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Abstract. We present generalizations of results concerning conditional
global regularity of weak Leray–Hopf solutions to incompressible Navier–
Stokes equations presented by Zhou and Pokorný in articles [15], [17], and
[18]; see also [13]. We are able to replace the condition on one velocity compo-
nent (or its gradient) by a corresponding condition imposed on a projection
of the velocity (or its gradient) onto a more general vector field. Comparing
to our other recent results from [1], the conditions imposed on the projection
are more restrictive here, however due to the technique used in [1], there
appeared a specific additional restriction on geometrical properties of the
reference field, which could be omitted here.

1. Introduction

We consider the Cauchy problem for the instationary incompressible
Navier–Stokes equations in the full three space dimensions

∂v

∂t
+ v · ∇v − ν∆v +∇p = f

divv = 0

}
in (0, T )× R3, (1)

v(0,x) = v0(x) in R3,

where v : (0, T ) × R3 → R3 is the velocity field, p : (0, T ) × R3 → R is the
pressure, f : (0, T ) × R3 → R3 is the given density of external forces, and
ν > 0 is given kinematic viscosity. For the sake of simplicity, we set ν = 1
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and f ≡ 0 in our further considerations. Indeed, the actual value of viscosity
does not play any role. It would be also possible to formulate some suitable
assumptions on the regularity of f in such a way that our main results remain
true. However, it would lead to unnecessary technicalities which we prefer to
omit here.

The mathematical theory of Navier–Stokes equations has long, inter-
esting history (see e.g. [16]). In the celebrated works of Leray [11], [12]
and Hopf [6] the existence of weak solutions to system (1) in space v ∈
L2(0, T, (W 1,2

div (R3))) ∩ L∞(0, T, (L2
(
R3
)
)) for any given v0 ∈ L2

div(R3) was

proved; they satisfy energy inequality. Further, for v0 ∈ W 1,2
div (R3) the exis-

tence of (possibly short) time interval (0, T ∗) such that there exists a unique

strong solution in space v ∈ L2(0, T ∗, (W 2,2
(
R3
)
)) ∩ L∞(0, T ∗, (W 1,2

div (R3)))
was established (see [10]). The uniqueness and regularity of Leray–Hopf weak
solutions is still a challenging open problem [9]. For overview of known results
see e.g. [4].

On the other hand, there were established many criteria ensuring the
smoothness of the solution under additional assumptions concerning the ve-
locity and its components, the gradient of the velocity and its components,
the pressure, the vorticity, or other quantities.

During the last decade, an interesting progress was achieved in the
field of regularity criteria concerning only one velocity component. The very
first result in this direction is criterion proved by Neustupa and Penel [14],
which ensures the regularity for v3 ∈ L∞

(
0, T,

(
L∞
(
R3
)))

. Similar result

for the gradient of one velocity component
(
∇v3 ∈ Lt

(
0, T,

(
Ls
(
R3
)))

, 2
t +

3
s ≤ 1, s ≥ 3) is due to He [5]. These pioneering results were then im-

proved by Neustupa et al. [13] (v3 ∈ Lt
(
0, T,

(
Ls
(
R3
)))

, 2
t + 3

s ≤
1
2 , s ≥

2, as local criterion for suitable weak solution), and Pokorný [15] (∇v3 ∈
Lt
(
0, T,

(
Ls
(
R3
)))

, 2
t + 3

s ≤
3
2 , s ≥ 2.), observing the equation for vorticity;

the same results were obtained also by Zhou [17], [18]. Further improvements
were later done via several techniques by Kukavica and Ziane [8], Cao and
Titi [2], and finally Zhou and Pokorný [19], [20]. Note that the results in [1]
contain generalization of these criteria. However, due to the used technique
(multiplicative Gagliardo–Nirenberg inequality which has to be generalized)
we get additional geometrical restrictions on the field b which can be avoided
in our present paper.

Notation

In the whole paper, the standard notation for Lebesgue spaces Lp
(
R3
)

with
the norm ‖·‖p will be used. For the sake of brevity, we will denote the norm on

Bochner spaces Lp
(
0, t,

(
Lq
(
R3
)))

by ‖·‖p,q, the lenght of the time interval
will be everywhere clear from the context. We will also use the same notation
for scalar spaces X and their vector analogues XN . All generic constants will
be denoted by C, although its value may differ from line to line, or even in
the same formula. We will use Einstein summation convention over repeated
indices.
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2. Main results

As we have already mentioned above, our main goal is to generalize
the results of Zhou and Pokorný from articles [15], [17], and [18] (the latter
proved originally for suitable weak solution in [13]).

