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Abstract. We consider a class of compressible fluids with nonlinear constitutive equations that guarantee that the
divergence of the velocity field remains bounded. We study mathematical properties of unsteady three dimensional
flows of such fluids in bounded domains. In particular, we show the long-time and large-data existence result of weak
solutions with strictly positive density.
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1. Introduction

The aim of this study is to develop a large data mathematical theory for the following problem. For a given T > 0, a
bounded domain Ω ⊂ R3, the density of the external body forces b = (b1, b2, b3) : (0, T ) × Ω → R3, an initial (mass)
density %0 : Ω→ (0,∞), an initial momentum m0 = (m01,m02,m03) : Ω→ R3, the viscosity function µ : R→ (0,∞)
and positive model parameters a, b, to find % : (0, T ) × Ω → (0,∞) and v = (v1, v2, v3) : (0, T ) × Ω → R3 satisfying,
in (0, T )× Ω, the system of four partial differential equations

∂%

∂t
+ div(%v) = 0 , (1.1)

∂(%v)

∂t
+ div(%v ⊗ v) = divT + %b , (1.2)

with T = −p(%)I + 2µ(|Dd|2)Dd +
bdiv v

(1− ba|div v|a)1/a
I , (1.3)

completed with no-slip boundary condition

v|(0,T )×∂Ω = 0, (1.4)

and the initial conditions

%(0, ·) = %0 and (%v)(0, ·) = m0 in Ω. (1.5)
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In (1.3), the symbol T stands for the Cauchy stress tensor, and D denotes the symmetric part of the velocity gradient
∇v. We also use Dd for the deviatoric (traceless) part of D, i.e., Dd = D − 1

3 (div v)I. Later on, in order to indicate

what velocity field generates the tensor D or Dd we will write D(v) or Dd(v), respectively. In general, for any tensor
quantity A, we set Ad := A− 1

3 (trA)I.
In the present work we suppose that the scalar pressure p = p(%) depends on the density %, more specifically

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(%) > 0 for % > 0. (1.6)

Referring to (1.3), the relation between T and D is nonlinear even if µ does not depend on Dd. In fact, in this study
we assume that

µ(|Dd|2) = µ0

(
1 + |Dd|2

)(r−2)/2
with µ0 > 0 and r ∈ [11/5,∞) . (1.7)

The lower bound 11
5 for r is a technical assumption ensuring a direct application of the monotonicity method in the

form developed in [10, 11] within the context of the analysis of problems concerning incompressible fluids.

Our main goal in the present paper is to show that for any data, fulfilling certain natural conditions concerning
their integrability (see (3.5) below), there exists a weak solution to the problem (1.1)–(1.7) that admits the strictly
positive density in (0, T )× Ω whenever %0 > 0 in Ω. Note that positivity of the density in the class of weak solutions
of the compressible Navier-Stokes system in the general three-dimensional setting, where the relevant existence theory
was developed in [5, 12], represents an outstanding open problem (cf. Hoff and Smoller [9]).

The main point in our approach is based on the fact that the specific form of the constitutive relation (1.3) gives
rise to the following feature: the divergence of the velocity field is under all circumstances bounded; see Subsection
2.2 for details. This in turn implies that the density of the fluid remains strictly positive in the domain occupied by
the fluid. The form of (1.3) is motivated by similar constitutive relations arising in the context of nonlinear elasticity,
fitting in the general framework of the implicit constitutive theory developed in [16, 17]. The resulting evolutionary
problem can be written in an elegant way as a variational inequality that can be handled by the methods of convex
analysis. We note that similar problems, although in a rather different context of inhomogeneous incompressible fluids,
were considered by [8], [21].

Note that we deal with both non-linear constitutive equations and a non-linear pressure law. To the best of our
knowledge, there are very few studies concerning compressible fluids with non-linear relation between the Cauchy stress
and the velocity gradient. Mamontov [14, 15] (see also the references therein) considered a compressible model with
linear pressure equation and an exponential dependence of the viscosity on the velocity gradient in twodimensional
domains. Zhikov and Pastukhova [22] made the first attempt to address the present problem in its full complexity -
general nonlinear constitutive equations and a nonlinear pressure equation p(%) = %γ . Although this paper introduces
a number of original ideas, the proof contains an essential gap related to the (hypothetical) presence of vacuum that
would hamper the main compactness argument.

