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Abstract

In this paper, the problem &2 Hermite interpolation by triarcs composed of Pythagoreadegraph (PH) quintics

is considered. The main idea is to join three arcs of PH qusrat two unknown points — the first curve interpolates
given C? Hermite data at one side, the third one interpolates the $gpeeof given data at the other side and the
middle arc is joined together with? continuity to the first and the third arc. For any set§f planar boundary data
(two points with associated first and second derivativestamestruct four possible interpolants. The best possible
approximation order is 4. Analogously, for a set@f spatial boundary data we find a six-dimensional family of
interpolating quintic PH triarcs. The results are confirhgdeveral examples.
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1. Introduction

Shapes (curves, surfaces, volumes) in Computer Aided Geioresign (CAGD), and in a vast variety of sub-
sequent applications, are often described by piecewisapoiial/rational representations. However, not everypsha
can be represented using polynomial/rational functioes,[] for more details. Another problem in CAGD is that
many natural geometric operations, such as offsetting,al@reserve rationality of derived objects. Nonetheless,
offsets to certain special classes of shapes admit examahtepresentations.

In the case of planar curves, the class of Pythagorean-haglogPH) curves as polynomial curves possessing
rational offset curves and polynomial arc-length funcsievas introduced in [2]. A thorough analysis of PH curves
followed; see, e.g., [3-5]. The concept of planar PH curvas later generalized to polynomial spatial PH curves in
[6, 7]. These curves have the following attractive progsttthe arc length of any segment can be determined exactly
without numerical approximation and any canal surface dbasespatial PH curves as its spine has a precise rational
parameterization. The case of PH curve®ihfor n > 3 is still not solved satisfactorily. Exploiting recent résu
from number theory, the structure of PH curves in dimensions 5 andn = 9 was characterized in [8, 9]. We
would like to recall that polynomial PH curves have their ctauparts also in rational versions — see [10—13] for more
details on rational planar PH curves, and [14] where ratigpatial PH curves were introduced and studied. However
rational PH curves are beyond the scope of this paper. Alddtsiirvey of the literature on shapes with a Pythagorean
property and their applications in technical practice cafidund in [15].
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Many PH interpolation techniques (yieldirdig' /G* or C?/G? continuity) which form the cornerstone of subse-
guent approximation algorithms devoted to particular fots originating in technical practice have been formdate
in recent years. These methods by planar or spatial polyaid®i curves are usually based on low degree polyno-
mials — mainly3 and5 (in some cases alsband9), as only odd degree PH curves are regular. For planar cibic P
curves one of the first interpolation methods was given i WigereG* interpolation of Hermite data was analyzed.
These results were generalized in [17]d6 interpolation by the same objects. Later the problem waisited in
[18, 19]. For quintic planar PH curves, several results et ind second order continuous spline interpolation are
given in [5, 15, 20-23]. For spatial curveS! Hermite interpolation by PH cubics was thoroughly investigl in
[24]. Those results were later generalized to some leveél5ih [The most general results on this type of interpolation
can be found in [26] and [27]. The problem@f andC? Hermite interpolation by spatial PH curves of degreé
has been studied in [28-31].

C' Hermite interpolation by cubic polynomial spline curvesalsiays uniquely solvable, so it is obvious that
the same problem cannot be solved by PH cubic splines. Hoynaveic (i.e., low degree) polynomial interpolating
splines are preferred in many applications. An interessimgroach was used in [32], wheteé Hermite interpolation
via double-Tschirnhausen cubics (TC-biarcs) have beesidered. The main idea was to join two arcs of planar
cubic PH curves at some unknown point — the first curve infatpeC' Hermite data at one side, the other one
interpolates the same type of data at the other side and¢bee joined together with! continuity. This approach
was recently improved in [33], where planar uniform and mmiform cubic PH biarcs were studied and applied.
Using a close analogy between the complex representatipteofr PH curves and the quaternion representation
of spatial PH curves, this idea was later transformed to pla¢ial case in [34] where the Hermi' interpolation
scheme by spatial cubic PH biarcs was presented and a gefgwethm for computing interpolants was designed,
studied and applied.

In this paper, we will extend the ideas from [33, 34] to i€ Hermite interpolation by planar/spatial PH curves.
Instead of using PH curves of degi@as in [29] we will consider PH triarcs, which enables us topditte degree of
the used PH curve to. In other words, the main idea is to join three arcs of PH desrdat two unknown points — the
first curve interpolates give@i? Hermite data at one side, the third one interpolates the $gmeeof given data at the
other side and the middle arc is joined together withcontinuity to the first and the third arc. The algorithm wid b
formulated firstly for planar PH quintic triarcs using comypkepresentation. Then, a straightforward generalizatio
to the quaternion representation yields an analogousitiigofor spatial PH quintic triarcs. The functionality ofeth
designed technique will be demonstrated by several plarhspatial examples.

The paper is organized as follows. In the next section soreknminaries of the used theory are given. The
C? Hermite planar interpolation problem is presented and garidhm for computing such interpolants is given in
the third section. In the fourth section the presented appras generalized to the spatial case and the numerical
examples which confirm the theoretical results are showne fihin results of the paper are summarized in the
concluding section.

