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Abstract. Describing the topology of real algebraic curves is a clas-
sical problem in computational algebraic geometry. It is usually based
on algebraic techniques applied directly to the curve equation. We use
the implicit support function representation for this purpose which can in
certain cases considerably simplify this task. We describe possible strate-
gies and demonstrate them on a simple example. We also exploit the
implicit support function for a features-preserving approximation of the
graph topologically equivalent to the curve. This contribution is meant
as a first step towards an algorithm combining classical approaches with
the dual description via the support function.
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1 Introduction

Solution of many problems in Computer Aided Geometric Design depends on
an approximation of a curve given by an implicitly defined bivariate polyno-
mial with rational coefficients. It is very desirable to visualize the curve in any
required precision, to find the number of components or to test to which compo-
nent a given point belongs. All this information is fully contained in the planar
graph topologically equivalent to the curve and whose vertices are points of the
algebraic curve and edges correspond to regular arcs of the curve.

Known algorithms studying the topology of an algebraic curve have always
two parts. First we find out the critical points and then we connect them appro-
priately. There are two main types of algorithms. The first type uses the same
principle as the Cylindrical Algebraic Decomposition (CAD) algorithm, cf. [5,
page 159]. The other approach is based on a subdivision of the given region.

Cylindrical Algebraic Decomposition based algorithms are usually divided
into three phases: First find the x-coordinates of critical points of C, then for
each xi compute the intersection points Pi,j of C and the vertical line x = xi

and finally for every Pi,j determine the number of branches of C on the left and
right and use this information to connect the points appropriately.

The main problem of these algorithms is the second phase, because the x-co-
ordinates of the critical points are not necessarily rational numbers and therefore
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the polynomials f(xi, y) have non-rational coefficients. There are several meth-
ods to deal with this problem. In [12], Hong computes xy-parallel separating
boxes of critical points with rational endpoints. Then he can count the branches
in Phase 3 as roots of univariate polynomial with rational coefficients. In paper
[7], the authors proposed a preprocessing - linear change of coordinate. The x-
coordinate is transformed so that the curve is in generic position. When the curve
is in generic position, the Sturm-Habicht sequence is used, a suitable general-
ization of polynomial remainder sequence, to derive the y-coordinates of critical
points (Phase 2) as rational functions of their x-coordinate and also to deduce
the multiplicity of the considered critical point. Another solution was given by
paper [16] - they project critical points to three axes x, y and a random one.
From these projections they can recover xy-parallel boxes with rational end-
points which separate the critical points. Paper [6] give the Bitstream Descartes
algorithm (a variant of interval Descartes algorithm) as an efficient algorithm
to isolate roots of a polynomial with non-rational coefficients. In contrast to all
above algorithms, [13] replace the Sturm-Habicht sequence with a Gröbner basis
and rational univariate representation, which ensure that we avoid working with
polynomials with non-rational coefficients even in non-generic position.

The second type of algorithm is based on subdivision. The only certified
algorithm (i.e. one which gives the correct output for every input) based on
subdivision is [4]. This algorithm subdivides the region D into regular regions
(the curve is smooth inside) and regions with singular points, which can be made
sufficiently small. The topology inside the regions containing a singular point is
recovered from the information on the boundary using the topological degree.

The main contribution of this paper consists in application of the (implicit)
support function representation to the construction of the graph topologically
equivalent to a given algebraic curve. We also consider the subsequent high pre-
cision approximation of the curve. The support function representation describes
a curve as the envelope of its tangent lines, where the distance between the tan-
gent line and the origin is specified by a function of the unit normal vector. This
representation is one of the classical tools in the field of convex geometry [11].
In this representation offsetting and convolution of curves correspond to sim-
ple algebraic operations of the corresponding support functions. In addition, it
provides a computationally simple way to extract curvature information [8]. Ap-
plications of this representation to problems from Computer Aided Design were
foreseen in the classical paper [15] and developed in several recent publications,
see e.g., [1–3, 9, 10, 14, 17, 18].

The remainder of this paper is organized as follows. Section 2 is devoted to
basic definitions and results related to the (implicit) support function represen-
tation and to the topology of algebraic curves. Section 3 describes how the use of
the implicit support function can contribute to the basic phases of determination
of the topology of planar algebraic curves. Issues related both to the search for
critical points and their connectivity are considered. In Section 4 we show how
the support function representation can be exploited for an efficient approxi-
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mation of segments of the curve connecting the critical points. In Section 5 we
summarize our results in an algorithm and demonstrate it on a simple example.

