473,−0.90056) [0.52589,−1.18459]
J inflection (0.43473, 0.90056) [0.52589, 1.18459]
K inflection (−0.97192, 0.23529) [−0.91579,−0.48011]
L inflection (−0.97192,−0.23529) [−0.91579, 0.48011]
M additional (0.43473,−0.90056) [−0.76059, 1.46391]
N additional (0.43473,−0.90056) [0.78167, 0.92942]
O additional (0.43473, 0.90056) [−0.76059,−1.46391]
P additional (0.43473, 0.90056) [0.78167,−0.92942]
Q additional (−0.97192, 0.23529) [0.01497, 0.12282]
R additional (−0.97192, 0.23529) [−0.98067, 1.17794]
S additional (−0.97192,−0.23529) [0.01497,−0.12282]
T additional (−0.97192,−0.23529) [−0.98067,−1.17794]

The connectivity rules 1-4 provide the following chains of connected points

R−M −D − J −A−N −Q and S − P −B − I − C −O − T.

Let us have a look at the next connection of S in more detail. By rule 1 it must be connected to one of
the points H, F , G or E. The point H is eliminated by rule 2 and the point G is eliminated by rule 5. To
decide between F and E we will find all points with an intermediate normal e.g. n = (0.11850,−0.99295).

12



One of them is inside the tangent triangle T (S,E) but none is inside T (S, F ). We thus connect S − E and
similarly E −Q. The connectivity of the remaining points follow in a simple way.

For each pair of connected G1-points we now draw the tangent triangle (some of them are very small)
and a the bi-arc interpolant. The arc-spline provide an approximation of the curve and the triangles its
bounding region. Because we have no triangle intersection, the correct topology is certified.

A

B

C

D

EF

G

H

I

J

L

K

M

N

O

P

Q

R

S

T

A
B

C

D

F
E
G

H

Figure 3: Results for Example 1 (left) and Example 2 (right) .

Example 2 - see Figure 3, right.

We consider the equation f(x, y) = x2y2 + x5 + y5 inside the box [−1, 1]× [−1, 1] and obtain

D(h,n) = 3125h6 − 3750h4n1n2 + 825h2n21n
2
2 + 16n31n

3
2 + 108h(n51 + n52),

point point type normal vector coordinates
A cusp (0, 1) [0, 0]
B cusp (1, 0) [0, 0]
C boundary (0.70096, 0.71320) [−1, 0.80873]
D boundary (0.71320, 0.70096) [0.80873,−1]
E extremal (0, 1) [−0.47043,−0.51017]
F extremal (1, 0) [−0.51017,−0.47043]
G additional (0.70096, 0.71320) [−0.49982,−0.50018]
H additional (0.71320, 0.70096) [−0.50018,−0.49982]

The connectivity rules 1-5 gives all connected pairs immediately as shown at the figure. Tangent triangles
indicates a topology issue at a neighborhood of the point [0, 0]. Because the G1-points A, B were computed
symbolically, we know that the point position coincide. If we considered their coordinates only as imprecise
floats, we can use the x and y projections of f (taking the resultant of f and its partial derivatives)

πx(x) = x5(108x10 + 3125x15) and πy(y) = y5(108y10 + 3125y15).

Their roots guarantee that e.g. inside the box [−0.2, 0.2] × [−0.2, 0.2] there is only one critical point. The
curve has topological degree −1 at this box and the curve has two branches at [0, 0]. Therefore points A
and B coincides and we obtain the correct topology.
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Example 3 - see Figure 4, left.

We have the equation f(x, y) = x2y + x4 + y4 inside the box [−1, 1]× [−1, 1] and get

D(h,n) = 256h5 − 27hn41 + 144h2n21n2 − 128h3n22 − 4n21n
3
2 + 16hn42.

point point type normal vector coordinates
A cusp (1, 0) [0, 0]
B extremal (0, 1) [0, 0]
C extremal (1, 0) [0.56988,−0.43301]
D extremal (1, 0) [−0.56988,−0.43301]
E extremal (0, 1) [0.5,−0.5]
F extremal (0, 1) [−0.5,−0.5]

Connectivity is resolved and the topological issue around the point B is resolved using the projections

πx(x) = −27x8 + 256x12, πy(y) = 16y4(4y4 − y2)2

which indicates one singular point in the box [−0.2, 0.2]2. This point has inside this box topological degree
−1 and the points A a B coincide.