2. Preliminaries

In this section, we review fundamentals of the theory of ptasind spatial Pythagorean-hodograph curves and
their relation to complex numbers and quaternions, resghet

2.1. Complex numbers and planar PH curves

Planar Pythagorean-hodograph curves were introduced.in{olynomial parametric curve = (z,y) ' of
degreen with the hodograpth = p’ = (2/,4’) " is a Pythagorean-hodograph curve (shortly PH curve) if tmepo-
nents of its hodograph fulfill the condition

CCI2 +y/2 _ 0_27

wherecs is a polynomial. The main advantages of PH curves are thgtpbsesess rational offset curves and have
(piecewise) polynomial arc-length function.

With the help of Kubota’s theorem (see [2, 35]) hodographallgilanar polynomial PH curves can be expressed

in the form
¥ = wu?—v?),

y = w(2uv)
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for some real non-zero polynomialsv, w, wherew is usually taken as a constant.

In many cases (and also in the follow-up sections), it is athgeous to use complex representation of points and
curves in the plane to represent planar PH curves (see [B&jje precisely, points in the plane are identified with
complex numbers in the complex plane and planar polynonaicrpetric curves are identified with complex-valued
polynomials. Thenp = = + iy is a PH curve iff there exists a complex polynomiak= v + i v, called the preimage,
such that the hodograghof p can be expressed in the form

2 v +i2uw.

h=w?’=u

2.2. Quaternions and spatial PH curves

Similarly to the relation of planar PH curves and complex benfpolynomials, spatial PH curves can be deter-
mined with the help of quaternion algebra. For a definitiogudternions and the description of standard operations in
a quaternion spad#, the reader is kindly referred, e.g., to [15]. Here, only sdass known facts about quaternions,
which will be used in Section 4, are reviewed .

A standard multiplication on quaternions is not commuggthwt it is possible to define a commutative multipli-
cation. For a pair of quaternions, B € H, we define

1 _ _
AxB:=(AiB + BiA). (1)

The result is always a pure quaternion which can be identifi¢ila vector inR3. A notation4?* := A « A will be
used further on. The following lemmas review how linear anddyatic equations with respecttebperation can be
solved (see [29] and [37], respectively).

Lemmal. Let .4 be a given pure quaternion anfl a given non-zero quaternion. Then all solutions of a linear

*—equationt’ x B = .4 form a one-parameter family

(a+ A)Bi
BB

Lemma?2. Let A be a given pure quaternion. All solutions of a quadratieequation¥?* = A form a one-

parameter family

X(; B, A) = aeR.

X:=X(pA) =X, (A)Qy, Qp:=cosp+ising, ¢e|[—mm), (2)
whereX,(A) is a particular solution given by

i
VIR
+1

Xp(A) = H [ATl
VAl K, T4y = —i
Further, it can be proved that for arbitrary quaternighand3 it holds
AQp x BQy = AQp—y % B=AxBQy—. 3)

Let us focus on spatial Pythagorean-hodograph curves niavila8ly to the planar case, a polynomial parametric
curvep = (z,vy,2) " of degreen with the hodograph = p’ = (2/,y/, 2') " is a spatial Pythagorean-hodograph curve
if the components ok fulfill the condition

NS

—i

RN

3

.

>

:17/2 +y/2 +Z/2 — 0_27
whereo is a polynomial. Analogously to the planar PH curves and tt@inplex representation, it is advantageous to
use quaternion algebra to represent spatial PH curvesgvgoénts in the space are identified with pure quaternions
and spatial parametric polynomials are identified with pgwaternion polynomials. Thep, = zi+ yj+ zkis a
spatial PH curve iff there exists a quaternion polynomiak u + vi+ pj + ¢k, called the preimage, such that the
hodograpth can be expressed in the form B

h=AiA= A%

Note that quaterniond and.A Q,, generate the same hodograph.
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3. Planar interpolation problem and an algorithm

This section is devoted to the study G Hermite interpolation with planar quintic PH triarcs. Argatithm
for finding such a quintic PH triarc for given Hermite data isyided and the approximation order of the method is
analyzed.

3.1. Algorithm

In this section the interpolation problem by planar quiftid triarcs is presented and an algorithm for computing
the interpolantsis given. Since the previous section shioats planar PH curve is easily characterized by its complex
preimage, vectors iR? will be identified with complex numbers and vice versa.

Suppose thal, B < C are two given points antly, ¢z € C are given associated tangent vectors. Additionally,
let us prescribe two second derivative vecteiscs € C at A, B respectively. The goal is to find@? continuous
planarquintic PH triarcinterpolantp : [y, 73] — C, composed of three planar quintic PH curves

D;: [7'1',1,7'1'] %C, 1= 1,2,3,
withp <7 <79 < 73, 1.€,,
pl(t)v te [7_077_1]7
p(t) = p2(t)7 te [7_177_2]7 (4)
pB(t)v te [7_277_3]7
satisfying
p(r) = A, p'(r0) =ta, p'(n0)=ca, (5)
p(r3) =B, p'(n)=tp, p'(13)=cp. (6)
Sincep should be inC? ([, 73]), we additionally require

pz('k)(Ti) = pz('i)l(Ti)a =12, k=0,1,2 ()

The interval valuesy, < 7 < 7 < 73 are fixed but can be chosen arbitrarily. In all presented @@snwe have
used the uniform division of the intervfl, 1] at the pointd /3 and2/3 but the interpolation algorithm works equally
well for other values of;'s.