The structure of the paper is the following. In Chapter 2, we provide comments concerning the theoretical
justification of the considered model that is inspired by limiting strain models appearing naturally when applying
implicit constitutive theory to elastic bodies; see Rajagopal [18, 19]. We also link the considered model with the
Navier-Stokes model for compressible fluids. In Chapter 3, we fix notation of functions spaces, give the definition
of weak solutions and formulate precisely the main existence result. In Chapter 4, we deduce the necessary a priori
bounds and prove the existence theorem in detail.
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2. Compressible Navier-Stokes fluids and fluids with bounded div v

In this section, we start with the classical definition of a compressible Navier-Stokes fluid and present several different
forms how these constitutive equations can be formulated. Then we generalize one of these forms to non-Newtonian
framework focusing on the models that have a priori bounded divergence of the velocity field.

2.1. Classical compressible Navier-Stokes fluid

A compressible Navier-Stokes fluid in the barotropic regime is characterized by the constitutive equation

T = −p(%)I + 2µDd(v) + η div v I . (2.1)

Setting m := 1
3 trT, this relationship can be rewritten into the form

m+ p(%) = η div v,

Td = 2µDd(v) ,
(2.2)

or

div v =
1

η
(m+ p(%)),

Dd(v) =
1

2µ
Td,

(2.3)

provided both µ and η are positive.

The form (2.3) will, in particular, lead to generalizations given in the next subsection. Before doing so, let us
make a few observations; see for example [13] for more details.

In the absence of thermal effects, the dynamics of the process is often carried on by the so-called reduced
thermodynamic identity

T · D− %ψ̇ = ξ . (2.4)

Here ψ is the Helmholtz potential, ξ stands for the rate of dissipation, and, for any scalar quantity z, the symbol ż
denotes the material derivative of z that can be expressed as

ż =
∂z

∂t
+

3∑
k=1

∂z

∂xk
vk .

In the barotropic regime, we have

ψ = ψ(%) , (2.5)

and, using (1.1) written in the compact form %̇ = −% div v, and denoting p := %2 ψ′(%) := %2 dψ(%)
d% , we observe that

(2.4) and (2.5) lead to

ξ = Td · Dd + (m+ p(%)) div v . (2.6)

Thus, the rate of entropy production (the rate of dissipation) is split into two parts: while the first term represents
the dissipation of energy due to isochoric processes, the second term is connected with the dissipation of energy due
to volume changes.

Note that upon inserting (2.2) into (2.6) we get

ξ = 2µ |Dd(v)|2 + η|div v|2 . (2.7)



4 E. Feireisl and X. Liao and J. Málek

Hence, if µ and ν are non-negative, then ξ is non-negative and the second law of thermodynamics is fulfilled. Note
also that inserting (2.3) into (2.6) gives

ξ =
1

2µ
|Td|2 +

1

η
|m+ p(%)|2 . (2.8)

As already noted in the above, the requirement that ξ of the form (2.8) is non-negative implies that µ > 0 and η > 0,
while the same requirement associated with (2.7) lead merely to the non-negativity of the (shear and bulk) viscosity
coefficients. The forms (2.7) and (2.8) differ also by the answers to the question under what condition the rate of
dissipation vanishes. While (2.7) implies that ξ = 0 (independently of considered processes) if µ = η = 0, it follows
from (2.8) that ξ = 0 if m = −p(%) and Td = O. In both cases, however, we end up with the same form for the Cauchy
stress:

T = −p(%)I . (2.9)

Recalling that p(%) = %2ψ′(%), we see that −p(%)I contains the information about the elastic (non-dissipative) processes
of the fluid and 2µDd(v) + η div vI is linked with viscous (dissipative) properties of the material.

2.2. Generalizations of Compressible Navier-Stokes fluids

We now come to generalizations of the constitutive equation (2.1). As indicated by the above relations (2.2) or (2.3)
but also by the structure of the dissipative mechanisms as appearing in (2.6), the quantities m + p(%) and div v on
one hand and Dd and Td on the other hand are related. In the above relations (2.2) and (2.3) they are proportional. If
one is interested in the generalizations of the constitutive equations (2.1) it sounds reasonable to relate the quantities
m + p(%) and div v on one hand and Dd and Td on the other hand in a nonlinear way. This is the approach used in
this study.