Theorem 1. Let v be a weak Leray–Hopf solution to the Navier–Stokes equa-
tions corresponding to initial datum v0 ∈ W 1,2

div (R3). Assume moreover that
there exist δ > 0, and a vector field b(t,x) : (0, T )× R3 7→ R3 such that

∇b ∈ L∞
(
0, T,

(
L∞
(
R3
)))

,

∂b

∂t
, ∇2b ∈ L∞

(
0, T,

(
L3
(
R3
)))

,

and |b(t,x)| ≥ δ such that the projection of the velocity

vb(t,x) := b(t,x) · v(t,x)

satisfies either

vb(t,x) ∈ Lt
(
0, T,

(
Ls
(
R3
)))

,
2

t
+

3

s
≤ 1

2
, 6 ≤ s ≤ ∞

or

∇vb(t,x) ∈ Lt
(
0, T,

(
Ls
(
R3
)))

,
2

t
+

3

s
≤ 3

2
, 2 ≤ s ≤ ∞.

Then v is actually a strong solution to the Navier–Stokes equations in the
interval [0, T ].

Since the proofs of both cases have lot of similarities, we will prove them
simultaneously. It is well known that there exists a unique strong solution to
(1) on (possibly short) time interval [0, T ∗), we will work with this strong
solution and show that actually T ∗ ≥ T . The result concerning so-called
weak-strong uniqueness will then yield the desired result. Let us denote space
Y (τ) := L∞(0, τ ;L2(R3))∩L2(0, τ ;W 1,2(R3)). Our first step in Lemma 1 will
be to derive a suitable estimate of b ·ωωω in the norm of space Y , then we will
test equation (1) by an analogue of the quantity −∆v and get the desired
estimate of ∇v using Lemma 1.

Lemma 1. Let v be a strong solution to the Navier–Stokes equations corre-
sponding to the initial condition v0 ∈W 1,2

div (R3). Suppose that the assumptions
of Theorem 1 are satisfied. Let 0 < τ < T ∗. Then ωb := b ·ωωω can be estimated
on (0, τ) by ‖ωb‖Y (τ) as follows

‖ωb‖2∞,2 + ‖∇ωb‖22,2 ≤ ‖ωb(0)‖22 + C(τ)
(

1 + ‖∇v‖Y (τ)

)
. (2)

In particular, if τ → 0+, then C(τ) → 0 and if τ → (T ∗)−, then C(τ)
remains bounded.
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3. Proof of the lemma

By possible decreasing the value of t we could easily achieve that 2
t + 3

s =
1
2 (or 3

2 , respectively). Applying the curl operator on (1) we get

∂ωi
∂t

+ v · ∇ωi = ωωω · ∇vi + ∆ωi, i = 1, 2, 3.

Multiplying these equations by bi(t, x)

bi
∂ωi
∂t

+ biv · ∇ωi = bi(ωωω · ∇vi) + (∆ωi)bi,

summing up
3∑
i=1

, and multiplying the arisen equation by ωb =
3∑
i=1

biωi, we

get four terms which could be rewritten in the following way

ωbbi
∂ωi
∂t

= ωb
∂ωb

∂t
− ωb

∂bi
∂t
ωi,

bi(v · ∇ωi)ωb = (v · ∇ωb)ωb − (v · ∇bi)ωiωb,

bi(ωωω · ∇vi)ωb = (ωωω · ∇vb)ωb − (ωωω · ∇bi)viωb,

(∆ωi)biωb = (∆ωb − 2∇bi · ∇ωi − ωi∆bi)ωb;

whence

∂ωb

∂t
ωb + v · ∇ωbωb = ωωω · ∇vbωb + ∆ωbωb

+ ωi
∂bi
∂t
ωb + ωi(v · ∇bi)ωb − vi(ωωω · ∇bi)ωb −∆biωiωb − 2(∇ωi · ∇bi)ωb︸ ︷︷ ︸

=:I

.

Integration over the whole R3 with integration by parts gives us

1

2

d

dt
‖ωb‖22 + ‖∇ωb‖22 ≤ −

∫
R3

v · ∇ωbωbdx︸ ︷︷ ︸
=0

+

∫
R3

ωωω · ∇vbωbdx +

∫
R3

Idx.