Parametric curvep,, i = 1,2,3, are assumed to be PH curves, so they are characterizeddsy dbsociated
preimage curves

2
t—Ti— )
wl(t) = Zwi-j BJQ' ( ATT 11) 1=1,2,3,
=0 -

WhereATi_l =7 —Ti—1,t=1,2,3.
Let p, be given in the Bernstein-Bézier basis as

5
t—Ti1 )
_ R =1} ¢ _
pi(t)_j;PLJBj ( A'rifl )7 1—1,273.

By [15], the control pointd?; ; are expressed by the control points of the preimages as

ATi_
P,y =P;o+ 7—5 lw?,Oa
ATi_
P,o=P;+ 5 1wz,O w; 1,
ATZ',1 2 1
Pi3=P;s+ 5 (gw% + ng‘,o wi,2> ) (8)
ATi_
P,,=P;3+ 3 lwz,l w; 2,
ATZ',
P,s=P;,+ 5 ! 52



From (5), (6), (8) and some basic properties of Bézier czivve obtain

AT
Py =A, wio =ta, wipowii— wio = TOCA7 9)
and A
-
P35 =B, wj,=tp, wj,—wsjwsy= T203' (10)
The continuity conditions at; andr, clearly imply P o = P, 5 andP3 o = P5 5. This, together with (8), gives
AT 2 1
Pyy=A+ ?0 <wi0 +wiowi + gw%; + gwl,o w2+ Wi wig + wiz) ) (11)
AT: 2 1
Pys =B - TQ <w§70 twsows1 + gwi,l + 3W3,0 W32 + w31 w32+ w§,2> . (12)
Using (8) it follows that
AT 2 1
P275 — ng() = Tl (wio + wo 0 W2 1 + gwil + g’ll)gy() w2 2 + Wwo 1 W22 + w§,2> . (13)

The first and the second order continuity conditions,andr, further imply

1 1 .
wiQ = w§+170, Al (wi2 —w; 1 wi,Q) = A (wi+170 W11 — wfﬂﬂo) . i=1,2. (14)
11— 1

The equations (9)—(14) form a systemiafcomplex equations farl complex unknownsv; ;,i =1,2,3,5 =0, 1, 2,
P, and P, 5. From the equations (9), (10) and (14) we derive

w10 =XAVta, W32=xpVlig, Wi2=X1W20, W30 = X2W22, (15)

where each of 4, x5, x1 andy is eitherl or —1, and consequently

ta+ %CA tp — %CB
Wy ==, W3] = . (16)
XA Vita XBVts
From (14) it follows also
A1y AT 1 1 ta+ 20y
wo o = =202 ——wyq + L oxitAaT A , (17)
Ao+ A1 \ Ay ATy xa Vita
Ar A 1 1 tp — A2¢
Wop = 2 | gy 2B L OB (18)
AT1+AT2 ATl ATQ XB \/tB

Here, we have assumed that ( # 0 andw3 > # 0, which should be fulfilled since we consider only regulamijiai
PH curves.
Considering (15)—(18) in (11)—(13), we end up with one carpgjuadratic equation fav, ;, namely

3
Z ATi_1 (’wio + w;ow; 1+ %wil + %ww w; o+ W; 1 W2+ ’w?_g) -5 (B — A) =0. (19)
i=1

It is easy to see that the expressions (8) for the controltpaifithe triarc segments involve only the products
X1 XA O x2 x5. Thus we can assume that, e;g.,= x2 = 1. We still have two possibilities for each gf4 or x5,
which together with two solutions of the quadratic equafmmw ; gives eight solutions in general. But multiplying
the control points of the preimage byl does not change the curve, thus we can, e.g., chpgse 1. This leaves
four possible choices for the solution. Let them be deno;ed;ﬁ’li, where the first symbat denotes the sign of
the x5 and the second one the sign in the solution of the the quadrqtiation (19). Consequently, we obtain four
possible interpolants, which will be denoted accordinglpa *.
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Figure 1: Four distinct quintic PH triarcs for input data iraEnple 1 labelled byt (top left), p*~ (top right),p~>T (bottom left) andp—>—
(bottom right).

Example 1. Let us conside€? Hermite data

3

-
2
PO = (070)T7 P2 = <§7O> 5 tO = (272)T7 t2 - <2;

.
§> . oco=(-1,1)", e=(1,-1)".

With the help of the method described in the previous papigrave can find all four distinct quintic PH triarcs
matching given data (see Fig. 1).

