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Abstract

In this paper, the problem ofC2 Hermite interpolation by triarcs composed of Pythagorean-hodograph (PH) quintics
is considered. The main idea is to join three arcs of PH quintics at two unknown points – the first curve interpolates
givenC2 Hermite data at one side, the third one interpolates the sametype of given data at the other side and the
middle arc is joined together withC2 continuity to the first and the third arc. For any set ofC2 planar boundary data
(two points with associated first and second derivatives) weconstruct four possible interpolants. The best possible
approximation order is 4. Analogously, for a set ofC2 spatial boundary data we find a six-dimensional family of
interpolating quintic PH triarcs. The results are confirmedby several examples.
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1. Introduction

Shapes (curves, surfaces, volumes) in Computer Aided Geometric Design (CAGD), and in a vast variety of sub-
sequent applications, are often described by piecewise polynomial/rational representations. However, not every shape
can be represented using polynomial/rational functions, see [1] for more details. Another problem in CAGD is that
many natural geometric operations, such as offsetting, do not preserve rationality of derived objects. Nonetheless,
offsets to certain special classes of shapes admit exact rational representations.

In the case of planar curves, the class of Pythagorean-hodograph (PH) curves as polynomial curves possessing
rational offset curves and polynomial arc-length functions was introduced in [2]. A thorough analysis of PH curves
followed; see, e.g., [3–5]. The concept of planar PH curves was later generalized to polynomial spatial PH curves in
[6, 7]. These curves have the following attractive properties: the arc length of any segment can be determined exactly
without numerical approximation and any canal surface based on spatial PH curves as its spine has a precise rational
parameterization. The case of PH curves inRn for n > 3 is still not solved satisfactorily. Exploiting recent results
from number theory, the structure of PH curves in dimensionsn = 5 andn = 9 was characterized in [8, 9]. We
would like to recall that polynomial PH curves have their counterparts also in rational versions – see [10–13] for more
details on rational planar PH curves, and [14] where rational spatial PH curves were introduced and studied. However
rational PH curves are beyond the scope of this paper. A detailed survey of the literature on shapes with a Pythagorean
property and their applications in technical practice can be found in [15].
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Many PH interpolation techniques (yieldingC1/G1 orC2/G2 continuity) which form the cornerstone of subse-
quent approximation algorithms devoted to particular problems originating in technical practice have been formulated
in recent years. These methods by planar or spatial polynomial PH curves are usually based on low degree polyno-
mials – mainly3 and5 (in some cases also7 and9), as only odd degree PH curves are regular. For planar cubic PH
curves one of the first interpolation methods was given in [16] whereG1 interpolation of Hermite data was analyzed.
These results were generalized in [17] toG2 interpolation by the same objects. Later the problem was revisited in
[18, 19]. For quintic planar PH curves, several results on first and second order continuous spline interpolation are
given in [5, 15, 20–23]. For spatial curves,G1 Hermite interpolation by PH cubics was thoroughly investigated in
[24]. Those results were later generalized to some level in [25]. The most general results on this type of interpolation
can be found in [26] and [27]. The problem ofC1 andC2 Hermite interpolation by spatial PH curves of degree≥ 5
has been studied in [28–31].

C1 Hermite interpolation by cubic polynomial spline curves isalways uniquely solvable, so it is obvious that
the same problem cannot be solved by PH cubic splines. However, cubic (i.e., low degree) polynomial interpolating
splines are preferred in many applications. An interestingapproach was used in [32], whereC1 Hermite interpolation
via double-Tschirnhausen cubics (TC-biarcs) have been considered. The main idea was to join two arcs of planar
cubic PH curves at some unknown point – the first curve interpolatesC1 Hermite data at one side, the other one
interpolates the same type of data at the other side and the arcs are joined together withC1 continuity. This approach
was recently improved in [33], where planar uniform and non-uniform cubic PH biarcs were studied and applied.
Using a close analogy between the complex representation ofplanar PH curves and the quaternion representation
of spatial PH curves, this idea was later transformed to the spatial case in [34] where the HermiteC1 interpolation
scheme by spatial cubic PH biarcs was presented and a generalalgorithm for computing interpolants was designed,
studied and applied.

In this paper, we will extend the ideas from [33, 34] to theC2 Hermite interpolation by planar/spatial PH curves.
Instead of using PH curves of degree9 as in [29] we will consider PH triarcs, which enables us to drop the degree of
the used PH curve to5. In other words, the main idea is to join three arcs of PH quintics at two unknown points – the
first curve interpolates givenC2 Hermite data at one side, the third one interpolates the sametype of given data at the
other side and the middle arc is joined together withC2 continuity to the first and the third arc. The algorithm will be
formulated firstly for planar PH quintic triarcs using complex representation. Then, a straightforward generalization
to the quaternion representation yields an analogous algorithm for spatial PH quintic triarcs. The functionality of the
designed technique will be demonstrated by several planar and spatial examples.

The paper is organized as follows. In the next section some preliminaries of the used theory are given. The
C2 Hermite planar interpolation problem is presented and an algorithm for computing such interpolants is given in
the third section. In the fourth section the presented approach is generalized to the spatial case and the numerical
examples which confirm the theoretical results are shown. The main results of the paper are summarized in the
concluding section.