The lower order terms I could be easily estimated using again integration by
parts and Hölder’s inequality∫

R3

∣∣∣ωi ∂bi
∂t
ωb − vi(ωωω · ∇bi)ωb + ∆biωiωb

+ 2(ωi∇bi) · ∇ωb + ωi(v · ∇bi)ωb

∣∣∣dx
≤ Cε ‖∇v‖22

[∥∥∥∥∂b∂t
∥∥∥∥2

3

+ ‖∆b‖23 + 2 ‖∇b‖2∞

]
+ 3ε ‖∇ωb‖22

+ 2 ‖∇b‖∞
∫
R3

|ωωω| |v| |ωb|dx.
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In the last integral we will use Hölder’s inequality, interpolation, and Young’s
inequality

‖∇b‖∞
∫
R3

|ωωω| |v| |ωb|dx ≤C ‖∇b‖∞ ‖∇v‖2 ‖v‖3 ‖ωb‖6

≤ε ‖∇ωb‖22 + Cε ‖∇b‖2∞ ‖∇v‖
2
2 ‖v‖

2
3 ,

where

t∫
0

‖v‖23 ‖∇v‖
2
2 dτ ≤ ‖∇v‖24,2 ‖v‖

2
4,3 ≤ ‖∇v‖2,2 ‖v‖

2
4,3 ‖∇v‖∞,2 .

Now, we will estimate the leading terms, distinguishing two considered
cases.

1. Assume the projection vb has better integrability properties. Then∫
R3

ωωω · ∇vbωbdx ≤
∣∣∣∣−∫

R3

vbωωω · ∇ωbdx

∣∣∣∣ ≤ ε ‖∇ωb‖22 + Cε

∫
R3

|ωωω|2 vb
2dx

≤ε ‖∇ωb‖22 + 2Cε

∫
R3

|∇v|2 vb
2dx

∫
R3

vb
2 |∇v|2 dx ≤‖vb‖2s ‖∇v‖

2
2s
s−2

≤‖vb‖2s ‖∇v‖ 2s
s−4
‖∇v‖2

≤C ‖vb‖2s ‖∇v‖
1− 6

s
2 ‖∆v‖

6
s
2 ‖∇v‖2

=C ‖vb‖2s ‖∇v‖
4
t
2 ‖∆v‖

6
s
2 ‖∇v‖2 ,

(recall 2
t + 3

s = 1
2 ) which gives using assumptions on b

1

2

d

dt
‖ωb‖22 + ‖∇ωb‖22 ≤ C ‖vb‖

2
s ‖∇v‖

4
t
2 ‖∆v‖

6
s
2 ‖∇v‖2

+ C(b) ‖∇v‖22 (1 + ‖v‖23).

Integrating over time interval (0, τ), with usage of Hölder’s inequality
then yields

‖ωb(τ)‖22 +

τ∫
0

‖∇ωb‖22,2 dσ

≤ ‖ωb(0)‖22 + C

τ∫
0

‖vb‖2s ‖∇v‖
4
t
2 ‖∆v‖

6
s
2 ‖∇v‖2 dσ

+ C(b)

τ∫
0

(‖∇v‖22 + ‖v‖23 ‖∇v‖
2
2)dσ.
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Recall that from the energy inequality we have estimate of v in the
spaces L2(0, T, (W 1,2

div (R3))) and L∞(0, T, (L2
(
R3
)
)), hence due to the

interpolation also in L4(0, T, (L3
(
R3
)
)). Thus

‖ωb(τ)‖22 +

τ∫
0

‖∇ωb‖22,2 dσ

≤ ‖ωb(0)‖22 + C(b)
[
‖vb‖2t,s ‖∇v‖

4
t
∞,2 ‖∆v‖

6
s
2,2 + 1

]
‖∇v‖22,2

+ C(b) ‖∇v‖2,2 ‖v‖
2
4,3 ‖∇v‖∞,2 (3)

which yields the conclusion of Lemma in the first case as 4
t + 6

s = 1.
2. For a given 2 ≤ s ≤ ∞, we will find 2 ≤ p ≤ 6, 2 ≤ q ≤ 3 such that

1
s + 1

p + 1
q = 1. We will use gradually Hölder’s inequality, interpolation,

and Young’s inequality to obtain∫
R3

ωωω · ∇vbωbdx ≤ ‖∇vb‖s ‖ωb‖p ‖ωωω‖q

≤ ‖∇vb‖s ‖ωb‖
6−p
2p

2 ‖ωb‖
3p−6
2p

6 ‖ωωω‖
6−q
2q

2 ‖ωωω‖
3q−6
2q

6

≤ ε ‖∇ωb‖22 + C ‖∇vb‖
4p

6+p
s ‖ωωω‖2

p
q

6−q
6+p

2 ‖ωωω‖2
p
q

3q−6
6+p

6 ‖ωb‖
2 6−p

6+p

2 .