3.2. Asymptotic approximation order

In this section the approximation properties of all fourehpolating triarcs will be analyzed. Let the data be
sampled from an analytic parametric curfe: [0,h] — C, s — f(s), parameterized by the arc-length and let
@ [a,b] = [0,h],t— h(t —a)/(b— a), be a particular linear reparameterization. We can asswiitieout loss of
generality) thatt = 0 andb = 1 to simplify the analysis. Using the well-known Frenet-8eformulae, the curve can
be expressed as

1 1 1
f(s)=s5— 6/&353 — §n0n154 + 120 (kg — 4karo — 3K7) 8"+ (20)
KoS?  K1sS 1 3y 4 1 9 5) . 6
+ 5 + 5 Jrﬂ(ng—lio)s +1—20(I€3*6I€0H1)S 1+(9(h),

wherer(s) = ko + k15 + 5252+ %35 4+ O (s*) is the Maclaurin series of the curvatureff The task is to construct
the triarc (4) that satisfies (5) and (6) for the data

A=(fop)(0)=0, ta=(fop)(0)=h, ca=(fop)"(0)=h"roi,

1 1 h2 h3 1
B(fo¢)(1)h6h3’iggh4nom+< ro | R

6 24
1 1 h3 1
tp = (f © 90)/ (1) =h- §h3H3 — 5]14/{0%1 + <h2lio + 2H1 + 6h4 (Iig - Hg)) i+0O (hs) ,

3 1 .
CBUO@WQMﬁimmm+<ﬁm+ﬁm+§momﬁwl+owﬂ



taken from the reparameterized curfreFrom (15)—(18) it follows that the control points of the jpnege expressed
with the unknownws, ; expand as

1
wl,OZ\/E, wiy = \/E‘F Zh3/2lio7'1i+o<h7/2) ,

Wi = w21 + \/E <1 . E) B h3/2n071 (71 *Tz)iJrO (h7/2) ,
T2 T2 47’2

wa o =wi2+ O (h7/2) ;

(o — 1) wa Vh(ri —m)xs . B2k (11 —T2) (1o +1) xB.

W2,2 = T —1 * 71— 1 + 4(7-1_1) .
B2 (KE = 2k1 i) (1 — T2) Toxm ) (h7/2)
8(7’1 - 1) ,

w3 =wa2+ 0O (h7/2) ,
ws1 = Vhxp + ih3/2f<&0 (e + 1) xBi~— éh5/2 (kg — 2kK11) T2x + O (h7/2) ;
wso = Vhxp + %h3/2ﬁ0x3 i— %h5/2 (kg —2rK1i) xB+ O (h7/2) )

The equation (19) fotw,,; thus become€’s (h)w3 | + C1(h)wa,1 + Co(h) = 0, where

4+ 4+(n—-3)n

Ca(h) = 15(m —1)m

. Ci(h)=0 (JE) . Co(h)=0(h).

The solutions foryg = 1 are

1

1
w;’l-"_ =vh+ ZHO (11 +7‘2)h3/2i— 3 (mg — 2K i) nmah®? + O (h7/2) ,

- T =9 4 7 (72 +7))\/ﬁ+m T =3 —3n(nt )n 4 (421 45) 5.
2,1 T + 1211 + (T2 — 3) T2 0 A(f + mam1 + (12 = 3) 72)
2
) N\ T2 (72 +(1*371)7'2+1) 5/2 7/2
(k29 h +(9(h )
(Ko — 252 1) 8 (18 + 7211 + (12 — 3) T2)
and foryp = —1 are

'w;’fr = Ci’_(Tl,TQ)\/E + Kocg (11, Tg)h3/2 i+ (ﬁgc:{(ﬁ,m) + ki (11, 72) i) RS2 L0 (h7/2) ,

)

wyy = ey (71, TQ)\/f_L + Kkocy (11, Tg)h3/2 i+ (ﬁﬁcg(ﬁ, T) + Kk1cy (T1,72) i) K2+ 0 (h7/2) ,

WherecfE (r1,72), 1 = 1,2, 3,4, denote some rather complicated expressions involving anandr,. Suppose first
thatw,,; = w; ;. Then the triarc (4) expands as

1 1
pg_’-’_(t) = ht + §H0f2h2i— 6 (Ii% —:‘il)tshs+7T47i(t;7'1,7'2,/€0,/€1,/€2)h4+O(h5) s te [Ti—laTi], (21)

fori = 1,2, 3, wheren, ; is a complex polynomial i of degreet with coefficients involvingr , 72, ko, k1, k2. From
(21) and (20) then follows that
[p*F = fopll=0("),
i.e., the approximation order is equal to four. For the othege solutions the triarc (4) expands as
pTT(t) = ﬂ;;_ (t;m1,2)h+ O (h2) , te€lm-1,m], i=1,2,3, (22)
pf’i(t) = W;;i(t;ﬁ,Tg)h + O (hQ) , t€[ri—i,m], i=1,2,3, (23)
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Figure 2: The curve defined in (24) and its approximationdyPH quintic triarc forn segmentsn = 1 (top left), n = 2 (top right),n = 4
(bottom left) andn = 8 (bottom right).
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Wherew;;_, w;f andr, ;~ are complex polynomials inof degrees with coefficients involving onlyr; andr.. It
can be checked that none of the polynomials can be equaltor any0 < 7 < 75 < 1. Therefrom it follows that

lp*" = fopll=0(h), [lp~* = foupl=0(h),
which implies the approximation order one. Let us summdtieeesults in the following theorem.

Theorem 1. Let f : [0,h] — C, s — f(s) be an analytic complex curve and: [0,1] — [0,h], t — th, alinear
reparameterization. Moreover, by * : [0, 1] — C let us denote four interpolating triarcs defined (@, that satisfy

PEEE) = (Fop)@),  (PH) ()= (Fop) (), (P™%)"()=(Fop)"(), i=0,1
Then for anyr, 72,0 < 71 < 72 < 1, the triarcp™ ™ has the approximation order four, i.e.,
lp™ " = foel=0(r).
For the other three triarcs, the approximation order is etjigeone, i.e.,
[pT " = fopl|=0M), [p=" —Ffop|=0(h).