Inspired by implicit constitutive theory (see Rajagopal [16, 17]) one can consider, as a generalization of the
constitutive equation (2.3) for the compressible Navier-Stokes fluid, the class of fluids characterized by the implicit
relations

g(m+ p(%),div v) = 0 , (2.10)

G(Td,Dd(v)) = O , (2.11)

where g : R×R→ R and G : R3×3
sym ×R3×3

sym → R3×3
sym are given. We will not consider the full potential of this setting in

this study1. We prefer to restrict ourselves to a subclass of the models characterized by

div v =
1

b

m+ p(%)

(1 + |m+ p(%)|a)1/a
, (2.12)

Dd(v) =
1

2µ(|Dd(v)|2)
Td with µ(|Dd(v)|2) = µ0(1 + |Dd(v)|2)

r−2
2 , (2.13)

where a > 0, b > 0, µ0 > 0 and r ∈ [11/5,∞). While the relation (2.13) represents the simplest generalization of the
linear response between Td and Dd to polynomial response (and simultaneously avoiding the possible degenerate or

1We can however refer the interested reader to [20] and [13] for issues concerning constitutive theory, and to [2], [1] and [3] for results
concerning large data existence of weak solution to flows of incompressible fluids described as a subclass of fluids characterized through

(2.11). To be more specific, this subclass for example includes responses that can be identified with maximal monotone graphs in R3×3
sym×R3×3

sym

with Td, Dd fulfilling, for r > 6/5, the condition

Td · Dd ≥ α(|Dd|r + |Td|r
′
) , where r′ := r/(r − 1) and α > 0 .
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singular behavior of classical power-law fluid response given by Td = 2µ0|Dd(v)|r−2Dd(v)), the relation (2.12) a priori
guarantees that div v is bounded:

|div v| < 1

b
.

The form of this constitutive equation is inspired by the limiting strain models proposed by Rajagopal in several studies
(see e.g. [18, 19]) in order to describe response of solid bodies where the stress can be very high yet the linearized
strain remains small.

Note that (2.12) implies that

|div v|a =
1

ba
|m+ p(%)|a

1 + |m+ p(%)|a
,

which further leads to

|m+ p(%)|a =
ba|div v|a

1− ba|div v|a
.

Inserting this relation back to (2.12) we obtain the inverse relation to (2.12) in the form

m+ p(%) =
b div v

(1− ba|div v|a)1/a
. (2.14)

Then it follows from (2.13) and (2.14) that

T = Td +
1

3
(trT)I = Td +mI

= −p(%)I + 2µ0(1 + |Dd(v)|2)(r−2)/2Dd(v) +
b div v

(1− ba|div v|a)1/a
I ,

(2.15)

which is the constitutive equation for the Cauchy stress as stated in (1.1).
Upon inserting (2.12) and (2.13) into (2.6) we observe that

ξ =
1

2µ(|Dd(v)|2)
|Td|2 +

|m+ p(%)|2

b(1 + |m+ p(%)|a)1/a
, (2.16)

or, alternatively, inserting (2.13) (now expressing Td as a function of Dd) and (2.14) we have

ξ = 2µ(|Dd(v)|2)|Dd|2 +
b |div v|2

(1− ba|div v|a)1/a
. (2.17)

Thus the fluid model (2.12)-(2.13) is thermodynamically consistent as the rate of the entropy production is non-
negative.

To summarize, we have derived the model described through (1.1)-(1.3).

3. Main results

In this section, we define the weak solutions to the problem (1.1)-(1.5) and state our main result on global existence.
In what follows, we consider a slightly more general form of the stress tensor T, specifically

T = −p(%)I + S(v) + η(div v) div vI, (3.1)

where
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• the deviatoric part of the Cauchy stress tensor S is specified through

S(v) := 2µ0(1 + |Dd(v)|2)
r−2
2 Dd(v), µ0 > 0 constant, r ∈ [11/5,∞); (3.2)

• the bulk viscosity coefficient η is a continuous function of div v, η(div v) :
(
− 1
b ,

1
b

)
→ [0,∞), such that there is a

convex potential Λ : R→ [0,∞], 
Λ(0) = 0,

Λ′(z) = zη(z),
Λ(z)→∞ if z → ± 1

b ,
Λ(z) =∞ if |z| ≥ 1

b ;

 (3.3)

• the pressure p = p(%) and the Helmholtz free energy ψ = ψ(%) satisfy

p = %2ψ′(%), p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(%) > 0 for % > 0. (3.4)

Remark 3.1. (i) Notice that in the particular case considered in Subsection 2.2, the function η takes, for z > 0, the

form η(z) = b(1− baza)−
1
a . The graph of the corresponding potential Λ is then sketched in the following figure:

1
b

1
b

Λ

0

∞+

z

(ii) In Subsection 4.3 below, we will introduce a function P by P (%) := %ψ(%). Since p′(%) = %2ψ′(%) + 2%ψ′(%), we

observe that P ′′(%) = p′(%)
% . Consequently, by (3.4), P ′′(%) > 0 for all % > 0 and P is strictly convex on (0,∞).