Altogether we get

d

dt
‖ωb(τ)‖22 + ‖∇ωb‖22

≤ C ‖∇vb‖
4p

6+p
s ‖ωωω‖2

p
q

6−q
6+p

2 ‖ωωω‖2
p
q

3q−6
6+p

6 ‖ωb‖
2 6−p

6+p

2

+ C(b) ‖∇v‖22 (1 + ‖v‖23),

thus using generalized Gronwall inequality in the form of Theorem 2

from [3] gives us
(
p−6
p+6 + 1 = 2p

6+p

)
‖ωb(τ)‖

4p
6+p

2 ≤ ‖ωb(0)‖
4p

6+p

2

+ C ‖ωωω‖4
p
q

3−q
6+p

∞,2

τ∫
0

‖∇vb‖
4p

6+p
s ‖ωωω‖

2p
6+p

2 ‖ωωω‖2
p
q

3q−6
6+p

6 dσ

+ C
( τ∫

0

‖∇v‖22 (1 + ‖v‖23)dσ
) 2p

6+p

.

Estimating the second term as above and using the Hölder inequality
in the form
τ∫

0

‖∇vb‖
4p

6+p
s ‖ωωω‖

2p
6+p

2 ‖ωωω‖2
p
q

3q−6
6+p

6 dσ ≤ ‖∇vb‖
4p

6+p

t,s ‖ωωω‖
2p

6+p

2,2 ‖ωωω‖
2 pq

3q−6
6+p

2,6
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we conclude

‖ωb‖2∞,2 ≤ C1 + C2 ‖ωωω‖Y (τ) .

This finishes the proof of Lemma 1.

4. Proof of the main theorem

Without loss of generality we may assume that |b(τ,x)| ≡ 1. Then for
every time σ ∈ (0, T ), and point x ∈ R3, there exists at least one com-
ponent bj(σ,x) such that |bj(σ,x)| > 1

2 . Since vector field b(·, ·) is contin-

uous on (0, T ) × R3, the sets Ωr,σ =
{
x ∈ R3 | br(σ,x) > 1

2

}
a Ωr+3,σ ={

x ∈ R3 | br(σ,x) < − 1
2

}
, r = 1, 2, 3 compose at each particular time a cover-

ing of R3 by six open sets {Ωr,σ}6r=1. For simplicity, we set
br+3 := −br, r = 1, 2, 3. Using the partition of unity (see e.g. [7]) we get
functions ϕr,σ ∈ C∞0 (Ωr,σ), 0 ≤ ϕr,σ(x) ≤ 1 such that

∑
r ϕr,σ = 1, and

|∇ϕr,σ| ≤ C(b). We will multiply the following equivalent form of Navier–
Stokes equations (1)

∂v

∂t
− ν∆v = −ωωω × v −∇

(
p+

1

2
|v|2

)
(4)

by the test function −
6∑
r=1

∂l(ϕr,σbr∂lv). Let work with each term separately,

for illustration only with r = 1:

−
∫

Ω1,σ

∂v

∂t
· ∂l(ϕ1,σb1∂lv)dx =

∫
Ω1,σ

∂

∂t
∂lv · ϕ1,σb1∂lvdx

≥
∫

Ω1,σ

1

4
ϕ1,σ

d

dt
|∇v|2 dx

∫
Ω1,σ

∆v · ∂l(ϕ1,σb1∂lv)dx =

∫
Ω1,σ

∆v ·
(
ϕ1,σb1∂l∂lv + ∂l(ϕ1,σb1)∂lv

)
dx

≥
∫

Ω1,σ

1

2
ϕ1,σ |∆v|2 dx +

∫
Ω1,σ

∆v · ∂l(ϕ1,σb1)∂lvdx

︸ ︷︷ ︸
=Z1

1∫
Ω1,σ

∂k

(
p+

1

2
|v|2

)
∂l(ϕ1,σb1∂lvk)dx =

∫
Ω1,σ

∂l

(
p+

1

2
|v|2

)
∂k(ϕ1,σb1∂lvk)dx

=

∫
Ω1,σ

∂lp∂k(ϕ1,σb1)∂lvkdx

︸ ︷︷ ︸
=Z1

2

+

∫
Ω1,σ

1

2
∂l |v|2 ∂k(ϕ1,σb1)∂lvkdx

︸ ︷︷ ︸
=Z1

3
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(ωωω × v) · ∂l (ϕ1,σb1∂lv) dx

=

∫
Ω1,σ

ϕ1,σb1(ωωω × v) ·∆vdx−
∫

Ω1,σ

(ωωω × v) · ∂l(ϕ1,σb1)∂lvdx

︸ ︷︷ ︸
=Z1

4

We rewrite the term in the first integral and get

b1(ωωω × v) ·∆v = b1ω2v3∆v1 −b1ω1v3∆v2 +b1ω1v2∆v3

−b1ω3v2∆v1 +b1ω3v1∆v2 −b1ω2v1∆v3

+b2ω2v3∆v2 −b2ω2v3∆v2

+b3ω2v3∆v3 −b3ω2v3∆v3

−b2ω3v2∆v2 +b2ω3v2∆v2

−b3ω3v2∆v3 +b3ω3v2∆v3

+b3ω3v3∆v2 +b2ω2v2∆v3

−b3ω3v3∆v2 −b2ω2v2∆v3.