To confirm the theoretical asymptotic results by an numéggample, let us choose a smooth complex cufve
and a reparameterizatignas (see Fig. 2)

f:[0,h] = C, s log(s+1)cos(2s)+ v/ s?+ 1log(s+ 1)sin(2s) i, (24)
©:[0,1] = [0,h], t+— ht.



The data becomes

A= (fo9)0), ta=(fop)(0), ca=(fop)(0),
B = (fop)(h), tg = (fop)(h), e = (fop)'(h),

for someh small enough. Let®™*(h) := ||[p5% — f o ¢|| 0,1 denote the distance between the trigfc* and

the given curve. To determine the approximation order nigaly, we assume that™* (h) ~ const - R and we
estimate the decay exponerit® by comparing the errors of interpolating triarcs for diéfat values of. In Table 1
the errorse®™*(h) are shown for all four triarcs antl = 2=, k = 0,1,...,7. Moreover, the decay exponents
computed from two consecutive measurements are shown toce §* tends to the order of approximation as
approaches zero, the results confirm that the approximatiber forp™ * is four and for the other three solutions it
is just one.

(25)

et (h) |t enT(h) [yt e () |yt e (h) |y
0.005653 / 0.3403 / 0.3506 / 0.2399 /
0.0002240 | 4.657 0.1140 | 1.578 0.1242 | 1.497 0.1075 | 1.158
0.00001375 | 4.026 || 0.04577 | 1.317 || 0.05314 | 1.225 || 0.05426 | 0.986
1.174-1075 | 3.550 || 0.02292 | 0.998 || 0.02684 | 0.986 || 0.02775 | 0.967
8.334-107% | 3.816 || 0.01154 | 0.990 || 0.01379 | 0.961 || 0.01409 | 0.978
5.422-107° | 3.942 || 0.005798 | 0.993 || 0.007019 | 0.974 || 0.007103 | 0.988
3.436-1071° | 3.980 || 0.002907 | 0.996 || 0.003545 | 0.985 || 0.003567 | 0.994
2.160 - 1071 | 3.992 || 0.001456 | 0.998 || 0.001782 | 0.992 || 0.001788 | 0.997

= e e

—
[\
[e3)

Table 1: Distances®:= (h) of the curve (24) from its triarc interpolangs™ = and corresponding parametey$ -+ showing numerical values of
the decay exponent. As it is clearly seen from the table, thr@ysolutionp+ gives fourth order approximation.

4. Spatial inter polation problem and algorithm

In this section, we will show that it is straightforward torgealize the previous algorithm to the spatial case. The
approach presented is similar to the generalization ofgsl@h Hermite interpolation by uniform and non-uniform
TC-biarcs (see [33]) to the spatial case (see [34]).

Recall from Section 2 that spatial PH curves can be genevatedhe help of quaternion polynomials. Therefore,
points and vectors i3 will be identified with pure quaternions and vice versa initbst of this section. LedA, B,
ta, tp, ca, cp € R? be pairs of given points, associated tangent vectors amhdeterivatives vectors, respectively.
The task is to compute@? continuous spatial quintic PH triarc

pl(t)a t e [Tole]a
pilro,ms] = R :p(t) = polt), te[m,m], To<m <7 <Ts,
pB(t)a te [T277_3]a

interpolating given Hermite data.

The modification of the planar to the spatial case is basederpanciple: all complex numbers are replaced by
guaternions and the standard multiplication of complex bers is replaced by-operation defined on quaternions,
see (1). The preimag4; and the associated PH curygsare represented in the Bernstein-Bézier form as

5 5
t—Ti1 t—Ti—1 )
1() = N (ﬁil), A() =~ ) g (ﬁil), (3 7;37
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and it holds that

AT;_ AT
P,i=P;o+ 7—5 1.1412,’6, P,,=P;,+ T 1-»41',0*-/41',1,
Ar; 1
P,35=P;>+ 75 ! ( «42’; +§-Ai,0*v4i,2)7

ATZ,1 ATZ 1

P;,,=P;3+ 5 —Ai1x Ao, P;s=P; 4+ A

The interpolating conditions that determine the spatiat¢rare of the same form as the conditions (9)—(14) for the
planar case, only analogously modified. Cleafty,, = A and P35 = B. The first order continuity conditions in
(9), (10) and (14) can be solved with the help of Lemma 2. Ngmel

Ao =X(pasta), As2=X(ppitp), Ai2=A4A20Q, Azo=A229,,, (26)

wherep 4, ¢, ¢1 andp,y are free angular parameters. The equations for the intgipnlof second derivatives at
the boundary, analogous to (9) and (10), can be solved usingia 1. The unknowns

AT AT
A =4& (al,A1 0.ta+ TOCA) Az =X (042;A3,27tB - TQCB> (27)

are determined with two new free parametefsanda, involved. The second order continuity conditiong-agnd
T9, presented in (14), simplify to

1 1
Aa o x A— («42,0 — A Q—zpl) = Ay A— (-A2,1 - -A2,0) )