2 Preliminaries

In this section we first recall the definitions and basic properties of the explicit
and the implicit support functions. We also summarize concepts related to the
determination of the topology of algebraic curves. In both cases we slightly
extend standard approaches toward our goals.

2.1 Implicit support function representation of algebraic curves

For an algebraic planar curve C we define its support function h as a (possibly
multivalued) function defined on a subset of the unit circle

h : S1 ⊃ U → R1

by which is any unit normal n = (n1, n2) associated with the distance(s) from
the origin to the corresponding tangent line(s) of the curve.

As proved in [18] we can recover the curve C from h as the envelope of the
system of lines {n · x− h(n) = 0 : n ∈ U}. This envelope is locally parameterized
via the formula

C(n) = h(n)n+∇S1h(n) = h(n)n+ ḣ(n)n⊥ , (1)

where ∇S1 denotes the intrinsic gradient with respect to the unit circle, which is
alternatively expressed using the derivative ḣ(n) with respect to the arc-length
and n⊥ is the clockwise rotation of n about the origin by the angle π

2
.

For an algebraic curve C defined as the zero set of a polynomial f(x, y) = 0
we typically do not obtain an explicit expression of h but rather an implicit one,
which is closely related to the notion of dual curve.

Definition 1. Let C be a curve in projective plane. The dual of C is the Zariski
closure of the set in the dual projective plane consisting of tangent lines of C.

The equation of the dual curve

D(h,n) = 0 (2)

can be computed by eliminating x and y from the following system of equations:

n ·

(

∂f

∂x
,
∂f

∂y

)⊥
= 0

n · (x, y) = h . (3)

Definition 2. The dual equation D(h,n) = 0 together with the algebraic con-
straint n2

1 + n2
2 = 1 is called the implicit definition of the support function h or

simply the implicit support function.
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If the partial derivative ∂D/∂h does not vanish at (n0, h0) then (2) implicitly
defines the support function

n 7→ h(n)

in a certain neighborhood of (n0, h0) ∈ R3.

The (implicit) support function is obviously a kind of dual representation
which takes into account the Euclidean metric. It has many nice properties. Let
us recall how it is affected by selected geometric operations, cf. [15, 18]:

(i) translation by a translation vector v ∈ R2

h(n) 7→ h̃(n) := h(n) + v · n

D(h,n) = 0 7→ D̃(h̃(n),n) := D(h(n) + v · n,n) = 0 ,

(ii) rotation by an orthogonal matrix A ∈ SO(2)

h(n) 7→ h̃(n) := h(An)

D(h(n),n) = 0 7→ D̃(h̃(n),n) := D(h(An),n) = 0 ,

(iii) scaling by a factor λ ∈ R

h(n) 7→ h̃(n) := λh(n)

D(h(n),n) = 0 7→ D̃(h̃(n),n) := D(λh(n),n) = 0 ,

(iv) offseting with a distance δ ∈ R

h(n) 7→ h̃(n) := h(n) + δ

D(h(n),n) = 0 7→ D̃(h̃(n),n) := D(h(n) + δ,n) = 0 .

Moreover, the support function representation is very suitable for describing
the convolution C3 = C1 ⋆ C2 of curves C1, C2 as this operation corresponds to the
sum of the associated support functions h3 = h1 + h2 and its implicit support
function can be obtained by eliminating h1, h2 from the system of equations

D1(h1,n) = 0, D2(h2,n) = 0 and h3 = h1 + h2 ,

see [18, 14] for more details.

Another very useful property of the support function representation (espe-
cially in connection with G2 Hermite interpolation problem) is that it can be
efficiently used for describing the signed curvature of a given curve, cf. [18], in
the form

κ = −
1

h+ ḧ
. (4)
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2.2 Topology of the curve

We are given a real planar algebraic curve C = {(x, y) ∈ R2 | f(x, y) = 0} where
f ∈ Q [x, y]. We consider the problem of determining the topology of C. The
topology of C is usually described by a planar graph which can have vertices at
infinity and which is topologically equivalent to the original curve.