2. Preliminaries

In this section, we review fundamentals of the theory of planar and spatial Pythagorean-hodograph curves and
their relation to complex numbers and quaternions, respectively.

2.1. Complex numbers and planar PH curves
Planar Pythagorean-hodograph curves were introduced in [2]. A polynomial parametric curvep = (x, y)⊤ of

degreen with the hodographh = p′ = (x′, y′)⊤ is a Pythagorean-hodograph curve (shortly PH curve) if the compo-
nents of its hodographh fulfill the condition

x′2 + y′2 = σ2,

whereσ is a polynomial. The main advantages of PH curves are that they possess rational offset curves and have
(piecewise) polynomial arc-length function.

With the help of Kubota’s theorem (see [2, 35]) hodographs ofall planar polynomial PH curves can be expressed
in the form

x′ = w(u2 − v2),
y′ = w(2u v)
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for some real non-zero polynomialsu, v, w, wherew is usually taken as a constant.
In many cases (and also in the follow-up sections), it is advantageous to use complex representation of points and

curves in the plane to represent planar PH curves (see [36]).More precisely, points in the plane are identified with
complex numbers in the complex plane and planar polynomial parametric curves are identified with complex-valued
polynomials. Then,p = x+ i y is a PH curve iff there exists a complex polynomialw = u+ i v, called the preimage,
such that the hodographh of p can be expressed in the form

h = w2 = u2 − v2 + i 2 u v.

2.2. Quaternions and spatial PH curves
Similarly to the relation of planar PH curves and complex number/polynomials, spatial PH curves can be deter-

mined with the help of quaternion algebra. For a definition ofquaternions and the description of standard operations in
a quaternion spaceH, the reader is kindly referred, e.g., to [15]. Here, only some less known facts about quaternions,
which will be used in Section 4, are reviewed .

A standard multiplication on quaternions is not commutative, but it is possible to define a commutative multipli-
cation. For a pair of quaternionsA,B ∈ H, we define

A ⋆ B :=
1

2
(A i B̄ + B i Ā). (1)

The result is always a pure quaternion which can be identifiedwith a vector inR3. A notationA2⋆ := A ⋆A will be
used further on. The following lemmas review how linear and quadratic equations with respect to⋆-operation can be
solved (see [29] and [37], respectively).

Lemma 1. Let A be a given pure quaternion andB a given non-zero quaternion. Then all solutions of a linear
⋆–equationX ⋆ B = A form a one-parameter family

X (α;B,A) :=
(α+A)Bi

BB̄ , α ∈ R.

Lemma 2. Let A be a given pure quaternion. All solutions of a quadratic⋆–equationX 2⋆ = A form a one–
parameter family

X := X (ϕ;A) := Xp(A)Qϕ, Qϕ := cosϕ+ i sinϕ, ϕ ∈ [−π, π), (2)

whereXp(A) is a particular solution given by

Xp(A) :=























√

‖A‖
A

‖A‖ + i
∥

∥

∥

A
‖A‖ + i

∥

∥

∥

, A
‖A‖ 6= −i,

√

‖A‖k, A
‖A‖ = −i.

Further, it can be proved that for arbitrary quaternionsA andB it holds

AQϕ ⋆ BQψ = AQϕ−ψ ⋆ B = A ⋆ BQψ−ϕ. (3)

Let us focus on spatial Pythagorean-hodograph curves now. Similarly to the planar case, a polynomial parametric
curvep = (x, y, z)⊤ of degreen with the hodographh = p′ = (x′, y′, z′)⊤ is a spatial Pythagorean-hodograph curve
if the components ofh fulfill the condition

x′2 + y′2 + z′2 = σ2,

whereσ is a polynomial. Analogously to the planar PH curves and their complex representation, it is advantageous to
use quaternion algebra to represent spatial PH curves, where points in the space are identified with pure quaternions
and spatial parametric polynomials are identified with purequaternion polynomials. Then,p = x i + y j + z k is a
spatial PH curve iff there exists a quaternion polynomialA = u + v i + p j+ q k, called the preimage, such that the
hodographh can be expressed in the form

h = A i Ā = A2⋆.

Note that quaternionsA andAQϕ generate the same hodograph.
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3. Planar interpolation problem and an algorithm

This section is devoted to the study ofC2 Hermite interpolation with planar quintic PH triarcs. An algorithm
for finding such a quintic PH triarc for given Hermite data is provided and the approximation order of the method is
analyzed.

3.1. Algorithm
In this section the interpolation problem by planar quinticPH triarcs is presented and an algorithm for computing

the interpolants is given. Since the previous section showsthat a planar PH curve is easily characterized by its complex
preimage, vectors inR2 will be identified with complex numbers and vice versa.