AQQ*A (A2 — A1) = A22*A—2(A31Q— —Az9),
which by following the planar case should determine the omkrs.A; o and.A; 2. This could be done by using
Lemma 1 with two additional free parameters introducedelas we can take a particular solution which is to equate
the quaternions on the right side of the star operation whioes
1 1

(Arg A1 + AT A 19 _,), Asp=——71— (AT A3 Q_p, + ATy Az1) . (28)

A20 A7'1+A7'2

" An+An
Finally, we end up with one quadraticequation, analogous to (19), for the remaining controhpgl; ; of the
preimage:

3
ZA’T};1 <A?,B+Ai,0*-f4i,l+ A + Alo*A12+Al1*A12+A > (B A) (29)

Solving this equation with the help of Lemma 2 introducesthepfree angular parametér To sum up, the control
points of the preimage quaternion curve are completelyraeted by (26)—(28) and by a solution of (29). They are
expressed with seven free parametesis o, @1, v2, 1, o, 1. However, analogously to [34], it is possible to prove
with the help of (3) that one angular parameter is superfludvs can choose e.gy; = 0. Note that the number
of free parameters coincides with the difference betweemthmber of equations and unknowns that are involved in
C? quintic triarc construction. Namely, each quintic PH cuiweetermined byl4 parameters, the quintic PH triarc
thus hagp = 42 parameters of freedom. Interpolation conditions give 4 - 9 = 36 equations, and the difference
isp — e = 6. To sum up, for any non-degenerate spafidl Hermite data there exists a six-parametric family of
interpolating quintic PH triarcg.. (t; o4, ¢ B, ©1, P2, a1, a2).

Example 2. Let us conside€? Hermite data

11 \" 11 \"
P0:(2,1,1)T, P22(1,2,1)T, toz(l,l,l)T, t2=(1,1,—2)T 002(5,5,0) 732:(_ __,()) .
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Figure 4: Uniform quintic PH triarcs obtained for planarupiermite data in Example 3 (tangent vectors are scaled dgvactor 3).

Fig. 3 (left) shows quintic PH triarcs obtained for pajrs, o5 € {—m,—%,0, T} andy1, 2, a1, a2 equal to zero.
Fig. 3 (right) shows quintic PH triarcs obtained for pairs as € {0,2,4,6}, and parameters, o5, ¢1, ¢2 Set to

zero. In both cases, uniform quintic PH triarcs (ie.—= % Ty = %) are shown.

Analysis of this spatial algorithm is very similar €' Hermite interpolation by spatial PH cubic biarcs (see [34])
andC? Hermite interpolation by PH curves of degree 9 (see [29]thWkactly the same reasoning as in [29, 34] it is
possible to prove the following

Proposition 1. For any planarC? Hermite dataP;, t;, c;, i = 0, 2, the four quintic PH triarcgp_ (¢;0,0,0,0,0,0),
p,(t;0,—7,0,0,0,0), p.(t; —7,0,0,0,0,0), p,(t; —7, —7,0,0,0,0) are planar and correspond tp™* solutions
of the planar interpolation problem with quintic PH triarcgresented in Section 3, respectively.

PROOF If we setay; = 0, ae = 0, o1 = 0 andyp, = 0, then the proof is completely analogous to the proofs of
Proposition 1 in [34] and Theorem 3.11 in [29].

Example 3. Let us conside€? Hermite data

T T
3 2
POZ(O,O,O)T, P2: (5,0,0) y t0:(2,2,0)T, t2: (2,5,()) 60:(71,1,0)T, 62:(1,71,0)T.
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Fig. 4 shows four quintic PH triarcs obtained fon, o5 € {—m, 0}, parameters, @2, a1, @y €qual to zero and
T = % Ty = % These solutions exactly correspond to the solutions opluear problem.

Similarly as in the planar case one can analyze the asyrogietiaviour of the interpolating triarc in order to
determine the set of parameters providing the best appaiidmorder. By direct computation, analogously to the
analysis of an approximation order in [34], the followingtiniem can be proved. Nevertheless, we will skip the details
of the proof here, because expressions become much mordicatag.

Theorem 2. Let f : [0,h] — H, s — f(s) be an analytic quaternion curve and: [0, 1] — [0, ], t — th, a linear
reparameterization. Moreover, iy, (t; 04, 5, ¢1, P2, a1,a2) : [0,1] — H let us denote interpolating quintic PH
triarcs that satisfy

pT(t;<pA7<pBy<p17<p2,a17a2)L .= (fop)(i),
= (foyp)(i),
= (fow)"(i), i=0,1.

Then for anyry, 72,0 < 71 < 72 < 1, the triarcp..(¢; 0,0, 0, 0,0, 0) has the approximation order four, i.e.,

7

(pf(t; YA, PB, Y1, P2, 01, Oéz))/‘t
(pr(ta PA,PB,P1, P2, 01, QQ))I/‘t .
2

|p,(t;0,0,0,0,0,0) — foo| =0 (h').

In the following example, we also give a numerical evidentthe above mentioned fact and we show that for
other, non-zero, choices of the parametess ¢ 5, the approximation order is generally only one.