Definition 3. Let C be a curve and G be a planar graph (possibly with vertices
at infinity). The curve C and a graph G are topologically equivalent if and only
if they are isotopic as curves of Euclidean space, i.e., there exists a continuous
map H : R2 × [0, 1] → R2, such that

– H(x, t) is a homeomorphism for all t ∈ [0, 1],
– H(x, 0) = id,
– H(C, 1) = G.

Consider a vertical line l moving from the left side (x = −∞) to the right
(x = ∞). At any position there is a finite number of intersections of l and C.
The number of intersections can change only when C has a critical point on this
x-coordinate. To ensure that the graph G is topologically equivalent to C we have
to include all critical points among vertices of G. Namely

Definition 4. Let f(x, y) ∈ Q [x, y] define the real algebraic curve

C = {(x, y) ∈ R2 | f(x, y) = 0} .

The point (a, b) ∈ C is called

– x-critical point if ∂f
∂x

= 0, similarly we define y-critical point,

– singular point if ∂f
∂x

= ∂f
∂y

= 0,

– x-extremal point if ∂f
∂x

= 0 and ∂f
∂y

6= 0, similarly we define
y-extremal point.

There are several methods to deal with the critical points. Our approach is
related to the general scheme of Cylindrical Algebraic Decomposition (CAD)
based algorithms. These algorithms are usually divided into three phases. In
Phase 1 the x-coordinates of all the critical points of C are found. Using sub-
resultant sequence, the discriminant R(x) of f is computed. Then one determines
the roots ofR(x) and obtain the x-coordinates (xi, 1 ≤ i ≤ n) of all critical points
of C. In Phase 2 for each xi the intersection points Pi,j of C and the vertical line
x = xi are computed. These intersection points have as y-coordinates the roots
of the polynomial f(xi, y). In Phase 3 the number of branches of C over every
interval (xi, xi+1) is determined. It is the number of real roots of f(x′, y) for any
x′ from the given interval. Using this information it is possible to connect the
points appropriately. In [7] a Phase 0 was proposed; a linear change of coordinate.
The plane is sheared so that the curve is in generic position.
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Definition 5. The real algebraic curve C is in generic position if it satisfies the
following conditions:

– the curve C has no vertical asymptotes
– on every vertical line x = α, α ∈ R is at most one critical point

Obviously there are at most
(

c
2

)

non-generic configurations, where c is a number
of critical points. Therefore the change of coordinates is always possible.

3 The topology of the curve using the implicit support

function

In this section we will discuss how the use of the implicit support function
can contribute to the basic phases of determination of the topology of planar
algebraic curves, see Section 2.2. We will handle certain issues related both to
the search for critical points and to their connectivity.

3.1 Critical points

When the critical points are determined we can profit from the use of the support
function. We devote a paragraph to every type of critical points. As we will see
the support function is particularly useful in the search for cusps, points with
horizontal and vertical tangents and inflections. It can also provide interesting
additional information allowing us to omit self-intersections from the list of crit-
ical points while preserving the accurate curve topology. On the other hand the
determination of boundary points (for a curve studied within a box) is easier on
the primary curve and therefore we omit them here. An efficient global strategy
would therefore be based on a combination of the information about the primary
curve and its support function.

Cusps

From the general theory of algebraic curves (see e.g., [19]) the cusps on C corre-
spond to inflection points in the dual representation. Cusps are distinguished as
points having infinite curvature. They can be quite easily determined from the
support function due to (4). If only the implicit support function is available, a
condition for cusps can be formulated as follows.

Proposition 1. Let D(h,n) = 0 be the implicit support function of the curve
C. Then the cusps of C satisfy the following condition:

hD3
h − n2

1(D
2
hDn2n2

+DhhD
2
n2

− 2DhDhn2
Dn2

)− n1D
2
hDn1

+

+ n2
2(D

2
hDn1n1

+DhhD
2
n1

− 2DhDhn1
Dn1

)− n2D
2
hDn2

+ (5)

+ 2n1n2(DhDhn2
Dn1

+DhDhn1
Dn2

+DhhDn1
Dn2

−D2
hDn1n2

) = 0 ,

where the subscripts denote corresponding partial derivatives.
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Proof. Using (4) we get the necessary condition for cusps

h(n) + ḧ(n) = 0 . (6)

Let n(s) = (n1(s), n2(s)) be a parametrization of the unit circle by arc-length
s and suppose that we locally have h(n(s)). Using the chain rule we get following
derivatives:

ḣ = hn1
ṅ1 + hn2

ṅ2 = −hn1
n2 + hn2

n1 (7)

ḧ = hn1n1
ṅ2
1 + hn1n2

ṅ1ṅ2 + hn1
n̈1 + hn2n2

ṅ2
2 + hn2n1

ṅ1ṅ2 + hn2
n̈2 =

= hn1n1
n2
2 − hn1n2

n2n1 − hn1
n1 + hn2n2

n2
1 − hn2n1

n1n2 − hn2
n2 , (8)

where the dot denotes the derivative with respect to arc length s and the sub-
script denotes the partial derivative. The second equality in (7) and in (8) is
deduced using the equality (ṅ1, ṅ2) = (−n2, n1).

The partial derivatives of h can be deduced from its implicit definition. For
example:

∂

∂n1

D(h(n), n1, n2) = Dn1
(h, n1, n2) + hn1

Dh(h, n1, n2) = 0 .

And therefore

hn1
= −

Dn1
(h, n1, n2)

Dh(h, n1, n2)
.

Similarly we can deduce all partial derivatives of h and substitute them into
(8). That equation we substitue into (6) to get a necessary condition (??) for
cusps in variable n. ⊓⊔

In concrete computations the cusps will be found by simultaneously solving
equation (6) and the fundamental equations (2) and n2

1 + n2
2 − 1 = 0. The

primary points are fully defined by (1).

Extremal points

Due to the dual nature of the (implicit) support function representation it is
particularly easy to find the extremal points, as shown in the following

Lemma 1. The x-extremal and y-extremal points have unit normal vectors (±1, 0)
and (0,±1), respectively.

Proof. From the definition it follows that ∂f
∂x

= 0 resp. ∂f
∂y

= 0. ⊓⊔

Corollary 1. Let h be the support function implicitly defined by D(h,n) = 0.
The x and y-extremal points are the solutions of the polynomial equations in h

D(h, (1, 0)) = 0 and D(h, (0, 1)) = 0 , (9)

respectively.

Using the envelope formula (1) we can recover extremal points on the primary
curve C.
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Inflection points

Many algorithms for topologically exact description of algebraic curves do not
consider inflection points. In the context of dual representations they however
occur as natural splitting points. Indeed they simplify both the topology deter-
mination and subsequent approximation of individual segments.

Inflections are points where the normal vector changes its direction of move-
ment as the point traverses the curve. Althought these can be found from the
primary equation of the curve, this property is easily identified in the sup-
port function representation. Such points are of two types: the cusps and the
t-extremal points of the support function, where t is the parameter on the unit
circle. The first type corresponds to real inflection points, the second is the case
of points at infinity. This leads to the following proposition:

Proposition 2. Let C be an algebraic curve, let t 7→ n(t) be a parametrization of
the unit circle and consider the form D(h, t) = 0 of the implicit support function
of C. Then the inflection points of curve C are the t-critical points of the implicit
support function which are neither isolated points nor self-intersections.

We can identify the inflection points by counting the number of points of the
curve on a line a little to the left and on a line a little to the right of the critical
point.

Proposition 3. Let P = (x0, y0) be a point of the curve C, x1, x2 ∈ Q and
I = [x1, x2] be an isolating interval of x0, i.e., I does not contain other x-
coordinate of x-critical point than x0. The x-critical point P is an inflection
point if and only if

♯{α ∈ R | f(x1, α) = 0} 6= ♯{α ∈ R | f(x0, α) = 0} or

♯{α ∈ R | f(x0, α) = 0} 6= ♯{α ∈ R | f(x2, α) = 0} ,

where ♯ denotes the number of zeros counted with multiplicities.

Proof. We want to exclude self-intersections and isolated points, which are char-
acterized by

♯{α ∈ R | f(x1, α) = 0} = ♯{α ∈ R | f(x0, α) = 0} = ♯{α ∈ R | f(x2, α) = 0} .

Self-intersections

Self-intersections are important features in standard algorithms for determina-
tion of the curve topology. The support function based approach however allows
us to avoid the precise determination of self-intersections. From the dual point
of view the two branches of the intersection are handled separately, but we can
easily obtain geometrical bounds on the curve branches which certify existence
and uniqueness of their intersections.