Suppose thatA,B ∈ C are two given points andtA, tB ∈ C are given associated tangent vectors. Additionally,
let us prescribe two second derivative vectorscA, cB ∈ C atA,B respectively. The goal is to find aC2 continuous
planarquintic PH triarc interpolantp : [τ0, τ3] → C, composed of three planar quintic PH curves

pi : [τi−1, τi] → C, i = 1, 2, 3,

with τ0 < τ1 < τ2 < τ3, i.e.,

p(t) =







p1(t), t ∈ [τ0, τ1],
p2(t), t ∈ [τ1, τ2],
p3(t), t ∈ [τ2, τ3],

(4)

satisfying

p(τ0) = A, p′(τ0) = tA, p′′(τ0) = cA, (5)

p(τ3) = B, p′(τ3) = tB, p′′(τ3) = cB. (6)

Sincep should be inC2([τ0, τ3]), we additionally require

p
(k)
i (τi) = p

(k)
i+1(τi), i = 1, 2, k = 0, 1, 2. (7)

The interval valuesτ0 < τ1 < τ2 < τ3 are fixed but can be chosen arbitrarily. In all presented examples we have
used the uniform division of the interval[0, 1] at the points1/3 and2/3 but the interpolation algorithm works equally
well for other values ofτi’s.

Parametric curvespi, i = 1, 2, 3, are assumed to be PH curves, so they are characterized by three associated
preimage curves

wi(t) =

2
∑

j=0

wi,j B
2
j

(

t− τi−1

∆τi−1

)

i = 1, 2, 3,

where∆τi−1 := τi − τi−1, i = 1, 2, 3.
Let pi be given in the Bernstein-Bézier basis as

pi(t) =
5
∑

j=0

P i,j B
5
j

(

t− τi−1

∆τi−1

)

, i = 1, 2, 3.

By [15], the control pointsP i,j are expressed by the control points of the preimages as

P i,1 = P i,0 +
∆τi−1

5
w2
i,0,

P i,2 = P i,1 +
∆τi−1

5
wi,0 wi,1,

P i,3 = P i,2 +
∆τi−1

5

(

2

3
w2
i,1 +

1

3
wi,0 wi,2

)

, (8)

P i,4 = P i,3 +
∆τi−1

5
wi,1 wi,2,

P i,5 = P i,4 +
∆τi−1

5
w2
i,2.
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From (5), (6), (8) and some basic properties of Bézier curves we obtain

P 1,0 = A, w2
1,0 = tA, w1,0 w1,1 −w2

1,0 =
∆τ0
4

cA, (9)

and

P 3,5 = B, w2
3,2 = tB, w2

3,2 −w3,1 w3,2 =
∆τ2
4

cB. (10)

The continuity conditions atτ1 andτ2 clearly implyP 2,0 = P 1,5 andP 3,0 = P 2,5. This, together with (8), gives

P 2,0 = A+
∆τ0
5

(

w2
1,0 +w1,0 w1,1 +

2

3
w2

1,1 +
1

3
w1,0 w1,2 +w1,1 w1,2 +w2

1,2

)

, (11)

P 2,5 = B − ∆τ2
5

(

w2
3,0 +w3,0 w3,1 +

2

3
w2

3,1 +
1

3
w3,0 w3,2 +w3,1 w3,2 +w2

3,2

)

. (12)

Using (8) it follows that

P 2,5 − P 2,0 =
∆τ1
5

(

w2
2,0 +w2,0w2,1 +

2

3
w2

2,1 +
1

3
w2,0 w2,2 +w2,1w2,2 +w2

2,2

)

. (13)

The first and the second order continuity conditions atτ1 andτ2 further imply

w2
i,2 = w2

i+1,0,
1

∆τi−1

(

w2
i,2 −wi,1 wi,2

)

=
1

∆τi

(

wi+1,0 wi+1,1 −w2
i+1,0

)

, i = 1, 2. (14)

The equations (9)–(14) form a system of11 complex equations for11 complex unknownswi,j , i = 1, 2, 3, j = 0, 1, 2,
P 2,0 andP 2,5. From the equations (9), (10) and (14) we derive

w1,0 = χA
√
tA, w3,2 = χB

√
tB, w1,2 = χ1 w2,0, w3,0 = χ2 w2,2, (15)

where each ofχA, χB , χ1 andχ2 is either1 or−1, and consequently

w1,1 =
tA + ∆τ0

4 cA

χA
√
tA

, w3,1 =
tB − ∆τ2

4 cB

χB
√
tB

. (16)

From (14) it follows also

w2,0 =
∆τ0 ∆τ1

∆τ0 +∆τ1

(

1

∆τ1
w2,1 +

1

∆τ0

χ1

χA

tA + ∆τ0
4 cA√
tA

)

, (17)

w2,2 =
∆τ1∆τ2

∆τ1 +∆τ2

(

1

∆τ1
w2,1 +

1

∆τ2

χ2

χB

tB − ∆τ2
4 cB√
tB

)

. (18)

Here, we have assumed thatw2,0 6= 0 andw2,2 6= 0, which should be fulfilled since we consider only regular quintic
PH curves.
Considering (15)–(18) in (11)–(13), we end up with one complex quadratic equation forw2,1, namely