A
B

CD

F E

AB

C

D

E

F

G

H

Figure 4: Results for Example 3 (left) and Example 4 (right).

Example 4 - see Figure 4, right.

Equation f(x, y) = y2 + x3(x+ 1)3 inside box [−2, 2]× [−1, 1] gives us

D(h,n) = 1024n61 + 54432h2n21n
2
2 + 7776hn31n

2
2 − 108n41n

2
2 + 729n1(128h3n22 − hn42) + 729(64h4n22 − h2n42).

point point type normal vector coordinates
A cusp (1, 0) [0, 0]
B cusp (1, 0) [−1, 0]
C extremal (1, 0) [−0.5,−0.125]
D extremal (1, 0) [−0.5, 0.125]
E inflection (−0.35112,−0.93633) [−0.85355,−0.04419]
F inflection (−0.35112, 0.93633) [−0.85355, 0.04419]
G inflection (0.35112,−0.93633) [−0.14645,−0.04419]
H inflection (0.35112, 0.93633) [−0.14645, 0.04419]

In this case, the connectivity is clear, as well as the certified topology.
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5.1. Example 5 - see Figure 5.

We want to draw the offset at distance − 9
10 to the ellipse f(x, y) = f(x, y) = x2 + 4y2 − 4 inside box

[−2, 2]× [−1, 1]. The implicit support function of the ellipse is

D(h,n) =h2 − 4n21 − n22

and therefore the implicit support function of the offset at distance − 9
10 is

D(h,n) =

(
h− 9

10

)2

− 4n21 − n22.

Using methods from Section 3 we get the following G1-points.

point point type normal vector coordinates
A cusp (−0.75348,−0.65747) [−1.15500, 0.19184]
B cusp (−0.75348, 0.65747) [−1.15500,−0.19184]
C cusp (0.75348,−0.65747) [1.15500, 0.19184]
D cusp (0.75348, 0.65747) [1.15500,−0.19184]
E extremal (0, 1) [0,−0.1]
F extremal (0, 1) [0, 0.1]
G extremal (1, 0) [−1.1, 0]
H extremal (1, 0) [1.1, 0]

Connectivity rule 1 indicates that A can be connected to E, F , G or H. Rule 5 discards the point H. We
add points with normal n = (−0.70710,−0.70710) and obtain a point inside the tangent triangles T (A,F )
but not inside the tangent triangle T (A,E). As A has to be connected to two points, the only possibility
remains the chain G−A−E. Connectivity for other points is analogous. The bounding triangles have only
transversal intersection, the correct topology is therefore certified due to Proposition 13.

B D

CA

G

E

H

F

Figure 5: Result for Example 5.

6. Conclusion

To conclude, let us stress several interesting aspects of our new method for approximation of boxed
algebraic curves. It is based on an identification of geometric features, including inflections, cusps and other
critical points, which delimit the monotonous smooth curve segments. It exploits simultaneously the curve
equation and its implicit support function representation. Unlike the other methods, our method focuses
primarily on the high quality approximation of the segments. Due to the support function representation it
controls the Hausdorff distance and not only its estimates such as the algebraic distance.

As a future research we plan to investigate the possibility to obtain symbolically higher order infor-
mation about branches of algebraic curves. We also intend to exploit the support based construction and
representation of circular arcs for other applications.
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[21] Š́ır, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer
Science 392, 141–157 (2008).

[22] Stenger, F.: Computing the topological degree of a mapping. Rn. Numer. Math. 25 (1), 23?-38 (1975).
[23] Walker R.J.: Algebraic Curves. Springer-Verlag (1978).

16