Example 4. We are given an analytic curyeéand a linear reparameterization

f:[0,h] > R? s — (log(s + 1) cos(s),log(s + 1) sin(s), 1 + 52)T ,

¢ :[0,1] = [0,h], t— th.
The data are sampled as (25) for soimemall enough. Let; = %, Ty = % and letp_(¢;0,0,0,0,0,0) denote the
interpolating quintic PH triarc with all six parametets,, ¢5, ¢1, ¢2, a1, a2 Set to zero. Furthermore, leth) :=
lp, — f © ¢lls,0,1] denote the distance between the trigrand the given curve. In Table 2 the errerand the
corresponding decay exponentsare shown. The third column numerically indicates thatgo(t; 0,0, 0,0, 0,0)
the approximation order of the curve approximation is fdnrcase when all free parameters are not set to zero, the
approximation order falls. For example, lef = 3, o5 = — 5, 1 = p2 = a1 = a2 = 0. The associated errors and
the decay exponents are presented in Table 2 which confiahthig approximation order for, (¢; 5, —7,0,0,0,0)
is just one.

5. Conclusion

In this paper, the problem af? Hermite interpolation of planar and spatial data (two p®iwith associated
first and second derivatives) by PH quintic triarcs was atersid. More precisely, a PH quintic triarc curve was
constructed by joining three PH quintics such that the fiuste interpolates give@> Hermite data at one side, the
third one interpolates the same type of given data at ther side and the middle arc is joined together witR
continuity to the first and the third arc. The method was fdatad firstly for planar PH quintic triarcs using complex
representation and consequently using the quaternioaseptation also for spatial PH quintic triarcs. For any $et o
C? planar boundary data we constructed four possible intargsland, similarly, for any set 61* spatial boundary
data we found a six-dimensional family of interpolatingrjid PH triarcs. It was shown that that the best possible
approximation order is 4. Several numerical examples wersgmted which confirmed that the constructed triarcs are
of good shape and can be used for the approximation of pkpedial parametric curves by PH quintic spline curves.
One of the advantages of the proposed interpolation schethatiit enables to drop the degree of the used PH curve
from9to 5.

12



5 | P (£:0,0,0,0,0,0) || p, (t%,-%.0,0,0,0)
e(h) v e(h) &t
1 0.002474 / 0.1519 /
3 | 0.0002292 | 3.432 | 0.03733 2.024
1 | 0.00001522 | 3.913 || 0.01301 1.521
1| 8.388-1077 | 4.181 || 0.006332 | 1.038
L | 4.724-107% | 4.150 || 0.003142 | 1.011
& | 2.786-107° | 4.084 || 0.001567 | 1.004
& | 1.691-10719 | 4.042 || 0.0007826 | 1.001
o5 | 1.042-107'" | 4.021 || 0.0003912 | 1.001

Table 2: The approximation erroesand the corresponding decay exponentsdicating the fourth order approximation fpr_ (¢; 0, 0,0, 0, 0, 0)
and just the first order approximation fpr. (t; 5, —%5,0,0,0, 0).

Acknowledgments

All authors were supported by the Czech/Slovenian proj@NKAKT MEB 091105. B. Bastl and K. Michélkova

were supported by Technology agency of the Czech Repubbadh the project TAO3011157.

References

(1]
(2]
(3]
(4
(5]

6]

[7]

(8]

El
[20]
[11]
[12]
(23]
[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]
[22]

[23]

I. R. Shafarevich, Basic algebraic geometry, Springerag, 1974.

R. Farouki, T. Sakkalis, Pythagorean hodographs, IBRek. Dev. 34 (5) (1990) 736-752.

R. Farouki, C. Neff, Hermite interpolation by Pythaganehodograph quintics, Math. Comp. 64 (212) (1995) 1580916

B. Juttler, Hermite interpolation by Pythagorean hgdiph curves of degree seven, Math. Comp. 70 (235) (2009103 1.

F. Pelosi, M. Sampoli, R. Farouki, C. Manni, A control pgbn scheme for design of plan&r PH quintic spline curves, Comput. Aided
Geom. Design 24 (1) (2007) 28-52.

R. Farouki, T. Sakkalis, Pythagorean-hodograph spacees, Adv. Comput. Math. 2 (1) (1994) 41-66.

R. Farouki, T. Sakkalis, Rational space curves are noit‘speed”, Comput. Aided Geom. Design 24 (4) (2007) 238--240

T. Sakkalis, R. T. Farouki, L. Vaserstein, Non-existerdf rational arc length parameterizations for curve&ih, J. Comput. Appl. Math.
228 (1) (2009) 494-497.

T. Sakkalis, R. T. Farouki, Pythagorean-hodograph esiim Euclidean spaces of dimension greater than 3, J. Copplt Math. 236 (17)
(2012) 4375-4382.

H. Pottmann, Rational curves and surfaces with ratioffaets, Comput. Aided Geom. Design 12 (2) (1995) 175-192.

H. Pottmann, M. Peternell, Applications of Laguerr@getry in CAGD, Comput. Aided Geom. Design 15 (2) (1998) 15¥-

M. Peternell, H. Pottmann, A Laguerre geometric apphoa rational offsets, Comput. Aided Geom. Design 15 (3pg)223-249.

Z. Sir, B. Bastl, M. Lavitka, Hermite interpolation by hypeloids and epicycloids with rational offsets, Computdéd Geom. Design
27 (5) (2010) 405-417.