3.1. Weak solutions

Let the initial data (%0,m0) satisfy

0 < % ≤ %0(x) ≤ %, for a.a. x ∈ Ω, m0 ∈ (L2(Ω))3, (3.5)

and let b ∈ (Lr
′
((0, T )× Ω))3. The weak solutions of the problem (1.1)-(1.7) are defined as follows:

Definition 3.1. A pair of functions (%,v) is called a weak solution of the problem (1.1)-(1.7) if:

•

% ∈ C([0, T ];L1(Ω)) ∩ L∞((0, T )× Ω), %(0) = %0,
√
%v ∈ L∞([0, T ]; (L2(Ω))3), v ∈ Lr([0, T ]; (W 1,r

0 (Ω))3), η(divx v)|divx v|2 ∈ L1((0, T )× Ω); (3.6)
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• the equation of continuity (1.1) holds in the distributional sense on (0, T )× R3:∫ τ

0

∫
R3

(%∂tϕ+ %v · ∇ϕ) dxdt =

[∫
R3

%ϕ dx

] ∣∣∣τ
0

for any τ ∈ [0, T ], for all ϕ ∈ C∞c ([0, T ]× R3) provided v was extended to be zero outside Ω; (3.7)

• the following weak formulation of the momentum equation holds:∫ τ

0

∫
Ω

Λ(divxϕ)− Λ(divx v) dxdt ≥
[

1

2

∫
Ω

%|v|2
] ∣∣∣τ

0
−
[∫

Ω

%v ·ϕ dx

] ∣∣∣τ
0

+

∫ τ

0

∫
Ω

%v · ∂tϕ + %v ⊗ v : ∇ϕ dxdt+

∫ τ

0

∫
Ω

S(v) : Dd(v −ϕ) dxdt (3.8)

+

∫ τ

0

∫
Ω

p(%) div(ϕ− v) dxdt+

∫ τ

0

∫
Ω

%b · (ϕ− v) dxdt,

for a.e. τ ∈ [0, T ], for all ϕ ∈ C∞c ([0, T ]× Ω,R3).

Remark 3.2. It follows from (3.6) and the structural properties (3.3) of the function Λ that

Λ(div v) ∈ L1((0, T )× Ω); whence

|div v| < 1

b
a.e. on (0, T )× Ω.

Thus, applying the nowadays standard DiPerna-Lions theory [4] to the equation of continuity (1.1), we may infer the
the density % satisfies

% exp

(
− t
b

)
≤ %(t, x) ≤ % exp

(
t

b

)
, (3.9)

together with the following renormalized equation

∂t[b(%)] + divx[b(%)v] + (b′(%)%− b(%)) divx v = 0, (3.10)

which is satisfied in the sense of distributions. Taking ϕ = 0 in (3.8), we get the energy inequality[∫
Ω

1

2
%|v|2 + %ψ(%)

]∣∣∣τ
0

+

∫ τ

0

∫
Ω

S(v) : Ddv + Λ(div v) ≤
∫ τ

0

∫
Ω

%b · v , a.e. τ ∈ [0, T ]. (3.11)

3.2. Global-in-time weak solutions

Now we state the main existence result:

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary. Suppose that the pressure p = p(%) and the
Helmholtz free energy ψ = ψ(%) satisfy (3.4) and that the hypotheses (3.1)-(3.3) hold.

Then, for any initial data (3.5) and any T > 0, there exists a weak solution to the problem (1.1)-(1.7) in (0, T )×Ω.

The proof of Theorem 3.1 will be given in next section. Now, we fix the notation used in what follows:

• Notation fn → f in X means that the sequence {fn} converges to the limit f strongly in the Banach space X,

while fn ⇀ f and fn
∗
⇀f in X denote the weak convergence and weak-∗ convergence in X, respectively;

• the symbol C denotes a generic positive constant, which may vary from time to time;
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• the symbol F (f) denotes a weak limit of the sequence {F (fn)}: for example, if {fn} is a bounded sequence in
Lr(Ω) and {F (fn)} a bounded sequence in Lq(Ω) with F ∈ C(R), r, q > 1, then there exists a subsequence {fnk

}
such that

fnk
⇀ f in Lr(Ω), F (fnk

) ⇀ F (f) in Lq(Ω);

• the scalar product 〈· ; ·〉 denotes the inner product in L2(Ω)3.
• We set the source term b ≡ 0 for the notational simplicity in the proof2.

