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Abstract. We present generalizations of results concerning conditional
global regularity of weak Leray—Hopf solutions to incompressible Navier—
Stokes equations presented by Zhou and Pokorny in articles [15], [17], and
[18]; see also [13]. We are able to replace the condition on one velocity compo-
nent (or its gradient) by a corresponding condition imposed on a projection
of the velocity (or its gradient) onto a more general vector field. Comparing
to our other recent results from [1], the conditions imposed on the projection
are more restrictive here, however due to the technique used in [1], there
appeared a specific additional restriction on geometrical properties of the
reference field, which could be omitted here.

1. Introduction

We consider the Cauchy problem for the instationary incompressible
Navier—Stokes equations in the full three space dimensions

ov
S TV VI rAVEVR=E L 1) s, 1)
divv=0

v(0,x) = vo(x) in R,
where v : (0,T) x R3 — R? is the velocity field, p : (0,7) x R® — R is the

pressure, f : (0,7) x R? — R? is the given density of external forces, and
v > 0 is given kinematic viscosity. For the sake of simplicity, we set v = 1
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and f = 0 in our further considerations. Indeed, the actual value of viscosity
does not play any role. It would be also possible to formulate some suitable
assumptions on the regularity of f in such a way that our main results remain
true. However, it would lead to unnecessary technicalities which we prefer to
omit here.

The mathematical theory of Navier—Stokes equations has long, inter-
esting history (see e.g. [16]). In the celebrated works of Leray [11], [12]
and Hopf [6] the existence of weak solutions to system (1) in space v €
L2(0,T, (W;2(R%))) N L®(0,T, (L?(R?))) for any given vy € L3, (R?) was
proved; they satisfy energy inequality. Further, for vy € W(}i’f(RS) the exis-
tence of (possibly short) time interval (0,77*) such that there exists a unique
strong solution in space v € L2(0,T*, (W?2(R3))) N L=(0, T*, (W2 (R?)))
was established (see [10]). The uniqueness and regularity of Leray—Hopf weak
solutions is still a challenging open problem [9]. For overview of known results
see e.g. [4].

On the other hand, there were established many criteria ensuring the
smoothness of the solution under additional assumptions concerning the ve-
locity and its components, the gradient of the velocity and its components,
the pressure, the vorticity, or other quantities.

During the last decade, an interesting progress was achieved in the
field of regularity criteria concerning only one velocity component. The very
first result in this direction is criterion proved by Neustupa and Penel [14],
which ensures the regularity for vg € L™ (O,T7 (L°° (RS))) Similar result
for the gradient of one velocity component (Vus € L* (0,7, (L*(R%))), 2 +
3 <1, s>3) is due to He [5]. These pioneering results were then im-
proved by Neustupa et al. [13] (v3 € L' (0,7, (L*(R?))), 2+ 2 < 1 s>
2, as local criterion for suitable weak solution), and Pokorny [15] (Vvs €
Lt (0, T, (Ls (R3))) , % + % < %, s > 2.), observing the equation for vorticity;
the same results were obtained also by Zhou [17], [18]. Further improvements
were later done via several techniques by Kukavica and Ziane [8], Cao and
Titi [2], and finally Zhou and Pokorny [19], [20]. Note that the results in [1]
contain generalization of these criteria. However, due to the used technique
(multiplicative Gagliardo—Nirenberg inequality which has to be generalized)
we get additional geometrical restrictions on the field b which can be avoided
in our present paper.

Notation

In the whole paper, the standard notation for Lebesgue spaces LP (]R3) with
the norm ||-||,, will be used. For the sake of brevity, we will denote the norm on

Bochner spaces L? (0,t, (L9(R?))) by [[Il, > the lenght of the time interval
will be everywhere clear from the context. We will also use the same notation
for scalar spaces X and their vector analogues X*V. All generic constants will
be denoted by C, although its value may differ from line to line, or even in
the same formula. We will use Einstein summation convention over repeated
indices.
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2. Main results

As we have already mentioned above, our main goal is to generalize
the results of Zhou and Pokorny from articles [15], [17], and [18] (the latter
proved originally for suitable weak solution in [13]).

