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Abstract

In this paper we introduce key rheological properties of blood which are essential for blood
coagulation process modelling. The conditions of blood flow determine the blood coagula-
tion process, because blood flow carries chemical reactants to the area of the coagulation.
Blood species are also expelled toward the vessel walls because there is inward migration of
erythrocytes. We present a review of possible approaches to the blood flow modelling and
formulate model of blood which contains hematocrit as an advected field. The inclusion en-
ables model appropriately the expulsion of the other blood species towards vessel walls. We
use in our cased microstructure based model of Owens[8]. We present an modification of
Owens’ model, which couples new information from the hematocrit field. The segregation of
erythrocytes is treated under simplyfying assumption on erythrocytes, which enable to use
the framework of suspension rheology[21],[22]. The governing equations are solved for some
simplified computational domains.

1 Introduction

1.1 Motivation for studying blood flow

Blood coagulation is a phenomenon whose physiological function is to prevent blood losses
due to injury to vessel wall. Blood coagulation can also occur because of some pathological
diseases such as arteriosclerosis, one of the lifestyle diseases. In such situations the coagula-
tion is initiated without vessel wall injury. Blood coagulation can also occur on the surface of
medical devices, which can be very unwelcome. Thus better understanding of the coagulation
process could help us to improve the quality and length of contemporary human life.

1.2 Blood properties

Whole blood consists mainly of plasma, red blood cells (RBCs) or erythrocytes, white blood
cells or leukocytes and platelets or thrombocytes. Over one half of the volume of total blood
consists of plasma, RBCs make up 40-45% volume of blood; this value is called haematocrit.
Blood plasma behaves as Newtonian fluid with low apparent viscosity. In the following we will
use terms viscosity and apparent viscosity interchangeably. Under normal conditions in the
circulatory system RBCs determine the properties of the whole blood. They are 6-8µm in di-
ameter and 2µm thick discoid shaped cells, which have an elastic membrane on the surface and
which are filled with haemoglobin. These features enable them to change shape easily. RBCs
form under low shear rate flow conditions column-like structures called rouleaux, which cause
an increase in viscosity. These structures break up as shear rate increases. As RBCs have
very strong influence on the whole blood, the viscosity of blood has shear-thinning character.
Due to the elasticity of RBCs, blood stores mechanical energy, which leads to viscoelastic
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behaviour of the whole blood, as Thurston [1] firstly recognized. Therefore blood behaves as
viscoelastic fluid in small veins, where RBC deforms and stores elastic energy, while in larger
arteries blood can be taken as Newtonian fluid with shear-thinning viscosity. It is known from
experiments (see [2]) that red blood cells stack around the middle of the vessel. They push
the platelets away from the centre of the vessel. Platelets are then concentrated mainly at
the walls.
Blood coagulation begins under vessel injury conditions by the activation of blood platelets.
This is caused by exposition of specific chemicals in the endothelium of the vessel wall. Blood
platelets can also be activated by a prolonged exposure to a high or rapid increase in shear
stress that leads to erythrocytes and platelets damage (see [3] ). The exposition of the chemical
in the endothelium triggers the so called coagulation cascade , which is a complex set of enzy-
matic reactions with both positive and negative feedbacks (see [4] ). General structure of each
reaction is conversion of pro enzyme, zymogen, which is non-active precursor of enzyme, to
active enzyme. This activated enzyme then enables subsequent reactions proenzyme-enzyme
in the cascade. The whole complex of reactions ends with the transformation of fibrinogen
to fibrin. Fibrin strands then link together with the activated platelets in order to form the
final cross-linked fibrin clot.

1.3 An challenge for blood rheology

Most blood coagulation models have concentrated either on biochemistry of the process or
rheology of blood flow. Combination of the two aproaches is necessary in order to realistically
describe blood coagulation process.
Erythrocytes tend to push out blood platelets towards vessel walls, as was said above. We
have to add that other blood species such as white blood cells and the chemical species taking
part in the blood coagulation process are expelled towards vessel walls too.
This feature of blood flow is very important as platelets and the chemical species participating
in the blood coagulation process are close to the area of vessel wall injury.
Therefore we will try to develop a model fo blood flow, which will capture the migration of
platelets towards vessel walls. It seems reasonable to add to the constitutive equations for
blood an advected field representing the volume fraction of red blood cells - hematocrit. The
local number of erythrocytes will then give us the information about the presence of other
blood species, e.g. blood platelets.
We will advocate an microstructure based model of blood of Owens [8], because it seems to
us, that such a kind of model is most appropriate for the proposed aim of realistic blood
coagulation process modelling.