4. Proof of the main result

The basic ingredient of the proof of Theorem 3.1 represents the a priori bounds derived from the standard energy
estimates. More specifically, taking the scalar product of (1.2) with v we obtain, with help of (1.1), the following
identity (keeping in mind that the source term b is assumed to vanish in the present chapter)

1

2

[∂(%|v|2)

∂t
+ div(%|v|2v)

]
+ T · D = div(Tv) . (4.1)

Integrating this identity over Ω and using the boundary condition (1.4) we arrive at

1

2

d

dt

∫
Ω

%|v|2 dx+

∫
Ω

T · D dx = 0. (4.2)

Finally, using (2.4), (2.5) and (2.17) we obtain from (4.2) the identity

d

dt

∫
Ω

(
1

2
%|v|2 + %ψ(%)

)
dx+

∫
Ω

2µ(|Dd(v)|2)|Dd(v)|2 dx

+

∫
Ω

η(div v)|div v|2 dx = 0 .

If the initial data satisfy (3.5), then the following quantities are uniformly bounded:

sup
t∈(0,T )

∫
Ω

[1

2
%|v|2 + %ψ(%)

]
(t, ·) dx,

∫ T

0

∫
Ω

µ(|Dd(v)|2)|Dd(v)|2 dxdt,
∫ T

0

∫
Ω

η(div v)|div v|2 dxdt.

The proof of Theorem 3.1 is based on a two-level approximation scheme. We start by a Galerkin type approx-
imation of the problem (1.1)-(1.7) in the spirit of [5, Chapter 6], with Λ replaced by a smooth regularization Λε,
see Section 4.1. Then, in Section 4.2, we perform the limit ε → 0. Finally, the passage to the limit in the Galerkin
approximation will be performed in Section 4.3.

4.1. Galerkin approximation

We define a regularization Λε of the function Λ as follows:

Λε(z) =

{
Λ(z) for |z| ≤ 1

b − ε,
Λ( 1

b − ε) + Λ′( 1
b − ε)

(
z − ( 1

b − ε)
)

if z ≥ 1
b − ε,

(4.3)

Λε(z) = Λε(−z) if z ≤ −1

b
+ ε. (4.4)

In the specific case with the Cauchy stress tensor (1.3), the function Λε behaves as the following graph

2The source term b ∈ Lr′ ([0, T ]× Ω)3 is of enough integrability and will not cost any real difficulty in the proof.
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Λε

1
b +ε

1
b -ε0 z

Next, since C∞0 (Ω)3 is compactly and densely embedded in the Hilbert space L2(Ω)3, we can choose a countable
set {wn}∞n=1 ⊂ C∞0 (Ω)3 as an orthonormal basis in the inner product 〈·; ·〉L2(Ω)3 . Let Xm be the linear span of
{w1, · · · ,wm}.

Finally, for given v ∈ C([0, T ];Xm), let % = %[v] be the unique solution of the equation of continuity (1.1), with
the regularized initial data %ε,0 ∈ C∞0 (Ω),

%ε,0 → %0 in L1(Ω) as ε→ 0, % ≤ %0,ε ≤ %. (4.5)

Thanks to the standard results for the transport equation (see e.g. [4]), the mapping assigning the velocity field
v to the solution % = %[v] of (1.1) is continuous, from L1([0, T ];Xn) to C([0, T ];W 1,q(Ω)), q < ∞. Moreover, if
‖div v‖L1([0,T ];L∞(Ω)) ≤ L for some positive constant L, then

% ∈ [%e−L, %eL] on [0, T ]× Ω.

Consequently, using the same arguments as in [5, Chapter 6], we may find an approximate solution vn,ε ∈ C([0, T ];Xn)
such that ∂tvn,ε ∈ L1([0, T ];Xn), and[∫

Ω

%vn,ε ·ϕ
]∣∣∣τ

0
+

∫ τ

0

∫
Ω

−%vn,ε⊗vn,ε : ∇ϕ+S(vn,ε) : Ddϕ+Λ′ε(div vn,ε) divϕ−p(%) divϕ = 0, for all ϕ ∈ Xn, (4.6)

where % = %n,ε = %[vn,ε].
Differentiating the above equation (4.6) with respect to t, integrating by parts and then choosing the test function

ϕ = vn, we obtain the following energy equality for (%n,ε,vn,ε):[∫
Ω

(1

2
%n,ε|vn,ε|2 + %n,εψ(%n,ε)