3
∑

i=1

∆τi−1

(

w2
i,0 +wi,0 wi,1 +

2

3
w2
i,1 +

1

3
wi,0 wi,2 +wi,1 wi,2 +w2

i,2

)

− 5 (B −A) = 0. (19)

It is easy to see that the expressions (8) for the control points of the triarc segments involve only the products
χ1 χA or χ2 χB. Thus we can assume that, e.g.,χ1 = χ2 = 1. We still have two possibilities for each ofχA or χB,
which together with two solutions of the quadratic equationfor w2,1 gives eight solutions in general. But multiplying
the control points of the preimage by−1 does not change the curve, thus we can, e.g., chooseχA = 1. This leaves
four possible choices for the solution. Let them be denoted by w

±,±
2,1 , where the first symbol± denotes the sign of

theχB and the second one the sign in the solution of the the quadratic equation (19). Consequently, we obtain four
possible interpolants, which will be denoted accordingly asp±,±.
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Figure 1: Four distinct quintic PH triarcs for input data in Example 1 labelled byp+,+ (top left),p+,− (top right),p−,+ (bottom left) andp−,−

(bottom right).

Example 1. Let us considerC2 Hermite data

P 0 = (0, 0)⊤, P 2 =

(

3

2
, 0

)⊤

, t0 = (2, 2)⊤, t2 =

(

2,
2

3

)⊤

, c0 = (−1, 1)⊤, c2 = (1,−1)⊤ .

With the help of the method described in the previous paragraphs we can find all four distinct quintic PH triarcs
matching given data (see Fig. 1).

3.2. Asymptotic approximation order

In this section the approximation properties of all four interpolating triarcs will be analyzed. Let the data be
sampled from an analytic parametric curvef : [0, h] → C, s 7→ f(s), parameterized by the arc-length and let
ϕ : [a, b] → [0, h], t 7→ h (t− a)/(b − a), be a particular linear reparameterization. We can assume (without loss of
generality) thata = 0 andb = 1 to simplify the analysis. Using the well-known Frenet-Serret formulae, the curve can
be expressed as

f(s) = s− 1

6
κ20s

3 − 1

8
κ0κ1s

4 +
1

120

(

κ40 − 4κ2κ0 − 3κ21
)

s5+ (20)

+

(

κ0s
2

2
+
κ1s

3

6
+

1

24

(

κ2 − κ30
)

s4 +
1

120

(

κ3 − 6κ20κ1
)

s5
)

i+O
(

h6
)

,

whereκ(s) = κ0+κ1s+
κ2

2! s
2+ κ3

3! s
3+O

(

s4
)

is the Maclaurin series of the curvature off . The task is to construct
the triarc (4) that satisfies (5) and (6) for the data

A = (f ◦ ϕ) (0) = 0, tA = (f ◦ ϕ)′ (0) = h, cA = (f ◦ ϕ)′′ (0) = h2κ0 i,

B = (f ◦ ϕ) (1) = h− 1

6
h3κ20 −

1

8
h4κ0κ1 +

(

h2κ0
2

+
h3κ1
6

+
1

24
h4
(

κ2 − κ30
)

)

i+O
(

h5
)

,

tB = (f ◦ ϕ)′ (1) = h− 1

2
h3κ20 −

1

2
h4κ0κ1 +

(

h2κ0 +
h3κ1
2

+
1

6
h4
(

κ2 − κ30
)

)

i+O
(

h5
)

,

cB = (f ◦ ϕ)′′ (1) = −h3κ20 −
3

2
h4κ0κ1 +

(

h2κ0 + h3κ1 +
1

2
h4
(

κ2 − κ30
)

)

i+O
(

h5
)
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taken from the reparameterized curvef . From (15)–(18) it follows that the control points of the preimage expressed
with the unknownw2,1 expand as

w1,0 =
√
h, w1,1 =

√
h+

1

4
h3/2κ0τ1 i+O

(

h7/2
)

,

w1,2 =
τ1w2,1

τ2
+
√
h

(

1− τ1
τ2

)

− h3/2κ0τ1 (τ1 − τ2)

4τ2
i+O

(

h7/2
)

,

w2,0 = w1,2 +O
(

h7/2
)

,

w2,2 =
(τ2 − 1)w2,1

τ1 − 1
+

√
h (τ1 − τ2)χB
τ1 − 1

+
h3/2κ0 (τ1 − τ2) (τ2 + 1)χB

4 (τ1 − 1)
i−

− h5/2
(

κ20 − 2 κ1 i
)

(τ1 − τ2) τ2χB

8 (τ1 − 1)
+O

(

h7/2
)

,

w3,0 = w2,2 +O
(

h7/2
)

,

w3,1 =
√
hχB +

1

4
h3/2κ0 (τ2 + 1)χB i− 1

8
h5/2

(

κ20 − 2 κ1 i
)

τ2χB +O
(

h7/2
)

,

w3,2 =
√
hχB +

1

2
h3/2κ0χB i− 1

8
h5/2

(

κ20 − 2 κ1 i
)

χB +O
(

h7/2
)

.