Thus,

b1(ωωω × v) ·∆v =ω2v3∆vb − ω3v2∆vb

+ωbv2∆v3 − ωbv3∆v2

+ω3vb∆v2 − ω2vb∆v3+ lower order terms(I1
4 , I

1
5 ).

(5)

Observation. The above mentioned equality holds true without additional
lower order terms, if the vector b(σ, ·) is constant in space, otherwise we use
the following identity∫

Ω1,σ

ϕ1,σ(ωlvm)bl∆vndx =

∫
Ω1,σ

ϕ1,σ(ωlvm)∆(blvn)dx

−
∫

Ω1,σ

ϕ1,σ

(
(ωlvm)vn∆bl + 2ϕ1,σ∇vn · ∇bl(ωlvm)

)
dx.

Similarly, for b2 we get

b2(ωωω × v) ·∆v =ω3v1∆vb − ω1v3∆vb

+ωbv3∆v2 − ωbv1∆v3

+ω1vb∆v3 − ω3vb∆v2+ lower order terms.

(6)

For the term with b3 we use (as above) the shifts 1 7→ 2, 2 7→ 3, 3 7→ 1. The
case r = 4, 5, 6 is trivial.
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Summing up
6∑
r=1

, and using the definitions of ϕr,σ we get (recall, we use

summation convention)

1

4

∫
R3

d

dt
|∇v|2 dx +

1

2

∫
R3

|∆v|2 dx

≤
6∑
r=1

(|Zr1 |+ |Zr2 |+ |Zr3 |+ |Zr4 |+ CIr4 + CIr5 )

+

3∑
i=1

εijk(Ijk1 + Ijk2 + Ijk3 ), (7)

where

Ijk1 =

∫
R3

ωkvb∆vjdx, Ijk2 =

∫
R3

ωjvk∆vbdx,

Ijk3 =

∫
R3

ωbvj∆vkdx, Ir4 =

∫
R3

|ωωω| |v|2 |∆(ϕr,σb)|dx,

Ir5 = 2

∫
R3

|∇v| |∇(ϕr,σb)| |ωωω| |v|dx, Zr1 =

∫
R3

∆v · ∂l(ϕr,σbr)∂lvdx, (8)

Zr2 =

∫
R3

∂lp∂k(ϕr,σbr)∂lvkdx, Zr3 =

∫
R3

1

2
∂l |v|2 ∂k(ϕr,σbr)∂lvkdx,

Zr4 =

∫
R3

(ωωω × v) · ∂l(ϕr,σbr)∂lvdx

(9)

and εijk is the Levi-Civita tensor, i.e. it is zero unless all indeces are different,
it is equal to +1 for a positive permutation of 123 and equal to −1 otherwise.

Now, we will estimate these integrals in order to finish the proof. At
first, we will consider the case, in which we have the additional information
about the projection vb itself; we will proceed quite analogously with [18].

τ∫
0

∣∣∣Ijk1

∣∣∣dσ ≤ τ∫
0

∫
R3

|ωkvb∆vj |dxdσ ≤
τ∫

0

‖vb‖s ‖ωk‖ 2s
s−2
‖∆vj‖2 dσ

≤C
τ∫

0

‖vb‖s ‖ωk‖
s−3
s

2 ‖∇ωk‖
3
s
2 ‖∆vj‖2 dσ

≤ε ‖∆v‖22,2 + Cε

τ∫
0

‖vb‖
2s
s−3
s ‖∇v‖22 dσ

≤ε ‖∆v‖22,2 + Cε(T ) ‖vb‖
2s
s−3

t,s ‖∇v‖
2
∞,2

(
t ≥ 2s

s− 3

)
.
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Next

Ijk2 =εjmn

∫
R3

∂mvnvk∆vbdx

=− εjmn
∫
R3

∂m∂lvnvk∂lvbdx− εjmn
∫
R3

∂mvn∂lvk∂lvbdx

=− εjmn
∫
R3

∂m∂lvnvk∂lvbdx

︸ ︷︷ ︸
Jjk1

+ εjmn

∫
R3

∂m∂lvn∂lvkvbdx

︸ ︷︷ ︸
Jjk2

+ εjmn

∫
R3

∂l∂lvk∂mvnvbdx.

︸ ︷︷ ︸
Jjk3

Here,∣∣∣Jjk1

∣∣∣ ≤∫
R3

|εjmn∂m∂lvnvk∂lvb|dx ≤ ε ‖∆v‖22 + Cε

∫
R3

v2
k(∂lvb)2dx

≤ε ‖∆v‖22 − Cε
∫
R3

vb∂l∂lvbv
2
kdx− Cε

∫
R3

vb∂lvb∂l
(
v2
k

)
dx.