Theorem 1. Let v be a weak Leray—Hopf solution to the Navier—Stokes equa-
tions corresponding to initial datum vo € Wdli’f(R?’). Assume moreover that
there exist § > 0, and a vector field b(t,x) : (0,T) x R? — R? such that
Vb € L (0,7, (L (R?))),
ob

5 Vb e L= (0,7, (L*(RY))),

and |b(t,x)| > 0 such that the projection of the velocity
ub(t,x) == b(t,x) - v(t,x)

satisfies either

INA
N |

w(t,x) € L' (0,T, (L*(R%)))

| N
» | w

or

Vup(t,x) € L' (0,T, (L* (R?))), %Jr g < g 2<s<oo.

Then v is actually a strong solution to the Navier—Stokes equations in the
interval [0,T].

Since the proofs of both cases have lot of similarities, we will prove them
simultaneously. It is well known that there exists a unique strong solution to
(1) on (possibly short) time interval [0,7*), we will work with this strong
solution and show that actually T* > T. The result concerning so-called
weak-strong uniqueness will then yield the desired result. Let us denote space
Y (1) := L*(0,7; L*(R3?))NL2(0, 7; W12(R3)). Our first step in Lemma 1 will
be to derive a suitable estimate of b -w in the norm of space Y, then we will
test equation (1) by an analogue of the quantity —Av and get the desired
estimate of Vv using Lemma 1.

Lemma 1. Let v be a strong solution to the Navier—Stokes equations corre-
sponding to the initial condition vy € Wdli’f (R?). Suppose that the assumptions
of Theorem 1 are satisfied. Let 0 < 7 < T™*. Then wy := b-w can be estimated
on (0,7) by [lwslly (. as follows

lwbliZe o + IVeb 32 < lwn @3 +C) (1+1VVlye) - @)

In particular, if 7 — 0%, then C(7) — 0 and if 7 — (T*)~, then C(1)
remains bounded.
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3. Proof of the lemma

By possible decreasing the value of ¢ we could easily achieve that %—i—% =
% (or %, respectively). Applying the curl operator on (1) we get

Ow;
52 +v - Vw, =w- -V, + Aw;, i=1,2,3.
Multiplying these equations by b; (¢, x)
8&],;
bia +b;v-Vw; = bz(w . VUZ) + (Awi)bi,

3 3
summing up Y., and multiplying the arisen equation by wp = Y bw;, we
i=1 i=1
get four terms which could be rewritten in the following way
Ow; Ownp b,
— = Wph—— — Wh—W;
Yot ot Par
bi(v - Vw;)wp = (v - Vwp)wp — (v - Vb )wwp,

wbb

bi(w - V) wp = (w - Vop)wp — (W - Vb;)vswy,
(Awi)biwb = (Awb - 2Vbl . Vwi - wlAbl) Wps

whence
6wb
Wwb + v - Vwpwp = w - Vipwp + Awpwp
ob;
+ wiawb + wi(v . Vbi)wb — Ui(w . Vbi)wb — Abiwiwb — 2(Vw,» . Vbi)wb .

=:1
Integration over the whole R3 with integration by parts gives us

1d

3z lnl3 + 1Vl < = [ v Vonwndxr [
R3

w - Vipwpdx + / Idx.
R3 R3

=0

The lower order terms I could be easily estimated using again integration by
parts and Holder’s inequality

/ wi%wb — v;(w - Vb;)wp + Abjw;wy,
e |0t
+ 2(w;Vb;) - Vwp 4+ w;i(v - Vbi)wb’dx
ob|?
<ol (|G ] -+ 14BIE +21TBI | + 3¢ 9
3

+29bll, [ lollvifon] ax.
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In the last integral we will use Holder’s inequality, interpolation, and Young’s
inequality

VD] /RS wl vl |ws| dx <C{|Vb]| [VV5 [[v]l5 llwnlls

2 2 2 2
<e|[[Vewpll; + Cc VB[ (VY2 [V,

where

t

2 2 2 2 2
/||V||3 IVl dr < [VVIg IVIEs < VYl VI3 [V Vla o -
0

Now, we will estimate the leading terms, distinguishing two considered
cases.