)]∣∣∣τ
0

+

∫ τ

0

∫
Ω

S(vn,ε) : Dd(vn,ε) + Λ′ε(div vn,ε) div vn,ε = 0, τ ∈ [0, T ]. (4.7)

4.2. The limit ε→ 0

Fixing n > 0 and denoting by (%ε,vε) the family of approximate solutions obtained Section 4.1, our goal in this section
is to perform the limit ε→ 0. To begin with, we recall the following bounds independent of the parameter ε:

%ε ∈ [%e−L, %eL], with L = L(n), (4.8)

‖√%εvε‖L∞([0,T ];(L2(Ω))3), ‖Ddvε‖Lr([0,T ];(Lr(Ω))9), ‖Λ′ε(div vε) div vε‖L1([0,T ];L1(Ω)) ≤ C(%, %,m0, T ).

Moreover, taking the above estimates into account, we deduce from the equation (4.6) that

‖〈∂t%εvε;wm〉‖L1(0,T ) ≤ C(%, %,m0, T ), 1 ≤ m ≤ n, (4.9)
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where 〈·; ·〉 denotes the scalar product in L2(Ω)3.

Thanks to the stability result for the equation of continuity (1.1) (see e.g. [4]), we can extract subsequences such
that

vε → v in C([0, T ]× Ω) ∩ Lr([0, T ];W 1,r(Ω)3) as ε→ 0,

%ε → % in C([0, T ];Lq(Ω)), q ∈ [1,∞), as ε→ 0,

where the limit (%,v) satisfies the equation of continuity (1.1), supplemented with the initial condition (3.5). Further-
more, as (4.9) is independent of m, we deduce that

‖∂t〈%v;wm〉‖M[0,T ] ≤ C(%, %,m0, T,m) for any fixed m, (4.10)

with M[0, T ] denoting the space of measures in [0, T ]. This boundedness result will be the key point to get the time
compactness of %v when n→∞ in the next section.

Our ultimate goal in this section is to show that the integral identity (3.8) holds for the limit (%,v), with the
test function ϕ ∈ C1([0, T ];Xn), in particular,

|div v| < 1

b
a.e. on [0, T ]× Ω. (4.11)

Differentiating (4.6) with respect to t and then testing by ϕ − v we get the following inequality for (%ε,vε)
(keeping in mind the convexity of Λε):∫ τ

0

∫
Ω

Λε(divϕ)− Λε(div vε) ≥
[1

2

∫
Ω

%ε|vε|2
]∣∣∣τ

0
−
[∫

Ω

%εvε ·ϕ
]∣∣∣τ

0

+

∫ τ

0

∫
Ω

%εvε · ∂tϕ + %εvε ⊗ vε : ∇ϕ dxdt+

∫ τ

0

∫
Ω

S(vε) : Dd(vε −ϕ) dxdt (4.12)

+

∫ τ

0

∫
Ω

p(%ε) div(ϕ− vε) for a.e. τ ∈ [0, T ], for all ϕ ∈ C1([0, T ];Xn).

Note that

Λ(divϕ) ≥ Λε(divϕ) for all ε ∈ (0,
1

b
) and all ϕ ∈ C1([0, T ]× Ω,R3).

Moreover, for the regularized function sequence {Λε}ε, one has

lim infε→0Λε(div vε) ≥ Λ(div v). (4.13)

Indeed, the lower semi-continuous convex function Λ can be written as a supremum of its affine minorants:

Λ(z) = sup{a(z) | a an affine function on R, a ≤ Λ on R}.

For any affine function a ≤ Λ, there exists Λε such that a ≤ Λε. Consequently, Λε(div vε) ≥ a(div vε). Since a(div vε)→
a(div v), (4.13) follows.

Taking the limit in (4.12) entails the weak formulation (3.8), with the test function ϕ ∈ C1([0, T ];Xn). In
particular, if ϕ ≡ 0, then one has the energy inequality (3.11) for (%ε,vε). According to the definition of Λ in (3.3),
the bound on div v in (4.11) follows.
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4.3. Limit in the Galerkin approximation

Denoting the family of solutions obtained in Section 4.2 by (%n,vn), we pass to the limit for n → ∞. The energy
inequality (3.11), together with the bound (4.11) on div vn, give rise to the following estimates:

%n ∈ [%e−T/b, %eT/b],

‖vn‖L∞([0,T ];L2(Ω)3), ‖Ddvn‖Lr([0,T ];Lr(Ω)9) ≤ C(%, %,m0, T ),

which implies (noticing that the lower bound 11/5 for the index r plays role in getting the following bound on vn)

‖vn‖L2r′ ([0,T ]×Ω)3 , ‖∂t%n‖Lr([0,T ];W−1,r(Ω)) ≤ C(%, %,m0, T ).