(10)

Let us estimate the first integral on the right hand side of (10):∣∣∣∣∣∣
τ∫

0

∫
R3

vb∂l∂lvbv
2
kdxdσ

∣∣∣∣∣∣ ≤
τ∫

0

∫
R3

|b| |∆v| |vb| |v|2 dxdσ

︸ ︷︷ ︸
J11

+ 2

τ∫
0

∫
R3

|∇b| |∇v| |vb| |v|2 dxdσ

︸ ︷︷ ︸
J12

+

t∫
0

∫
R3

|∆b| |vb| |v|3 dxdτ.

︸ ︷︷ ︸
J13

Then

J11 ≤
τ∫

0

‖∆v‖2 ‖vb‖s ‖v‖
2
4s
s−2

dσ

≤ C
τ∫

0

‖∆v‖2 ‖vb‖s ‖v‖ 3s
s−3
‖v‖6 dσ

≤ C ‖∆v‖2,2 ‖vb‖t,s ‖v‖ 4s
s+6 ,

3s
s−3
‖v‖∞,6 .
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As 2
4s/(s+6) + 3

3s/(s−3) = 3
2 , we can interpolate

‖v‖ 4s
s+6 ,

3s
s−3
≤ C(s) ‖v‖

s−6
2s
∞,2 ‖∇v‖

s+6
2s

2,2 .

Thus, using Young’s inequality and energy inequality we get

J11 ≤ ε ‖∆v‖22,2 + Cε ‖vb‖2t,s ‖∇v‖
2
∞,2 .

Note that for fixed ε > 0, Cε → 0 for τ → 0, uniformly for s ∈ [6,∞]. The
lower order terms J12, and J13 may be bounded as follows:

J12 ≤
τ∫

0

‖vb‖s ‖∇v‖2 ‖∇b‖∞ ‖v‖
2
4s
s−2

dσ

≤
τ∫

0

‖vb‖s ‖∇v‖2 ‖∇b‖∞ ‖v‖ 3s
s−3
‖v‖6 dσ

≤‖vb‖t,s ‖∇v‖∞,2 ‖∇b‖2,∞ ‖v‖ 4s
s+6 ,

3s
s−3
‖v‖∞,6

≤C ‖vb‖t,s ‖∇v‖
2
∞,2 ,

J13 ≤
τ∫

0

‖vb‖s ‖v‖
2
6 ‖v‖ 3s

s−3

∥∥∇2b
∥∥

3
dσ

≤ ‖vb‖t,s ‖∇v‖
2
∞,2 ‖v‖ 4s

s+6 ,
3s
s−3

∥∥∇2b
∥∥

2,3

≤ C ‖vb‖t,s ‖∇v‖
2
∞,2 ,

where we have used Hölder’s inequality
(

1
t + 1

2 + s+6
4s = 1

)
, the assumptions

on b(·, ·), and the fact that from energy inequality we have estimate of the

norm of v in space L
4s
s+6 (0, T, (L

3s
s−3
(
R3
)
)3). Note that C = C(τ) → 0 for

τ → 0 uniformly for s ∈ [6,∞].

Further, we will estimate the last integral from (10):∣∣∣∣∣∣
τ∫

0

∫
R3

vb∂lvb∂l
(
v2
k

)
dxdσ

∣∣∣∣∣∣ ≤
τ∫

0

∫
R3

|vb| |∇v|2 |v| |b|dxdσ

︸ ︷︷ ︸
=J14

+

τ∫
0

∫
R3

|vb| |∇b| |∇v| |v|2 dxdσ

︸ ︷︷ ︸
J15=J12

J14 ≤ C
τ∫

0

‖vb‖s ‖∇v‖
2
3 ‖v‖ 3s

s−3
dσ ≤ C ‖vb‖t,s ‖∇v‖

2
4,3 ‖v‖ 2t

t−2 ,
3s
s−3



12 Axmann and Pokorný

The interpolation inequalities

‖v‖ 2t
t−2 ,

3s
s−3
≤ C ‖v‖2/t∞,2 ‖v‖

(t−2)/t
2,6 , and ‖∇v‖4,3 ≤ C ‖∇v‖

1
2
∞,2 ‖∆v‖

1
2
2,2 ,

and Young’s inequality yield∣∣∣∣∣∣
τ∫

0

∫
R3

vb∂lvb∂l
(
v2
k

)
dxdσ

∣∣∣∣∣∣ ≤ ε ‖∆v‖22,2 + Cε ‖vb‖2t,s ‖∇v‖
2
∞,2 ,

which implies the bound on Jjk1∣∣∣∣∣∣
τ∫

0

Jjk1 dσ

∣∣∣∣∣∣ ≤ 3ε ‖∆v‖22,2 + Cε

(
‖vb‖2t,s + ‖vb‖t,s

)
‖∇v‖2∞,2 .