1. Assume the projection vy has better integrability properties. Then

/ w - Vipwpdx < ‘ vpw + Vwpdx
R3 R3

gsHVwbH;JrCE/ |w|21)b2dx
]Rfi

§5||Vwb||§+205/ Vv ]2 o 2dx
RS

2 2 2
/ up? [Vv[ dx <l |2 Vv %2
R3 ’

2
< ol 19V 22 19V,
_6 I3

Avls

2 1
<ClwllS Vvl

2 4 ¢
=C w5 VI3 [AV]S [V,

Vv,

(recall 2+ 2 = 1) which gives using assumptions on b

1d 4 6
50 lnlz + Vel < ClulZ1VvII3 1AV]5 [V,
+C(b) Vvl 1+ [[v]3).

Integrating over time interval (0, 7), with usage of Holder’s inequality
then yields

2
Jon (7)1 + / IVwnll?, do
0

2 2 i :
< [lwn (0)112 +C/||vb||s IVvli3 TAv]s IV, do
0

T

L C(b) / (IOVI2 + V]2 19 v]2)do.
0
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Recall that from the energy inequality we have estimate of v in the
spaces L2(0,T, (Wy2(R?))) and L>(0,T, (L? (R?))), hence due to the
interpolation also in L*(0,T, (L3 <R3))) Thus

2 2
o (7)) + / IVl do
0

2 2 4 & 2
< wn(O)13 + C () [}, IVl 1AVII5, + 1) 19I5,

C(b)

which yields the conclusion of Lemma in the first case as % + g =1.

2. For a given 2 < s < oo, we will find 2 < p < 6, 2 < ¢ < 3 such that
% + % + % = 1. We will use gradually Holder’s inequality, interpolation,
and Young’s inequality to obtain

3)

[ @ Vinndx < [Vaul, s, Lol
6-p 3p—6 6-q 3g—6
29 2 2 2
<Vl llwnlly™ llonlls™  llwlly™ llwlls™
<e|Veplly + C Vo [|F77 flwlly* ™ wlle lan """ -
Altogether we get
d 2 2
< oD + Va3

4p 222*7‘1 QBC"GQ;G 2?
< Cl[Vopl[§77 [lwlly* ™ flwllg” ** llwnlla*™
2 2
+ C(b) Vvl 1+ [lv]3),

thus using generalized Gronwall inequality in the form of Theorem 2
. p—6
from [3] gives us <p+6 +1= 6+p)
Ap
6
[wb ()l % < [lwn (0) |5

.
q6+P e 61% 2%%
+C w2 Vo |[$7 lwll™ [lwlls do

o / VI (4 v Rae)

Estimating the second term as above and using the Holder inequality
in the form

Ap_ 2p_ P 39—6
/IIvaHW ||w||2+p IIwIIG ba” [wllzy” lwllos ™
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we conclude
2
[wblls,2 < C1 4 Coflwlly (-

This finishes the proof of Lemma 1.

4. Proof of the main theorem

Without loss of generality we may assume that |b(7,x)| = 1. Then for
every time o € (0,7), and point x € R3, there exists at least one com-
ponent b;(c,x) such that [b;(c,x)| > 3. Since vector field b(-,-) is contin-
uous on (0,7) x R3, the sets Q,, = {x € R3 | b,(0,x) > %} a Qryz, =
{x €R3 | b,(0,x) < —%}, r =1, 2, 3 compose at each particular time a cover-
ing of R® by six open sets {Qm,}i:l. For simplicity, we set
byt := —b,, r = 1,2,3. Using the partition of unity (see e.g. [7]) we get
functions ¢, € C°(r0), 0 < ¢ o(x) < 1 such that Y ¢,, = 1, and
[Vire| < C(b). We will multiply the following equivalent form of Navier—
Stokes equations (1)

v

_ L2
a—uAv— WXV V<p+2|v> (4)

6

by the test function — Y 0;(¢r+b,-0;v). Let work with each term separately,
r=1

for illustration only with r = 1:

0 0
- / 3—: -01(p1,6010v)dx = / aalv - 1,010 vdx
Q1 951

0 »0

1 d._
> [ 2o S d
—/4@170dt|vv| X
Q0

/ AV - 0 (p1,6010v)dx = / AV - (p1,001010v + 9y (p1,0b1)Ov) dx

1,0 Ql,a
1
> / 5@1,0|AV|2dX+ / AV - Oi(p1,0b1)0vdx
1,0 Ql'”