1.4 Mathematical modelling

There is large number of mathematical models of blood flow. They can be categorized ac-
cording several criteria. We will use the criterion of the size of the vessel, blood is flowing in.
We divide vessels into large vessels, ’medium’ vessels and vessels which are part of so called
microcrocirculation. We define large vessel as veins or arteries of the size from 1 to 3cm.
Smaller vessels which we call ’medium’ vessels have size from 0.2mm to 1 cm. We take even
smaller vessels as a part of microcirculation system.
Such a division seems to be reasonable from rheological point of view. From experiment we
know that blood exhibits shear-thinning behaviour. In large vessels, where high values of
shear rate are present, we are in the area of constant viscosity. It is therefore adequate to
treat blood in this case as Newtonian fluid with constant viscosity. In this case we finally end
with Navier-Stokes equations with constant viscosity. What is more in the large vessels the
viscoelastic properties of blood are not so prominent as in small- and medium- sized vessels.
The vessels which are part of microcirculation system are also characteristic by the fact, that
size of red blood cells in the vessel is comparable to the size of the vessel. The blood flow in
these vessels can not described by continuum mechanics approach, it is necessary to trace the
red blood cells individually.
The vessels of ’medium’ size are most interesting for us. The blood in these vessels exhibits
shear-thinning properties and viscoelasticity.
However it must be said, that shear-thinning properties and viscoelasticity of blood is also
apparent under pathological conditions in large vessels, e.g. aneurytic or stenotic vessel.
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2 Mathematical modelling in ’medium’ sized vessels

The viscoelastic features of the blood are most visible in ’medium’ sized vessels. In these
vessel is still reasonable the approach of continuum mechanics modelling as red blood cells
are much more smaller than the vessel they are flowing in.
However to be precise it is still possible to model blood flow with particle-based approach, as
could be seen from the following paragraph

Lattice-Boltzmann methods for blood flow [16] developed a model of blood based
on the Immersed Boundary method. Blood is modelled as composite of viscous fluid and ob-
jects suspended in it - red blood cells. It is supposed that both plasma and aquaeus solution
in red blood cells behave like Newtonian fluids. It is used the Eulerian description for the
viscous fluid and the Lagrangian description for the suspended particles.
This type of modelling could seem to be attractive as it provides very precise results. However
it is very computationally demanding and as it is said in [16] even 2D simulations are very
expensive, not to mention 3D computations. The preciseness of this approach can be also
discussed from another point of view - do we really need to know the positions of each red
blood cell during the simulation if we are already in a medium sized vessel.

We will go on categorizing possible models of blood flow by dividing the models into two
groups

• phenomenological

• microstructure based

It is interesting to note, that sometimes we can arrive at the same model with phenomeno-
logical or microstructure based model, e.g. Oldroyd-B model.

2.1 Phenomenologically based models

We divide phenomenological models into two categories.
Phenomenological models of the first type are models derived by supposition of quite general
forms of constitutive equations, i.e. stress tensor. Generality of these forms is then restricted
by application of reasonable constraints, for instance principle of material frame indifference.
We will call this type of phenomenological modelling traditional.
The second approach is based on the principle of maximization of rate of entropy production,
i.e. a principle of extended non-equilibrium thermodynamics.

2.1.1 Traditional phenomenological modelling - the Generalized Newto-
nian Fluid

If we say that a fluid is Newtonian we mean, that following relation holds:

T = 2η0D, (2.1)

where T and D is extra stress tensor and deformation tensor, respectively. η0 is constant
viscosity.
To obtain more general constitutive equations, we abandon the linear dependence of extra
stress tensor on deformation tensor expressed by previous equation. In order to derive a model
independent of coordinate system we write viscosity as a function of principal invariants of
D. If we further suppose incompressibility of the fluid and simple shear flow configuration we
get the viscosity dependence only on shear rate γ̇ defined as

γ̇ =

√
1

2
D : D. (2.2)

Therefore we get
T = 2η(γ̇)D. (2.3)
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The most famous example of this type of constitutive modells is power-law model:

T = 2|γ̇|
(n−1)

2 D. (2.4)

The generalized Newtonian fluid is a simple model. It describes accurately only such fluids,
where elastic effects are negligible and the shear-thinning effect has a strong influence on the
flow behaviour.
Some computations of blood flow using these simple models were carried out, see [12] and
[13]. However these simulations do not take into account the elasticity of blood.
It is therefore necessary to arrive at viscoelastic model of blood.