Consequently, up to a subsequence, we get (see [5, Chapter 6])

%n → % in C([0, T ];Lqweak(Ω)) for all q ∈ [1,∞),

vn ⇀ v in Lr([0, T ];W 1,r(Ω)3), (4.14)

div vn
∗
⇀div v in L∞([0, T ]× Ω).

Moreover, by virtue of (4.10), one has

〈%nvn;wm〉 → 〈%v;wm〉 in, say, L2(0, T ) for any fixed m = 1, 2, . . . ;

whence
%nvn → %v in Lr([0, T ];W−1,2(Ω)3),

which, combined with (4.14), gives rise to

%nvn ⊗ vn ⇀ %v ⊗ v in Lr
′
([0, T ]× Ω)9.

It is easy to check that the limit (%,v) satisfies the equation of continuity (1.1), together with the renormalized
equation (3.10). Moreover, taking to the limit in (3.8), we obtain the following inequality∫ τ

0

∫
Ω

Λ(divϕ)− Λ(div v) dxdt ≥
[1

2

∫
Ω

%|v|2
]∣∣∣τ

0
−
[∫

Ω

%v ·ϕ
]∣∣∣τ

0

+

∫ τ

0

∫
Ω

%v · ∂tϕ + %v ⊗ v : ∇ϕ dxdt+

∫ τ

0

∫
Ω

S(v) : Ddv − S(v) : Ddϕ dxdt (4.15)

+

∫ τ

0

∫
Ω

p(%) divϕ− p(%) div v dxdt for a.e. τ ∈ [0, T ], for all ϕ ∈ C∞c ([0, T ]× Ω,R3),

with the weak limit S(v) : Ddv of the sequence {S(vn) : Ddvn} being a measure on [0, T ]× Ω.

Our next goal is to show

%n → % in Lq([0, T ]× Ω), q ∈ [1,∞), (4.16)

Ddvn → Ddv in Lr([0, T ]× Ω;R3×3).

To this end, we first justify ϕ = v as a test function in (4.15). Using the idea of Zhikov and Pastukhova [22]3, we
consider a family of regularizing kernels

ηh(t) :=
1

h
1[−h,0](t), η−h(t) :=

1

h
1[0,h](t), h > 0,

3A similar idea appears in the papers [6] and [7, Section 4] within the context of analysis of flows of incompressible fluids with variable
density.
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together with the cut-off functions

ζδ ∈ C∞c (0, τ), 0 ≤ ζ ≤ 1, ζδ(t) = 1 whenever t ∈ [δ, τ − δ], δ > 0.

Noticing that ηh ∗ v(t) = 1
h

∫ t+h
t

v ∈W 1,r([0, T ];W 1,r
0 (Ω)3), we can take the quantities

ϕh,δ = ζδ η−h ∗ ηh ∗ (ζδv), δ, h > 0.

as test functions in (4.15). Obviously one has

lim
δ→0

lim
h→0

∫ τ

0

∫
Ω

Λ(divϕh,δ)− Λ(div v) dxdt = 0,[∫
Ω

%v ·ϕh,δ
]∣∣∣τ

0
≡ 0 for all δ, h > 0,

lim
δ→0

lim
h→0

∫ τ

0

∫
Ω

S(v) : Ddv − S(v) : Ddϕh,δ dxdt ≥ 0.

We further analyze the second term (involving ∂tϕh,δ) on the left hand side of (4.15) and observe that∫ τ

0

∫
Ω

%v · ∂tϕh,δ dxdt =

∫ τ

0

∫
Ω

%v · ∂tζδ η−h ∗ ηh ∗ (ζδv) dxdt

+

∫
R1

∫
Ω

[ηh ∗ (%ζδv)] · ∂t[ηh ∗ (ζδv)] dxdt. (4.17)

Moreover, we easily get the limit of the first member on the right-hand side of (4.17):

lim
δ→0

lim
h→0

∫ τ

0

∫
Ω

%v · ∂tζδ η−h ∗ ηh ∗ (ζδv) = lim
δ→0

∫ τ

0

(1

2

∫
Ω

%|v|2 dx
)
∂t|ζδ|2 dt

= −
[1

2

∫
Ω

%|v|2 dx
]∣∣∣τ

0
.