Further,

τ∫
0

∣∣∣Jjk2 + Jjk3

∣∣∣ dσ ≤ τ∫
0

(∫
R3

|∂l∂mvn∂lvkvb|dx +

∫
R3

|∂l∂lvk∂mvnvb|dx
)

dσ

≤2

τ∫
0

‖∆v‖2 ‖vb‖s ‖∇v‖ 2s
s−2

dσ

≤C
τ∫

0

‖vb‖s ‖∇v‖
s−3
s

2 ‖∆v‖
3
s
2 ‖∆v‖2 dσ

≤ε ‖∆v‖22,2 + Cε ‖vb‖t,s ‖∇v‖
2
∞,2 ,

τ∫
0

∣∣∣Ijk3

∣∣∣dσ ≤ τ∫
0

∫
R3

|ωb| |vj | |∆vk|dxdσ ≤ ε ‖∆v‖22,2 + Cε

τ∫
0

‖v‖23 ‖ωb‖26 dσ

≤ε ‖∆v‖22,2 + Cε ‖v‖2∞,3 ‖ωb‖22,6 .

Using ‖v‖2∞,3 ≤ ‖v‖∞,2 ‖v‖∞,6 ≤ C ‖∇v‖∞,2, and the information which

comes from (3), we get

‖v‖2∞,3 ‖ωb‖22,6 ≤C ‖∇v‖∞,2 (1 + ‖∇v‖Y (τ))

≤ C(τ)(‖∇v‖∞,2 + ‖∇v‖2∞,2 + ‖∆v‖22,2) + C0 ‖v0‖21,2 .

Recall that C → 0 for τ → 0+, uniformly for s ∈ [6,∞]. It remains to deduce
suitable estimates of the lower order terms with derivatives of b(·, ·).
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τ∫
0

|Ir4 |dσ ≤
τ∫

0

∫
R3

|ωωω| |v|2 |∆(ϕr,σb)|dxdσ

≤
τ∫

0

‖∇v‖6 ‖v‖3 ‖v‖6 ‖∆(ϕr,σb)‖3 dσ

≤ε ‖∆v‖22,2 + Cε

τ∫
0

‖∇v‖22 ‖v‖
2
3 ‖∆(ϕr,σb)‖23 dσ

≤ε ‖∆v‖22,2 + Cε ‖∇v‖2∞,2 ‖v‖
2
4,3 ‖∆(ϕr,σb)‖24,3

τ∫
0

|Zr1 |dσ ≤
τ∫

0

∫
R3

|∆v| |∇(ϕr,σb)| |∇v|dxdσ

≤ε ‖∆v‖2,2 + Cε ‖∇v‖2∞,2 ‖∇(ϕr,σb)‖22,∞
τ∫

0

|Ir5 + Zr2 + Zr3 + Zr4 |dσ

≤
τ∫

0

∫
R3

(
|∇v| |∇(ϕr,σb)| |ωωω| |v|+ |∇p||∇(ϕr,σb)||∇v|

+ |∇v|2 |v||∇(ϕr,σb)|+ |ωωω| |v| |∇v| |∇(ϕr,σb)|
)

dxdσ

≤ C
τ∫

0

‖∇v‖6 ‖∇v‖2 ‖v‖3 (‖∇b‖∞ + 1) dσ

≤ C ‖∆v‖2,2 ‖∇v‖∞,2 ‖v‖4,3
(
‖∇b‖4,∞ + (T ∗)

1
4

)
≤ ε ‖∆v‖22,2 + Cε ‖∇v‖2∞,2 ‖v‖

2
4,3

Collecting all the above estimates together, we see that

‖∇v‖2∞,2 + ‖∆v‖22,2 ≤ C0 ‖v0‖21,2 + C(‖∇v‖2∞,2 + ‖∆v‖22,2 + 1), (11)

where C → 0 for τ → 0+, uniformly for s ∈ [6,∞]. Therefore, taking τ
sufficiently small, we get

‖∇v‖2∞,2 + ‖∆v‖22,2 ≤ 4C0 ‖v0‖21,2 .

Repeating the same estimates on (τ, 2τ) we get that

‖∇v‖2L∞(τ,2τ ;L2(R3)) + ‖∆v‖2L2(τ,2τ ;L2(R3)) ≤ 4C0 ‖v(τ)‖21,2 .