=7}

1 1
/ 8k (p + 5 |V|2>8l(30170b18ﬂ}k)dx = / 81 (p + 5 |V|2> 8k(<p170b181vk)dx

Ql,a Ql,o

1
= / 6lp3k(<p1,nbl)8lvkdx+ / 58[ |v|28k(gpl7ab1)8lvkdx
Ql Q1

N ,o

=Z3 =z}
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/ (wxv) -0 (p1,6010v) dx
Q1,5
/ V1,601 (w X v) - Avdx — / (w x V) - 0(p1,0b1)0vdx
Q1,0
:Zi
We rewrite the term in the first integral and get
by (w X V) AV = biwavsAvy  —bjwivsAve  +biwivaAvs
—biwsvaAvy  +biwsviAve  —bjwavi Avs
+b2W2'U3A’U2 —bQCUQ’UgA’UQ
+b3W2’U3AU3 —bgWg’UgA’Ug
—bows3 Vo Avy  +bowsvoAvg
—bsws vy Avs +b3wsve Avs
+b3&)3’03A’U2 +b2w202Av3
—bgw:ﬂ}gAU2 —bgwg’UgAUz;.
Thus,
b1 (w X v) - Av =wav3Av, — w3ve Avp
+wpva Avs — wWpU3Avsy (5)

+ w3 Avy — wot, Avsz+ lower order terms([i, 151)

Observation. The above mentioned equality holds true without additional
lower order terms, if the vector b(o, ) is constant in space, otherwise we use
the following identity

/Lpl,g-(Wl’Um)blAUndX: /()01)0-<U.}ﬂ]m)A(bl’Un)dX
Ql,a Ql,a

— / (pLU((wlvm)vnAbl +2p1,6 Vo, - Vi (wlvm))dx.
Q.

Similarly, for by we get

ba(w X V) - Av =w3v1 Ay, — wiv3Avp
+wpv3Avs — wpv1 Avs (6)

+w1tAvs — w3ty Ave+ lower order terms.

For the term with bs we use (as above) the shifts 1 — 2, 2+ 3, 3+ 1. The
case r = 4,5,6 is trivial.
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6
Summing up Y, and using the definitions of ¢, , we get (recall, we use
r=1
summation convention)

1 d 2 1 2
S S TN
4/R$dt\Vv\ dx+2/RS\v\ dx

6
< ) U211+ 1251 + |25 + |25 + CI} + CIy)
r=1
+ e+ Y+ B, (7)
i=1
where
Ifk = /wkvbAvjdx, Igjk :/wjvavbdx,
R3 R3
B = [ ooy Aundx, I = [ 1ol 1v? [A(or b)) dx
R3 R3
I = 2/ IVv]|V(erob)| lw]|v]dx, Z7 :/Av -0 (¢r.obr)Oivdx,  (8)
R3 R3
1
25 = [awonerabiomax, 25— [ 50N ulorab)Ondx,
R3 R3
Zy = /(w X V) - O)(¢r,obr)Ovdx
R3

9)
and €55, is the Levi-Civita tensor, i.e. it is zero unless all indeces are different,
it is equal to +1 for a positive permutation of 123 and equal to —1 otherwise.

Now, we will estimate these integrals in order to finish the proof. At
first, we will consider the case, in which we have the additional information
about the projection vy, itself; we will proceed quite analogously with [18].

T

/'Ifk’dggf/wkvbAvﬂdxdaS/Hvb||s||wk||sz\52 A, do
0 0 R3 0

.
s=3 3
SC/Ilvbllsllwkllzs [Vwrlls [|Avs]l, do
0

2

T
2 — 2
<cllaviz, + . [ Il Vv do
0

2 22 2
<e[|[Av]j3 5+ Ce(T) [l IVVIL 2 (t>
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Next
ng :(sjmn/amvnvavbdx
]RES

:*5jmn/am6lvnvkalvbdx*sjmn/amvnalvkalvbdx

R3 R3
:—ajmn/8malvnvk8wbdx+ajmn/amalvnawkvbdx

R3 R3

Jik Jik
—l—sjmn/alalvkamvnvbdx.
]RS
Ji*
Here,

’Jfk‘ §/|6jmn8m8wnvk8wb| dx <e ||Av||§ + C’E/vi(alvb)gdx
R3 R3

10
<e ||Av||§ - C. / OOy vpvidx — O / U0 U0 (v,%) dx. 1o
R3 RS
Let us estimate the first integral on the right hand side of (10):
//vbal@lvbvidxda < //|b|\Av\|vb\|v\2dxdo
0 R3 0 R3
Ji
T t
+2//|Vb||Vv||vb||v|2dxda+//\Ab||vb||v|3dxd7'.
0 R3 0 R3
J12 Jis