The equation (19) forw2,1 thus becomesC2(h)w
2
2,1 + C1(h)w2,1 + C0(h) = 0, where

C2(h) =
τ21 + τ22 + (τ1 − 3) τ2

15 (τ1 − 1) τ2
, C1(h) = O

(√
h
)

, C0(h) = O (h) .

The solutions forχB = 1 are

w
+,+
2,1 =

√
h+

1

4
κ0 (τ1 + τ2)h

3/2 i− 1

8

(

κ20 − 2 κ1 i
)

τ1τ2h
5/2 +O

(

h7/2
)

,

w
+,−
2,1 =

(

τ21 − 9τ2τ1 + τ2 (τ2 + 7)
)

τ21 + τ2τ1 + (τ2 − 3) τ2

√
h+ κ0

τ31 − 3τ2τ
2
1 − 3τ2 (τ2 + 1) τ1 + τ2

(

τ22 + 2τ2 + 5
)

4 (τ21 + τ2τ1 + (τ2 − 3) τ2)
h3/2 i−

−
(

κ20 − 2 κ1 i
) τ2

(

τ22 + (1− 3τ1) τ2 + 1
)

8 (τ21 + τ2τ1 + (τ2 − 3) τ2)
h5/2 +O

(

h7/2
)

.

and forχB = −1 are

w
−,+
2,1 = c+1 (τ1, τ2)

√
h+ κ0c

+
2 (τ1, τ2)h

3/2 i+
(

κ20c
+
3 (τ1, τ2) + κ1c

+
4 (τ1, τ2) i

)

h5/2 +O
(

h7/2
)

,

w
−,−
2,1 = c−1 (τ1, τ2)

√
h+ κ0c

−
2 (τ1, τ2)h

3/2 i+
(

κ20c
−
3 (τ1, τ2) + κ1c

−
4 (τ1, τ2) i

)

h5/2 +O
(

h7/2
)

,

wherec±i (τ1, τ2), i = 1, 2, 3, 4, denote some rather complicated expressions involving only τ1 andτ2. Suppose first
thatw2,1 = w

+,+
2,1 . Then the triarc (4) expands as

p
+,+
i (t) = ht+

1

2
κ0t

2h2 i− 1

6

(

κ20 − κ1
)

t3h3 + π4,i(t; τ1, τ2, κ0, κ1, κ2)h
4 +O

(

h5
)

, t ∈ [τi−1, τi], (21)

for i = 1, 2, 3, whereπ4,i is a complex polynomial int of degree4 with coefficients involvingτ1, τ2, κ0, κ1, κ2. From
(21) and (20) then follows that

‖p+,+ − f ◦ ϕ‖ = O
(

h4
)

,

i.e., the approximation order is equal to four. For the otherthree solutions the triarc (4) expands as

p+,−(t) = π+,−
5,i (t; τ1, τ2)h+O

(

h2
)

, t ∈ [τi−1, τi], i = 1, 2, 3, (22)

p−,±(t) = π−,±
5,i (t; τ1, τ2)h+O

(

h2
)

, t ∈ [τi−1, τi], i = 1, 2, 3, (23)

7



Figure 2: The curve defined in (24) and its approximation byC2 PH quintic triarc forn segments:n = 1 (top left), n = 2 (top right),n = 4
(bottom left) andn = 8 (bottom right).

whereπ+,−
5,i , π−,+

5,i andπ−,−
5,i are complex polynomials int of degree5 with coefficients involving onlyτ1 andτ2. It

can be checked that none of the polynomials can be equal tot h for any0 < τ1 < τ2 < 1. Therefrom it follows that

‖p+,− − f ◦ ϕ‖ = O (h) , ‖p−,± − f ◦ ϕ‖ = O (h) ,

which implies the approximation order one. Let us summarizethe results in the following theorem.

Theorem 1. Let f : [0, h] → C, s 7→ f (s) be an analytic complex curve andϕ : [0, 1] → [0, h], t 7→ th, a linear
reparameterization. Moreover, byp±,± : [0, 1] → C let us denote four interpolating triarcs defined by(4), that satisfy

p±,±(i) = (f ◦ ϕ)(i),
(

p±,±
)′
(i) = (f ◦ ϕ)′(i),

(

p±,±
)′′

(i) = (f ◦ ϕ)′′(i), i = 0, 1.

Then for anyτ1, τ2, 0 < τ1 < τ2 < 1, the triarcp+,+ has the approximation order four, i.e.,
∥

∥p+,+ − f ◦ ϕ
∥

∥ = O
(

h4
)

.

For the other three triarcs, the approximation order is equal to one, i.e.,
∥

∥p+,− − f ◦ ϕ
∥

∥ = O (h) ,
∥

∥p−,± − f ◦ ϕ
∥

∥ = O (h) .

To confirm the theoretical asymptotic results by an numerical example, let us choose a smooth complex curvef

and a reparameterizationϕ as (see Fig. 2)

f : [0, h] → C, s 7→ log(s+ 1) cos (2s) +
√

s2 + 1 log (s+ 1) sin (2s) i, (24)

ϕ : [0, 1] → [0, h], t 7→ h t.