The second member on the right-hand side of (4.17) rewrites as follows∫
R1

∫
Ω

[ηh ∗ (%ζδv)] · ∂t[ηh ∗ (ζδv)] dxdt = −
∫
R1

∫
Ω

∂t[ηh ∗ (%ζδv)] · [ηh ∗ (ζδv)] dxdt

= −
∫
R1

∫
Ω

(%ζδv)(t+ h)− (%ζδv)(t)

h
· [ηh ∗ (ζδv)] dxdt

= −
∫
R1

∫
Ω

(%ζδv)(t+ h)− (%ζδv)(t)

h
· [ηh ∗ (ζδv)] dxdt

+

∫
R1

∫
Ω

%
(ζδv)(t+ h)− (ζδv)(t)

h
· [ηh ∗ (ζδv)] dxdt

−
∫
R1

∫
Ω

1

2
% ∂t[ηh ∗ (ζδv)]2 dxdt

= −
∫
R1

∫
Ω

%(t+ h)− %(t)

h
(ζδv)(t+ h) · [ηh ∗ (ζδv)] dxdt

− 1

2

∫
R1

∫
Ω

% ∂t[ηh ∗ (ζδv)]2 dxdt.
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We observe that

∂t(ηh ∗ %) + divx[ηh ∗ (%v)] = 0 for all t ∈ R,

where we set

(%,v)(t) = (%0,0) for t < 0, (%,v)(t) = (%(T ),0) for t > T.

Accordingly, using also the continuity equation (1.1), the second member on the right-hand side of (4.17) reads∫
R1

∫
Ω

[ηh ∗ (%ζδv)] · ∂t[ηh ∗ (ζδv)] dxdt =

∫
R1

∫
Ω

−(ηh ∗ %v) · ∇x
(

(ζδv)(t+ h) · [ηh ∗ (ζδv)]
)
dxdt

+
1

2

∫
R1

∫
Ω

%v · ∇x[ηh ∗ (ζδv)]2 dxdt =: Jδ,h .

Finally, it is not difficult to observe that

lim
δ→0

lim
h→0

(∫ τ

0

∫
Ω

%v ⊗ v : ∇ϕh,δ dxdt+ Jδ,h

)
= 0 .

To conclude, choosing ϕ = ϕh,δ in (4.15) and then letting h, δ → 0, we may infer that∫ τ

0

∫
Ω

p(%) div v − p(%) div v dxdt ≤ 0 for a.a.τ ∈ [0, T ]. (4.18)

In order to finish the proof, we have to establish point-wise convergence of the densities %n. To this end, we use
the renormalized equation (3.10) in the form

∂t[P (%)] + divx[P (%)v] + p(%) divx v = 0,

with P (%) = %ψ(%) - a strictly convex function (as follows from (3.4)). Noting that we also have

∂t[P (%)] + divx[P (%)v] + p(%) divx v = 0,

and taking (4.18) into account, we conclude that[∫
Ω

[P (%)− P (%)] dx

] ∣∣∣τ
0

= −
∫ τ

0

∫
Ω

p(%) div v − p(%) div v dxdt ≤ −
∫ τ

0

∫
Ω

(p(%)− p(%)) div v dxdt, (4.19)

where

[P (%)− P (%)](0, ·) = 0.

Now, we have, by virtue of convexity of P ,∫
Ω

P (%)− P (%) dx ≥ d lim sup
n→∞

∫
Ω

|%n − %|2 dx for a certain d > 0,

while

−
∫ τ

0

∫
Ω

(p(%)− p(%)) div v dxdt = − lim
n→∞

∫ τ

0

∫
Ω

(p(%n)− p(%)) div v dxdt

≤ lim
n→∞

∫ τ

0

∫
Ω

p′(%)(%− %n) div v dxdt+ C lim sup
n→∞

∫ τ

0

∫
Ω

|%n − %|2 dxdt.
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Thus we may use (4.19), together with the standard Gronwall argument, in order to conclude that P (%) = P (%).
In particular,

%n → % in L2((0, T )× Ω), p(%) = p(%),∫ τ

0

∫
Ω

p(%) div v − p(%) div v = 0.

Finally, as above, by choosing ϕ = v in (4.15) one arrives at∫ τ

0

∫
Ω

S(v) : Dd(v)− S(v) : Dd(v) ≤ 0.

This together with the inequality
∫ T

0
‖Ddvn − Ddv‖rr ≤ C

∫ T
0

∫
Ω

(S(vn)− S(v)) : (D(vn)− D(v)) dxdt implies that

Ddvn → Ddv in Lr((0, T )× Ω;R3×3).

We have proved Theorem 3.1.
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