R. T. Farouki, ZSir, Rational Pythagorean-hodograph space curves, Covigied Geom. Design 28 (2) (2011) 75-88.

R. T. Farouki, Pythagorean-hodograph curves: algahthgeometry inseparable, Vol. 1 of Geom. Comput., Sprjr{€8.

D. S. Meek, D. J. Walton, Geometric Hermite interpaatiwith Tschirnhausen cubics, J. Comput. Appl. Math. 81 18p{) 299-309.

G. Jaklig, J. Kozak, M. Krajnc, V. Vitrih, EZagar, On interpolation by planar culi&2 Pythagorean-hodograph spline curves, Math. Comp.
79 (269) (2010) 305-326.

M. Byrtus, B. Bastl,G'! Hermite interpolation by PH cubics revisited, Comput. Aiddeom. Design 27 (8) (2010) 622-630.

E. Cernohorska, ZSir, Support function of Pythagorean hodograph cubicsGghétlermite interpolation, in: B. Mourrain, S. Schaefer, G. Xu
(Eds.), Advances in Geometric Modeling and Processing, 680 of Lecture Notes in Comput. Sci., Springer Berlin /dédhherg, 2010,
pp. 29-42.

H. P. Moon, R. T. Farouki, H. I. Choi, Construction andaph analysis of PH quintic Hermite interpolants, Computeii Geom. Design
18 (2) (2001) 93-115.

Z. Sir, R. Feichtinger, B. Juttler, Approximating curvesidheir offsets using biarcs and Pythagorean hodograpticgirfComput. Aided
Design 38 (6) (2006) 608—618.

G. Albrecht, R. T. Farouki, Construction 6f2 Pythagorean-hodograph interpolating splines by the hopyamnethod, Adv. Comput. Math.
5 (4) (1996) 417-442.

H. I. Choi, R. T. Farouki, S.-H. Kwon, H. P. Moon, Topologl criterion for selection of quintic Pythagorean-hodaggh Hermite interpolants,
Comput. Aided Geom. Design 25 (6) (2008) 411-433.

13



[24]
[25]
[26]
[27]
(28]

[29]
(30]

[31]

[32]
(33]

[34]
[35]

[36]
[37]

B. Juttler, C. Maurer, Cubic Pythagorean-hodograpline curves and applications to sweep surface modeliogypt. Aided Design 31 (1)
(1999) 73-83.

F. Pelosi, R. T. Farouki, C. Manni, A. Sestini, Geometdermite interpolation by spatial Pythagorean-hodograpbics, Adv. Comput.
Math. 22 (4) (2005) 325-352.

S.-H. Kwon, Solvability ofG! Hermite interpolation by spatial Pythagorean-hodograpbias and its selection scheme, Comput. Aided
Geom. Design 27 (2) (2010) 138-149.

G. Jaklit, J. Kozak, M. Krajnc, V. Vitrih, EZagar, An approach to geometric interpolation by Pythagoteodograph curves, Adv. Comput.
Math. 37 (1) (2012) 123-150.

Z. Sir, B. Juttler, Spatial Pythagorean hodograph quirgizs the approximation of pipe surfaces, in: R. Martin, H. Bdz Sabin (Eds.),
Mathematics of Surfaces XI, Vol. 3604 of Lecture Notes in @oinSci., Springer Berlin Heidelberg, 2005, pp. 364-380.

Z. Sir, B. Juttler,C? Hermite interpolation by Pythagorean hodograph spacessyuiMath. Comp. 76 (259) (2007) 1373-1391.

R. T. Farouki, C. Giannelli, C. Manni, A. Sestini, |déidation of spatial PH quintic Hermite interpolants withareptimal shape measures,
Comput. Aided Geom. Design 25 (4-5) (2008) 274—-297.

R. T. Farouki, C. Manni, A. Sestini, Spatial? PH quintic splines, in: T. Lyche, M. Mazure, L. SchumakergBdCurve and Surface Design:
St. Malo 2002, Nashboro Press, Brentwood, 2003, pp. 147-156

R. T. Farouki, J. Peters, Smooth curve design with dedidchirnhausen cubics, Ann. Numer. Math. 3 (1-4) (19968&@3

B. Bastl, K. Slaba, M. Byrtus, Plana®’’ Hermite interpolation with uniform and non-uniform TC-tia, Comput. Aided Geom. Design
30 (1) (2013) 58—77. 5

B. Bastl, M. Bizzarri, M. Krajnc, M. Lavitka, K. Slah’Z. Sir, V. Vitrih, E. Zagar,C! Hermite interpolation with spatial Pythagorean-
hodograph cubic biarcs, J. Comput. Appl. Math. 257 (0) (3GB4-78.

K. Kubota, Pythagorean triples in unique factorizatomains, Amer. Math. Monthly 79 (5) (1972) 503-505.

R. T. Farouki, The conformal map— 22 of the hodograph plane, Comput. Aided Geom. Design 11 (94)1963-390.

R. T. Farouki, M. al Kandari, T. Sakkalis, Hermite irgetation by rotation-invariant spatial Pythagorean-tgrdph curves, Adv. Comput.
Math. 17 (4) (2002) 369-383.

14