Then

)
2
T < [ 1avly ol s, do
0

i
<C [ 18Vl [l IV 2, vl do
0

< C|Av

2,2 ||”b||t,s (V] a2

s ||v]] ‘
5+6°5-3 00,6
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2 3 _ 3 ;
As 15/(s16) + 3s/(s—3) — 2 We can interpolate

Vil as s < Cs) IVl VYIS -
Thus, using Young’s inequality and energy inequality we get
2 2 2
Ji <el|Av]5 o+ Ce ol VYIS 2 -

Note that for fixed e > 0, C. — 0 for 7 — 0, uniformly for s € [6,00]. The
lower order terms Jio, and Ji3 may be bounded as follows:

T2 < [ I, 19v1, Vbl v do
0

)
< [ el 19¥1a 1951 V1 sy ] o
0

< [lon|

1s V¥l 2 VD

2,00 IVILas ae [IVllo 6

2
<Cllvelly s IVVIS,2

.
Ta < [l V13 9]y [ 77 g do
0
< lonlle VYIS 2 VI se 5o [[V2D],
<Cllwll, , 1VVI2 2
where we have used Holder’s inequality (% + % + Sif = 1), the assumptions

on b(:,-), and the fact that from energy inequality we have estimate of the
norm of v in space LS%(O,T, (L%(R‘?’)P) Note that C = C(r) — 0 for
7 — 0 uniformly for s € [6, c0].

Further, we will estimate the last integral from (10):

T

//vb@lvbﬁl (vp) dxdo S//|vb||Vv|2|v||b|dxdo
0 R3

0 R3

=J1a

T

+//|vb||Vb||Vv| lv|? dxdo
0 R3

J15:J12

s—3

.
2 2
50 2 C [ ol 9V IV s do < C ol 91 V1) 2y e
0
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The interpolation inequalities

2/t t—2)/t 1 1
IV e e < CIVIES IVIEED" and [VV]l, 5 < CIVVIIE 1AV,

508
and Young’s inequality yield

T

/ o dnds (v) dxdo| < £ |AVIZ, + C [l 12, [IVV]2 ,
RS

0
which implies the bound on J7 b

T

ik 2 2 2
[ Hrdo| < selaviz,+ € (w2, + ol ) 1912 o
0

Further,

T

/’J5k+J§k’dU S/(/ |3lamvn5wkvb|dx+/ \3lalvk8mvnvb\dx)da
RS RS
0 0

<2 [ 18Vl I 9] 2, do
0

)
s=3 3
<C [ el 19v157 1wl vl do
0
2 2

<elIAVIZ, + C il [9¥I2 5
T T T
1 ao < [ [ owl ol au] dxdo < <av], + C. [ 113 sl do
0 0 R3 0

2 2 2
<e[[Av]ig, + Ce Vs s lonllz -

Using ||v|\i<>3 < Vllwo Vlleo s £ ClIVV| o, and the information which
comes from (3), we get

2 2
Vs s lwnllz,g SCINVV]i o T+ 1VVIy)
2 2 2
SO IVVllaop + VIS 2 + 1AV 5) + Collvolly 5 -

Recall that C' — 0 for 7 — 0%, uniformly for s € [6, oo]. It remains to deduce
suitable estimates of the lower order terms with derivatives of b(,-).
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Jim1do < [ [ ol v 1A ob) dxdo
R3
0 0