Definition 6. The tangent triangle T (P1, P2) is the triangle bounded by tan-
gents at points P1 and P2 and by the segment P1P2.
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Proposition 4. Let Ck be a segment of the algebraic curve C connecting P1, P2

free of cusps, inflections and extremal points. Then Ck lies in the interior of the
tangent triangle T (P1, P2).

Proof. Denote by t1 and t2 the tangent vectors at P1 and P2 respectively. Due
to the fact that C is split at extremal points and cusps, the angle between t1
and t2 is at most π

2
. Therefore the arc does not intersect itself and moreover the

arc does not contain any cusp, because the curve is divided in cusps. Therefore
the arc is smooth and from the implicit function theorem we can suppose that
the explicit formula for given arc is c(t). The vector c′′(t) can change its sign
only at cusps and inflection points and therefore it has a constant sign on the
arc. Without loss of generality we can suppose that it is positive, i.e., the arc is
strictly convex. From the definition of convexity, the arc lies above both tangents
and below the segment P1P2. ⊓⊔

Due to the previous proposition we can find the self-intersections of the curve
as the non-empty intersections of envelope triangles of all arcs in which the
curve is divided. This method give us the information about which pairs of
arcs intersect and also the approximate positions of the self-intersections in the
intersections of envelope triangles.

Proposition 5. Let C1 and C2 be two simple curve segments. If their bounding
triangles T1 = T (P1, P

′
1) and T2 = T (P2, P

′
2) intersect in the following way:

– The edge P1P
′
1 intersects the edge P2P

′
2,

– P1, P
′
1 /∈ T2 and

– P2, P
′
2 /∈ T1,

then the segments have precisely one intersection and it lies in T1 ∩ T2.

Proof. Existence of the intersection follows from the transversal intersection of
the triangles. The uniqueness is ensured by the convexity of both curve segments
within the bounding tangent triangles. ⊓⊔

P1

P ′
1

P2

P ′
2

Fig. 1. Two simple curve segments and their tangent triangles. The intersection of
segments lies inside the intersection of tangent triangles.
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3.2 Connectivity of critical points

When we have determined the position of the critical points (Phase 1 of a general
CAD based algorithm) we need to connect them appropriately. First we will
study the general situation, when only the implicit formula of the curve is given.
Then we describe the advantages of this approach when the given curve is an
offset curve of a parametric curve.

Connectivity based on implicit support function

When we have the implicit support function of the curve, using the implicit
function theorem we have also G2 data at every point and we can profit from
them. We describe some rules which the connected points have to satisfy:

1. The difference of angles of tangents (normals) of two connected points is at
most π

2
.

This is because the curve is split at extremal points, cusps and inflection
points.

2. The sign of the second derivative at given point P determines in which half-
plane given by the tangent line at P are the points connected to P . If the sign
is negative, the points connected to P are in the same halfplane as the normal
vector to C at P , if the sign is positive, they are in the other halfplane.
This rule follows immediately from the definition of convexity.

In many cases these two rules yield the connectivity of the given curve. If
not, it seems that often we are able to determine the topology by subdividing
(possibly several times) the maximal angle in rule 1, i.e, we add extra splitting
points. For example, in the first iteration we add points with normal vector
(

± 1√
2
,± 1√

2

)

. These points we can determine similarly to extremal points, see

Section 3.1.

Additional connectivity information for offsets

If this general approach turns out to be insufficient we can either use one of
CAD based algorithms cited in Section 1 or exploit some additional properties of
studied curves. Here we would like to emphasize that in the case when the curve
under examination is an offset to a given parametric curve, the connectivity is
given by the parametrization. We can proceed in following steps:

1. Determine critical points on the offset curve.

2. Find the corresponding points on the original curve.
3. Connect points on the original curve by decreasing parameter.

4. Apply the same connectivity to the offset curve.

In this way the topology of the parametric curve is transferred to the offset
curve.
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4 Implicit support function based approximation

The support function representation can be exploited for an efficient approxima-
tion of segments of the curve connecting the critical or inflection points. Com-
pared to approximation in the primary space it can bring several advantages,
which will be discussed in this section.

Because we want to preserve features of the implicitly defined offsets and
convolutions, it is suitable to interpolate the critical points up to the second
order geometric data. Indeed, e.g. the cusps are distinguished by having infinite
curvature. Using the support function representation it is possible to perform
the G2 Hermite interpolation by solving a system of linear equations [3]. The
interpolation of critical points can be combined with an optimization of the
approximation of the connection segments.