Therefore, after finite number of steps, we get that the regular solution exists
on the whole time interval (0, T ).
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Let us move to the case where we have information about the gradient
of the projection and let us estimate all terms from (8). We start with the

term Ijk2 :

Ijk2 = εjmn

∫
R3

∂mvnvk∆vbdx

= −εjmn
∫
R3

∂m∂lvnvk∂lvbdx︸ ︷︷ ︸
Jjk1

−εjmn
∫
R3

∂mvn∂lvk∂lvbdx︸ ︷︷ ︸
Jjk2

∣∣∣Jjk1

∣∣∣ ≤ ε ‖∆v‖22 + Cε

∫
R3

|v|2 |∇vb|2 dx (12)

In the estimate of the right hand side of (12), we will distinguish between
two possible cases. For 2 ≤ s ≤ 3, we get∫

R3

|v|2 |∇vb|2 dx ≤‖∇vb‖2s ‖v‖
2
2s
s−2

≤‖∇vb‖2s ‖∇v‖
4s−6
s

2

∥∥∇2v
∥∥ 6−2s

s

2

≤ε
∥∥∇2v

∥∥2

2
+ Cε ‖∇vb‖

2s
2s−3
s ‖∇v‖22 ,

while for s > 3, we will proceed in the following way∫
R3

|v|2 |∇vb|2 dx ≤‖∇vb‖
6s

5s−6
s ‖∇vb‖

4s−12
5s−6

2 ‖v‖22
3

5s−6
s−2

.

Further, due to 2 ≤ 2
3

5s−6
s−2 ≤ 6, we can interpolate

‖v‖22
3

5s−6
s−2
≤ C ‖v‖

4s−12
5s−6

2 ‖∇v‖
6s

5s−6

2 .

Moreover,

‖∇vb‖
4s−12
5s−6

2 ≤ (‖∇v‖2 + ‖v‖2 ‖∇b‖∞)
4s−12
5s−6 ,

and using Young’s inequality we have∫
R3

|v|2 |∇vb|2 dx ≤C ‖∇vb‖
6s

5s−6
s ‖v‖

4s−12
5s−6

2

(
‖∇v‖22 + C0(b)

)
.

The integrals Jjk2 , and Ijk3 can be estimated in a straightforward way, anal-
ogously as in [15]∣∣∣Jjk2

∣∣∣ ≤ ‖∇vb‖s ‖∇v‖
2
2s
s−1
≤ ε

∥∥∇2v
∥∥2

2
+ Cε ‖∇vb‖

2s
2s−3
s ‖∇v‖22 ,∣∣∣Ijk3

∣∣∣ ≤ ∥∥∇2v
∥∥

2
‖ωb‖3 ‖v‖6 ≤ ε

∥∥∇2v
∥∥2

2
+ ε ‖ωb‖43 + Cε ‖∇v‖42 .
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We now return to the term Ijk1 . We have (below, δij denotes the Kro-
necker symbol)

εijkI
jk
1 = εijk

∫
R3

ωkvb∆vjdx = εijkεklm

∫
R3

∂lvmvb∆vjdx

= (δilδjm − δimδjl)
∫
R3

∂lvmvb∆vjdx =

∫
R3

(∂ivjvb∆vj − ∂jvivb∆vj)dx

= −
∫
R3

∂ivj∂lvb∂lvjdx +
1

2

∫
R3

(∂lvj)
2∂ivbdx +

∫
R3

vi∂jvb∆vjdx.

Therefore these terms can be treated exactly as terms above coming from Ijk2 .
Next, we have to estimate the lower order terms. Since they can be treated
exactly as in the previous case (additional information about vb), we skip
the details.

Altogether we get

‖∇v‖2∞,2 +
∥∥∇2v

∥∥2

2,2
≤ ε

τ∫
0

‖ωb‖43 dσ

+ Cε

τ∫
0

{
g(s) ‖∇vb‖

2s
2s−3
s C0(b) + ‖∇vb‖

6s
5s−6
s

+ ‖∆b‖26 + ‖v‖43 + ‖∇b‖4∞ + ‖∇v‖22

}
‖∇v‖22 dσ,

where g(s) = 0, for 2 ≤ s ≤ 3, and g(s) = 1, for s > 3. Note that both 2s
2s−3

and 6s
5s−6 are less than t = 4s

3s−6 . Using the estimate from Lemma 1 we obtain

τ∫
0

‖ωb‖43 dσ ≤ C(1 + ‖∇v‖2Y (τ)).

Choosing ε sufficiently small, we can use Gronwall’s inequality in order to
conclude that

‖∇v‖2∞,2 +
∥∥∇2v

∥∥2

2,2
≤ C(v0, ‖∇vb‖t,s).

As this inequality holds for any τ < T ∗ and C is independent of τ , the proof
of Theorem 1 is complete.
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