8



The data becomes

A = (f ◦ ϕ)(0), tA = (f ◦ ϕ)′(0), cA = (f ◦ ϕ)′′(0),
(25)

B = (f ◦ ϕ)(h), tB = (f ◦ ϕ)′(h), cB = (f ◦ ϕ)′′(h),

for someh small enough. Lete±,±(h) := ‖p±,± − f ◦ ϕ‖∞,[0,1] denote the distance between the triarcp±,± and

the given curve. To determine the approximation order numerically, we assume thate±,±(h) ∼ const · hγ±,±

and we
estimate the decay exponentγ±,± by comparing the errors of interpolating triarcs for different values ofh. In Table 1
the errorse±,±(h) are shown for all four triarcs andh = 2−k, k = 0, 1, . . . , 7. Moreover, the decay exponents
computed from two consecutive measurements are shown too. Sinceγ±,± tends to the order of approximation ash
approaches zero, the results confirm that the approximationorder forp+,+ is four and for the other three solutions it
is just one.

h e+,+(h) γ+,+ e+,−(h) γ+,− e−,+(h) γ−,+ e−,−(h) γ−,−

1 0.005653 / 0.3403 / 0.3506 / 0.2399 /
1
2 0.0002240 4.657 0.1140 1.578 0.1242 1.497 0.1075 1.158
1
4 0.00001375 4.026 0.04577 1.317 0.05314 1.225 0.05426 0.986
1
8 1.174 · 10−6 3.550 0.02292 0.998 0.02684 0.986 0.02775 0.967
1
16 8.334 · 10−8 3.816 0.01154 0.990 0.01379 0.961 0.01409 0.978
1
32 5.422 · 10−9 3.942 0.005798 0.993 0.007019 0.974 0.007103 0.988
1
64 3.436 · 10−10 3.980 0.002907 0.996 0.003545 0.985 0.003567 0.994
1

128 2.160 · 10−11 3.992 0.001456 0.998 0.001782 0.992 0.001788 0.997

Table 1: Distancese±,±(h) of the curve (24) from its triarc interpolantsp±,± and corresponding parametersγ±,± showing numerical values of
the decay exponent. As it is clearly seen from the table, onlythe solutionp+,+ gives fourth order approximation.

4. Spatial interpolation problem and algorithm

In this section, we will show that it is straightforward to generalize the previous algorithm to the spatial case. The
approach presented is similar to the generalization of planarC1 Hermite interpolation by uniform and non-uniform
TC-biarcs (see [33]) to the spatial case (see [34]).

Recall from Section 2 that spatial PH curves can be generatedwith the help of quaternion polynomials. Therefore,
points and vectors inR3 will be identified with pure quaternions and vice versa in therest of this section. LetA, B,
tA, tB, cA, cB ∈ R3 be pairs of given points, associated tangent vectors and second derivatives vectors, respectively.
The task is to compute aC2 continuous spatial quintic PH triarc

p : [τ0, τ3] → R
3 : p(t) =







p1(t), t ∈ [τ0, τ1],
p2(t), t ∈ [τ1, τ2],
p3(t), t ∈ [τ2, τ3],

τ0 < τ1 < τ2 < τ3,

interpolating given Hermite data.
The modification of the planar to the spatial case is based on one principle: all complex numbers are replaced by

quaternions and the standard multiplication of complex numbers is replaced by⋆-operation defined on quaternions,
see (1). The preimageAi and the associated PH curvespi are represented in the Bernstein-Bézier form as

pi(t) =

5
∑

j=0

P i,j B
5
j

(

t− τi−1

∆τi−1

)

, Ai(t) =

5
∑

j=0

Ai,j B
5
j

(

t− τi−1

∆τi−1

)

, i = 1, 2, 3,

9



and it holds that

P i,1 = P i,0 +
∆τi−1

5
A2⋆
i,0, P i,2 = P i,1 +

∆τi−1

5
Ai,0 ⋆Ai,1,

P i,3 = P i,2 +
∆τi−1

5

(

2

3
A2⋆
i,1 +

1

3
Ai,0 ⋆Ai,2

)

,

P i,4 = P i,3 +
∆τi−1

5
Ai,1 ⋆Ai,2, P i,5 = P i,4 +

∆τi−1

5
A2⋆
i,2.

The interpolating conditions that determine the spatial triarc are of the same form as the conditions (9)–(14) for the
planar case, only analogously modified. Clearly,P 1,0 = A andP 3,5 = B. The first order continuity conditions in
(9), (10) and (14) can be solved with the help of Lemma 2. Namely,

A1,0 = X (ϕA; tA), A3,2 = X (ϕB ; tB), A1,2 = A2,0Qϕ1
, A3,0 = A2,2Qϕ2

, (26)

whereϕA, ϕB, ϕ1 andϕ2 are free angular parameters. The equations for the interpolation of second derivatives at
the boundary, analogous to (9) and (10), can be solved using Lemma 1. The unknowns

A1,1 = X
(

α1;A1,0, tA +
∆τ0
4

cA

)

, A3,1 = X
(

α2;A3,2, tB − ∆τ2
4

cB

)