4.1 Approximation space

A suitable space of implicit support functions must be fixed in order to perform
an efficient approximation.

Definition 7. A set A of functions h : S1 → R is called a rational approxima-
tion space if the following conditions hold:

– A is a real linear space of finite dimension.
– A is (as a set) invariant with respect to the rotations of S1.
– The curves with support functions from A are rational.

Any segment of the primary algebraic curve will be approximated by a piece
of a parametric curve with support function h ∈ A. If {ai}

n
i=1 is a basis of A

then

h(t) =

n
∑

i=1

ciai(t) ,

where ci are free coefficients. The parametric segment xi(t) is computed from
h via the envelope formula (1). Let us stress the fact, that in the definition of
approximation space we require that the resulting segments are rational. Their
union, which approximate the whole algebraic curve can therefore be represented
in the NURBS format.

It was shown in [18] that suitable subspaces of trigonometric polynomials
satisfy the three required conditions. In order to obtain a sufficient number of
degrees of freedom for G2 Hermite interpolation we will from now on use the
trigonometric polynomials of degree 3:

A = Span{1, sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t} . (10)

The main drawback of trigonometric polynomials is that they can not pro-
duce curves with inflections (and interpolate zero curvature). For an accurate
(G2) interpolation of inflections we plan to use other approximation spaces in-
cluding square roots of trigonometric polynomials and more generally implicitly
defined multivalued support functions. Alternatively it is possible to approxi-
mate inflections only with G1 precision.



12 Exploiting ISF for Topologically Accurate Approximation

4.2 G
2 Hermite interpolation and fixing degrees of freedom

G2 Hermite interpolation with trigonometric polynomials is described in detail
in [3]. We will extend this procedure to points with infinite curvature (cusps)
and we will also discuss how to optimize the possible free degrees of freedom.

G2 Hermite interpolation can efficiently be performed on the level of support
function due to following

Proposition 6. Let C be a planar curve with support function h, defined at least
locally in a neighborhood of n0. If g is a function defined also in a neighborhood
of n0 and satisfying

g(n0) = h(n0), ġ(n0) = ḣ(n0), g̈(n0) = ḧ(n0) . (11)

Then the corresponding curve xg obtained via (1) interpolates the position of the
point C(n0), its normal and its curvature.

Proof. Due to (1)

C(n0) = h(n0)n0 + ḣ(n0)n
⊥
0 = g(n0)n0 + ġ(n0)n

⊥
0 = xg(n0) .

The two curves have also the common normal n0 at their common point. Finally
they have also the same curvature

κ = −
1

h(n0) + ḧ(n0)
= −

1

g(n0) + g̈(n0)

due to (4). ⊓⊔

A corollary of the previous proposition is that the G2 Hermite interpolation
in the curve space is thus reduced to the C2 interpolation in the approximation
space. The right hand sides of (11) will be obtained from D(h,n) via implicit
differentiation. Interpolation at any point thus imposes three linear conditions
on coefficients ci. More precisely, for g(t) =

∑7

i=1
ciai(t), an element of the

approximation space (10), the conditions (11) has the following form

7
∑

i=1

ciai(t) = h(n0),

7
∑

i=1

cia
′
i(t) = ḣ(n0),

7
∑

i=1

cia
′′
i (t) = ḧ(n0) , (12)

where t = arctan
(

n01

n02

)

. Matching the support function up to the second deriva-

tive also reproduces the cusps, which correspond to the case h(n0) + ḧ(n0) = 0.
This case, which is singular in the primary curve space, is completely regular
from the point of view of the support function.

The interpolation of cusps and inflections is very important both for obtaining
a low approximation error and for estimating the approximation error. In this
case the error evaluates simply as the maximal error of the support function on
the given interval.
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Proposition 7. Let h, g be two support functions defined on the interval U =
[n0,n1], such that

g(ni) = h(ni), ġ(ni) = ḣ(ni), i ∈ 0, 1 .

Suppose, that the corresponding curves xh, xg are cusp-free on U . Then their
Hausdorff distance corresponds to the error in support functions.

||xh − xg||H = ||h− g||∞ . (13)

Proof. Due to boundary conditions and absence of singular points (cusps), the
Hausdorff distance is realized by a common normal line to both curves. The
distance of the points on this line is equal to the absolute value of the difference
of the support functions. For a more formal proof see [18, Proposition 14]. ⊓⊔

The approximation space can have a higher dimension than 6 and the re-
maining degrees of freedom can be used for minimizing the segment error. The
two possible strategies are based on interpolation of some additional data and
on minimizing some integral measure, respectively.