< / IVVlig[vlls Vlig [|AGrb) 5 do
0

<c|Av]Z, +C. / IVVIE VI [ A(grob) 2 do
0

2 2 2 2
<e[[Av]zs + C IVVIIS 2 VI s AP

T

/ 127 do < / / AV] [V(,.0b)| [Vv] dxdo
0 R3

0
2 2
<e[|Avly s + Ce IV 2 IV (erab)lly o

/|I§+Z§+Z§+Z£|da
0

< [ [ (19119 nabl wl[v] + 511V (ra b9
0 R3
+ IV VIV (2rob)] + ] V] [VV] [V (1,0b)] ) dxder
<€ [ 19l 19vll ¥l (Vb + 1) do
0

w1
< ClAV] 5 VYl IVILgs (1VDIl, o + (T7)7)
2 2 2
<elAviy, + CellVVIL o VIG5
Collecting all the above estimates together, we see that
2 2 2 2 2
IVVlis2 + 1AVIZ, < Collvoll o + CUVYIL o + 1AVIG, + 1), (11)

where C' — 0 for 7 — 0T, uniformly for s € [6,c0]. Therefore, taking
sufficiently small, we get

2 2 2
V¥l + 1AV, < 4C0 [[voll 5 -
Repeating the same estimates on (7,27) we get that
2 2 2
”vaLO"(T,QT;Lz(RS)) + HAV||L2(T,2T;L2(R3)) < 4Co ||V(T)||1,2 :

Therefore, after finite number of steps, we get that the regular solution exists
on the whole time interval (0,T).
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Let us move to the case where we have information about the gradient

of the projection and let us estimate all terms from (8). We start with the
ik
term I5":

ng = 6jmn/8mvnvavbdx
R(}

= fejmn/ 0m8wnvk5wbdxf€jmn/ OmUn 0110 vpdx
R3 R3

jk ik
Jl JZ

’J{k‘ §5HAVH§+CE/ v[? | Vo) dx (12)
RB

In the estimate of the right hand side of (12), we will distinguish between
two possible cases. For 2 < s < 3, we get

2 2 2 2
/]Rg VT (Vs |” dx < [[Vop [ V]| =2
6—2s

< IVa 29, * ||v2v|\2
<e||V2v|[; + C: IV ]| 7 [[Vv]3

while for s > 3, we will proceed in the following way

s—12
55—6 2
||V||gss—6 .
352

2 2 T 4
WP 190 dx < 90 757 [T

Further, due to 2 < 22

<375 6 < 6, we can interpolate

6s
55—6

2 =3
[Vi[zsze < Cllvlly* ™ [Vl

Moreover,

4s—12

4s—12
o0 < (Vv + vl Vbl o)==,

Vo |

and using Young’s inequality we have

[ WP 190 dx <C 190 1757 ] (19913 + Cotb))

vl

The integrals Jgk, and ng can be estimated in a straightforward way, anal-
ogously as in [15]

e 2 2 525 2
B < IVl 19V, < e [92V])5 + Ce IV u |75 9V,

‘pk‘ < Hvszz lwbllz lIvlle < e HVQVHQ +e ||WbH3 + C. ||Vv||2



Generalization of the regularity criteria 15

We now return to the term Ifk. We have (below, J;; denotes the Kro-
necker symbol)

ik
gijklf = Eijk/ wkvbAvjdx = EijkEkim 8lvm’UbA’UjdX
R3 R3

= (6il5jm — §im5ﬂ) al’l)m’UbAUjdX = / (aﬂ)j’UbAvj — 8j’Uﬂ)bA’Uj)dX
R3 R3

1
= — 8l-vj6wbalvjdx + 5/ (81Uj)2aivbdx +/ viajUbAUjdX.
R3 R3 R3

Therefore these terms can be treated exactly as terms above coming from I3,
Next, we have to estimate the lower order terms. Since they can be treated
exactly as in the previous case (additional information about wvp), we skip
the details.

Altogether we get

T
IV o+ 925, < [ o
0

2s _6s
+C. [ {o(6) IVl Colb) + [T0u) 7
0

2 4 4 2 2
+[[Abllg + [Ivlls + Vbl + IIVVIIQ} IVvllz do,

where g(s) =0, for 2 < 5 < 3, and g(s) = 1, for s > 3. Note that both ;2%

and 556%6 are less than t = 354%6. Using the estimate from Lemma 1 we obtain

/ Jwplld do < C(1+[VV]2 ).
0

Choosing ¢ sufficiently small, we can use Gronwall’s inequality in order to
conclude that

IVvI2 2 + V235 < Cvo, [Vl ).

As this inequality holds for any 7 < T™* and C' is independent of 7, the proof
of Theorem 1 is complete.
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