(27)

are determined with two new free parametersα1 andα2 involved. The second order continuity conditions atτ1 and
τ2, presented in (14), simplify to

A2,0 ⋆
1

∆τ0
(A2,0 −A1,1Q−ϕ1

) = A2,0 ⋆
1

∆τ1
(A2,1 −A2,0) ,

A2,2 ⋆
1

∆τ1
(A2,2 −A2,1) = A2,2 ⋆

1

∆τ2
(A3,1Q−ϕ2

−A2,2) ,

which by following the planar case should determine the unknownsA2,0 andA2,2. This could be done by using
Lemma 1 with two additional free parameters introduced. Instead we can take a particular solution which is to equate
the quaternions on the right side of the star operation whichgives

A2,0 =
1

∆τ0 +∆τ1
(∆τ0A2,1 +∆τ1A1,1Q−ϕ1

) , A2,2 =
1

∆τ1 +∆τ2
(∆τ1A3,1Q−ϕ2

+∆τ2A2,1) . (28)

Finally, we end up with one quadratic⋆-equation, analogous to (19), for the remaining control point A2,1 of the
preimage:

3
∑

i=1

∆τi−1

(

A2⋆
i,0 +Ai,0 ⋆Ai,1 +

2

3
A2⋆
i,1 +

1

3
Ai,0 ⋆Ai,2 +Ai,1 ⋆Ai,2 +A2⋆

i,2

)

− 5 (B −A) = 0. (29)

Solving this equation with the help of Lemma 2 introduces another free angular parameterψ. To sum up, the control
points of the preimage quaternion curve are completely determined by (26)–(28) and by a solution of (29). They are
expressed with seven free parametersϕA, ϕB, ϕ1, ϕ2, α1, α2, ψ. However, analogously to [34], it is possible to prove
with the help of (3) that one angular parameter is superfluous. We can choose e.g.,ψ = 0. Note that the number
of free parameters coincides with the difference between the number of equations and unknowns that are involved in
C2 quintic triarc construction. Namely, each quintic PH curveis determined by14 parameters, the quintic PH triarc
thus hasp = 42 parameters of freedom. Interpolation conditions givee = 4 · 9 = 36 equations, and the difference
is p − e = 6. To sum up, for any non-degenerate spatialC2 Hermite data there exists a six-parametric family of
interpolating quintic PH triarcspτ (t;ϕA, ϕB, ϕ1, ϕ2, α1, α2).

Example 2. Let us considerC2 Hermite data

P 0 = (2, 1, 1)⊤, P 2 = (1, 2, 1)⊤, t0 = (1, 1, 1)⊤, t2 = (1, 1,−2)⊤ c0 =

(

1

2
,
1

2
, 0

)⊤

, c2 =

(

1

2
,−1

2
, 0

)⊤

.

10



0.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

0.5

1.0

1.5

0

1

2

3

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

Figure 3: PH triarcs obtained for spatial input Hermite datain Example 2 (tangent vectors are scaled down by factor 3).

Figure 4: Uniform quintic PH triarcs obtained for planar input Hermite data in Example 3 (tangent vectors are scaled downby factor 3).

Fig. 3 (left) shows quintic PH triarcs obtained for pairsϕA, ϕB ∈ {−π,−π
2 , 0,

π
2 } andϕ1, ϕ2, α1, α2 equal to zero.

Fig. 3 (right) shows quintic PH triarcs obtained for pairsα1, α2 ∈ {0, 2, 4, 6}, and parametersϕA, ϕB, ϕ1, ϕ2 set to
zero. In both cases, uniform quintic PH triarcs (i.e.,τ1 = 1

3 , τ2 = 2
3 ) are shown.

Analysis of this spatial algorithm is very similar toC1 Hermite interpolation by spatial PH cubic biarcs (see [34])
andC2 Hermite interpolation by PH curves of degree 9 (see [29]). With exactly the same reasoning as in [29, 34] it is
possible to prove the following

Proposition 1. For any planarC2 Hermite dataP i, ti, ci, i = 0, 2, the four quintic PH triarcspτ (t; 0, 0, 0, 0, 0, 0),
pτ (t; 0,−π, 0, 0, 0, 0), pτ (t;−π, 0, 0, 0, 0, 0), pτ (t;−π,−π, 0, 0, 0, 0) are planar and correspond top±,± solutions
of the planar interpolation problem with quintic PH triarcs, presented in Section 3, respectively.

PROOF. If we setα1 = 0, α2 = 0, ϕ1 = 0 andϕ2 = 0, then the proof is completely analogous to the proofs of
Proposition 1 in [34] and Theorem 3.11 in [29].

Example 3. Let us considerC2 Hermite data

P 0 = (0, 0, 0)⊤, P 2 =

(

3

2
, 0, 0

)⊤

, t0 = (2, 2, 0)⊤, t2 =

(

2,
2

3
, 0

)⊤

c0 = (−1, 1, 0)⊤, c2 = (1,−1, 0)
⊤
.
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Fig. 4 shows four quintic PH triarcs obtained forϕA, ϕB ∈ {−π, 0}, parametersϕ1, ϕ2, α1, α2 equal to zero and
τ1 = 1

3 , τ2 = 2
3 . These solutions exactly correspond to the solutions of theplanar problem.