As we are using an approximation space (10) of dimension 7, after satisfying
(12) for both boundary points, we are left one additional free parameter. In the
following example we will use this parameter for interpolation of the support
function value at the mid-normal

g(t′) =

7
∑

i=1

ciai(t
′) = h

(

n0 + n1

2

)

, for t′ = arctan
n01 + n11

n02 + n12

(14)

or alternatively to minimize the L2 norm of the difference of supports. In this
case every ci is a function of the free parameter e used to minimize the quantity

||h(t)− g(t, e)||∞ . (15)

5 Algorithm and example

In this section we summarize the previous results in an algorithm for topo-
logically precise approximation of algebraic curves. We also demonstrate this
algorithm on an example.

5.1 Algorithm description

Algorithm 1 summarizes the process of determining the topology of an algebraic
curve and the subsequent approximation of the curve.

In step 1 the implicit definition D(h,n) = 0 of the support function is ob-
tained by eliminating the variables x, y from (3). In the next step we determine
the cusps - equation (??), the extremal points - equations (9) and the inflection
points using Proposition 3. We get corresponding points in Step 3 from the enve-
lope formula (1). Then we try to connect the points found in Step 3 using rules
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Algorithm 1 Topologically accurate approximation of an algebraic curve

Input: Real algebraic curve C given as a zero set of a bivariate polynomial with rational
coefficients f(x, y) ∈ Q[x, y]

Output: Topologically accurate approximation of the curve C.
1: Determine the support function h of C.
2: Determine the cusps, extremal and inflection points in the implicit support function

representation.
3: Find corresponding points on the primary curve.
4: Connect points.
5: Determine the self-intersections.
6: Approximate the support function of the segments by trigonometric polynomials.
7: Use envelope formula to find the approximation of C.

from Section 3.2. If this method fails we use a standard CAD based algorithm
or additional information, e.g., the curve could be an offset of a known para-
metric curve, etc. As we have the connectivity of these points we can in Step 5
recover the self-intersections as the intersections of tangent triangles as shown
in Proposition 5. The two steps - the approximation is described in Section 4.2.

5.2 Example

In order to demonstrate all features mentioned above, we will use them on the
example of the offset at distance − 9

10
to the ellipse given as the zero set of the

bivariate polynomial f(x, y) = x2 + 4y2 − 4 and oriented by its outer normal.
Eliminating x and y from the system of equations (3)

x2 + 4y2 = 4 ,

−8yn1 + 2xn2 = 0 ,

xn1 + yn2 = h ,

we get the implicit definition of support function of f , D(h,n) = h2−4n2
1−n2

2 =
0. The implicit support function of the offset at distance − 9

10
is therefore easily

evaluated as

D(h,n) =

(

h−
9

10

)2

− 4n2
1 − n2

2 = 0 .

The condition for cusps given by equation (??) becomes

h−
30(n2

1 − n2
2)(10h− 9)2 + 9000n2

1n
2
2

(10h− 9)3
= 0

and has the 4 solutions listed in Table 1. We determine the extremal points by
solving the equations

(

h− 9

10

)2
− 1 = 0 and

(

h− 9

10

)2
− 4 = 0 .

These are also in Table 1.
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Table 1. Cusps (C) and extremal points (E) of the offset curve at distance −
9

10
to the

ellipse x2 + 4y2
− 4 = 0.

type h h′ h′′ n corresponding point

P1 E −
11

10
0 3

2
(1, 0) (− 11

10
, 0)

P2 C −0.7441 0.9039 0.7441 (0.7535, 0.6575) (−1.155, 0.1918)
P3 E −

1

10
0 −3 (0,−1) (0, 1

10
)

P4 C −0.7441 −0.9039 0.7441 (−0.7535, 0.6575) (1.155, 0.1918)
P5 E −

11

10
0 3

2
(−1, 0) ( 11

10
, 0)

P6 C −0.7441 0.9039 0.7441 (−0.7535,−0.6575) (1.155,−0.1918)
P7 E −

1

10
0 −3 (0, 1) (0,− 1

10
)

P8 C −0.7441 −0.9039 0.7441 (0.7535,−0.6575) (−1.155,−0.1918)

These 8 points P1, P2, . . . , P8 divide the curve into 8 segments. The connec-
tivity is found using rules from Section 3.2. We need only the rule 2, the value
of h′′ at P1 is positive and therefore it have to be connected to points on the
left from it - there are only two points P2, P8. Similarly P5 is connected to P4

and P6. The value of h′′ at P3 is negative and therefore it is connected to points
below it, i.e. P2, P4. And the same argument is used to connect P7 to P6 and
P8. The connectivity is on Fig. 2, left.