Similarly as in the planar case one can analyze the asymptotic behaviour of the interpolating triarc in order to
determine the set of parameters providing the best approximation order. By direct computation, analogously to the
analysis of an approximation order in [34], the following theorem can be proved. Nevertheless, we will skip the details
of the proof here, because expressions become much more complicated.

Theorem 2. Letf : [0, h] → H, s 7→ f(s) be an analytic quaternion curve andϕ : [0, 1] → [0, h], t 7→ th, a linear
reparameterization. Moreover, bypτ (t;ϕA, ϕB, ϕ1, ϕ2, α1, α2) : [0, 1] → H let us denote interpolating quintic PH
triarcs that satisfy

pτ (t;ϕA, ϕB, ϕ1, ϕ2, α1, α2)
∣

∣

∣

t=i
= (f ◦ ϕ)(i),

(pτ (t;ϕA, ϕB, ϕ1, ϕ2, α1, α2))
′
∣

∣

∣

t=i
= (f ◦ ϕ)′(i),

(pτ (t;ϕA, ϕB, ϕ1, ϕ2, α1, α2))
′′
∣

∣

∣

t=i
= (f ◦ ϕ)′′(i), i = 0, 1.

Then for anyτ1, τ2, 0 < τ1 < τ2 < 1, the triarcpτ (t; 0, 0, 0, 0, 0, 0) has the approximation order four, i.e.,

‖pτ (t; 0, 0, 0, 0, 0, 0)− f ◦ ϕ‖ = O
(

h4
)

.

In the following example, we also give a numerical evidence of the above mentioned fact and we show that for
other, non-zero, choices of the parametersϕA, ϕB, the approximation order is generally only one.

Example 4. We are given an analytic curvef and a linear reparameterizationϕ,

f : [0, h] → R
3, s→

(

log(s+ 1) cos(s), log(s+ 1) sin(s), 1 + s2
)⊤
,

ϕ : [0, 1] → [0, h], t→ th.

The data are sampled as (25) for someh small enough. Letτ1 = 1
3 , τ2 = 2

3 and letpτ (t; 0, 0, 0, 0, 0, 0) denote the
interpolating quintic PH triarc with all six parameters,ϕA, ϕB, ϕ1, ϕ2, α1, α2 set to zero. Furthermore, lete(h) :=
‖pτ − f ◦ ϕ‖∞,[0,1] denote the distance between the triarcp and the given curve. In Table 2 the errorse and the
corresponding decay exponentsγ are shown. The third column numerically indicates that forpτ (t; 0, 0, 0, 0, 0, 0)
the approximation order of the curve approximation is four.In case when all free parameters are not set to zero, the
approximation order falls. For example, letϕA = π

2 , ϕB = −π
2 , ϕ1 = ϕ2 = α1 = α2 = 0. The associated errors and

the decay exponents are presented in Table 2 which confirms that the approximation order forpτ (t;
π
2 ,−π

2 , 0, 0, 0, 0)
is just one.

5. Conclusion

In this paper, the problem ofC2 Hermite interpolation of planar and spatial data (two points with associated
first and second derivatives) by PH quintic triarcs was considered. More precisely, a PH quintic triarc curve was
constructed by joining three PH quintics such that the first curve interpolates givenC2 Hermite data at one side, the
third one interpolates the same type of given data at the other side and the middle arc is joined together withC2

continuity to the first and the third arc. The method was formulated firstly for planar PH quintic triarcs using complex
representation and consequently using the quaternion representation also for spatial PH quintic triarcs. For any set of
C2 planar boundary data we constructed four possible interpolants and, similarly, for any set ofC2 spatial boundary
data we found a six-dimensional family of interpolating quintic PH triarcs. It was shown that that the best possible
approximation order is 4. Several numerical examples were presented which confirmed that the constructed triarcs are
of good shape and can be used for the approximation of planar/spatial parametric curves by PH quintic spline curves.
One of the advantages of the proposed interpolation scheme is that it enables to drop the degree of the used PH curve
from 9 to 5.
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h
pτ (t; 0, 0, 0, 0, 0, 0) pτ

(

t; π2 ,−π
2 , 0, 0, 0, 0

)

e(h) γ e(h) γ

1 0.002474 / 0.1519 /
1
2 0.0002292 3.432 0.03733 2.024
1
4 0.00001522 3.913 0.01301 1.521
1
8 8.388 · 10−7 4.181 0.006332 1.038
1
16 4.724 · 10−8 4.150 0.003142 1.011
1
32 2.786 · 10−9 4.084 0.001567 1.004
1
64 1.691 · 10−10 4.042 0.0007826 1.001
1

128 1.042 · 10−11 4.021 0.0003912 1.001

Table 2: The approximation errorse and the corresponding decay exponentsγ indicating the fourth order approximation forp
τ
(t; 0, 0, 0, 0, 0, 0)

and just the first order approximation forp
τ

(

t; π

2
,−π

2
, 0, 0, 0, 0

)

.
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