For simplicity we use the approximation space of dimension 6

A = Span{sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t} .

Solving the system of linear equation (11) we interpolate every arc of the offset
by an arc of trigonometric polynomial of degree 3. The resulting spline is on Fig.
2, right.

P6 P8

P2P4

P5

P7

P1

P3

-2 -1 0 1 2

-1

0

1

-2 -1 0 1 2

-1

0

1

Fig. 2. Left: The graph topologically equivalent to the offset at distance −
9

10
to the

ellipse x2+4y2
− 4 = 0. Right: Its approximation by a spline curve composed of 8 arcs

of trigonometric polynomials of degree 3.
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Table 2 shows the approximation error and its improvement (ratio of two
consecutive errors). The error was obtained by sampling the Hausdorff distance,
which is, due to Proposition 7, the maximal difference between the support func-
tions. From the table it seems that the improvement of the error converge to 64,
i.e., the approximation order is 6. The graphs of error for first few interpolation
degrees are shown in Fig. 3.

Table 2. Errors of the interpolation of offset at distance− 9

10
to the ellipse x2+4y2

−4 =
0 by trigonometric spline coming as a solution of (11).

parts error improvement

8 2.43023 · 10−3

16 4.42354 · 10−5 54.93871
32 1.26347 · 10−6 35.01110
64 3.66130 · 10−8 34.50865
128 6.68349 · 10−10 54.78136
256 1.08374 · 10−11 61.67045
512 1.71052 · 10−13 63.35748
1024 2.64063 · 10−15 64.77699
2048 4.16170 · 10−17 63.45069
4096 6.48248 · 10−19 64.19919

When we use the approximation space (10) of dimension 7 and use the last
degree of freedom to interpolate the support function at mid-normal (condition
(14)), the approximation error for 8 segments will decrease cca. 10 times (from
2.43023 ·10−3 to 2.12534 ·10−4). The graph of the approximation error is in Fig.
4, left.

We get very similar result when the degree of freedom is used to minimize
the L2 norm of the difference of the support functions, see (15). The optimal
values of the parameters are e1 = e4 = e5 = e8 = 2.9805 and e2 = e3 =
e6 = e7 = −18.6308, where the index denotes the number of the segment. The
approximation error is 2.03011 · 10−4 and the graph is shown in Fig. 4, right.

Every arc of the offset curve is enclosed in the tangent triangle due to Propo-
sition 4. Therefore the curve yields a self-intersection only if there is a pair of
triangles which have an intersection in way described in Proposition 5. From
Fig. 5 we see that there are only two self-intersections and we also know their
approximate position in the colored polygons. Using all this information we can
construct the topologically equivalent graph to the given curve.

6 Conclusion

We have suggested a new approach to the problem of determining the topology
of algebraic curves and their approximation. We were systematically using the
implicit support function representation of planar curves which is a kind of dual
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Fig. 3. The approximation error for 8, 16, 32 and 64 segments of spline in approxima-
tion space of dimension 6. The points where the error vanishes are the points in which
we interpolate the curve.
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Fig. 4. The graph of the approximation error for 8 segments for different methods of
fixing the degree of freedom: left the interpolation of support function at mid-normal,
right: the minimization of the L2 norm of the difference of the support functions.

Fig. 5. Every piece of the curve lies inside the envelope triangle. The self-intersections
lies inside the intersection of these triangles.
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representation. We have illustrated several advantages related in particular to
the calculations of cusps, extremal points and inflection points. We also designed
a cusp-preserving approximation scheme for regular curve segments.

In the future, we intend to develop the support function based treatment of
self-intersections (via an iterative bounding of the area they can occur) and of
inflections (in particular their interpolation with suitable multivalued support
functions). We also plan to combine our dual techniques with direct computa-
tions with primary curve in order to obtain a highly efficient algorithm.
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