2.1.2 Traditional phenomenological modelling - example Oldroyd-B deriva-
tion

A simple viscoelastic model can be derived using this procedure, see [23] for details. The
procedure reads:

• writing equations for 1D mechanical analog

• switching to 2D, resp. 3D

• introduction of objective time derivative

The Oldroyd-B model, which will be derived in alternative way below, can be inferred by
the procedure sketched here.

2.1.3 Modern phenomenological modelling- example Oldroyd-B derivation

In the following we will use the thermodynamical framework developed in [5],[6] and [7]. The
crux of the procedure lies in choosing a specific form of thermodymical scalar quantity, i.e.
the rate of entropy production. The rate is then maximised and constitutive equations can
be derived.

Let κR(B) and κt(B) be the reference and the current configuration of the body B.
κp(t)(B) is stress-free configuration obtained by instantaneously unloading the body from its
current configuration. The motion of the body is a one-to-one mapping between the reference

Figure 1: Natural configuration. From [5]

configuration and the current configuration, i.e.

x = χκR(X, t). (2.5)
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We define the deformation gradient

FκR =
∂χκR

∂XκR

(2.6)

and left Cauchy-Green stretch tensor

BκR = FκRFTκR
. (2.7)

The tensor Fκp(t)
represents the mapping, deformation gradient, from an infinitesimal element

of κp(t) to κt. The left Cauchy-Greenn stretch tensor Bκp(t)
is defined corespondingly.

Let us define the mapping from κR to κp(t)

G = FκR→κp(t)
= F−1

κp(t)
FκR . (2.8)

We define velocity gradients L and Lκp(t)
as

L = ḞκRF−1
κR

(2.9)

and
Lκp(t)

= ĠG−1. (2.10)

The rate of dissipation ξ associated with the material is defined by

ξ = T ·D− Ẇ . (2.11)

The form of the rate of dissipation chosen for the derivation of Oldroyd-B like fluid is

ξ = ξ̃(D,Dκp(t)
,Bκp(t)

) = 2ν0|D|2 + 2ν1Dκp(t)
·Bκp(t)

Dκp(t)
. (2.12)

We perform the procedure of maximization of entropy production (we have only a mechanical
settings, i.e. the rate of dissipation equals the rate of entropy production ) with following
incompressibility constraints

tr(D) = 0, (2.13)

tr(Dκp(t)) = 0. (2.14)

We also suppose the following form of stored energy (neo-Hookean)

W =
µ

2
(trB− 3). (2.15)

After some calculation we arrive at the following system of equations of rate type nonlinear
viscoelastic model

divv = 0,

ρv̇ = divT,

T = −pI + 2ν0D + µBd
κp(t)

, (2.16)

2ν1

(
−1

2

O
B
d

κp(t)
−1

3
(D ·Bd

κp(t)
)I +

1

3
(trBκp(t)

)D

)
= µBd

κp(t)
,

det

(
Bκp(t)

+
1

3
(trBκp(t)

)I

)
.

It is possible to perform linearization, i.e. suppose that Bκp(t)
= I + A, where ‖A‖ = ε,

0 < ε << 1. After substitution into the nonlinear model we neglect all elements of order ε2

and higher. Having finished the procedure we arrive at following set of equations

divv = 0,

ρv̇ = divT,

T = −pI + 2ν0D + µA, (2.17)

µA + ν1

O
A= 2ν1D.

It can be seen, that we arrived at Oldroyd-B model via an alternative framework, which is
thermodynamically consistent.
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2.1.4 Modern phenomenological modelling-Anand’s model of blood

Anand [14] developed a complex model for blood clotting process. One part of the model is
blood continuum model, which is derived similarly as Oldroyd-B model.
The rate of dissipation chosen by Anand has following form:

ξ = αb
(
Dκp(t) ·Dκp(t)Dκp(t)

)γb
+ ηb1D ·D, (2.18)

which correspond to a mixture of a viscoelastic fluid that has a power-law viscosity and a
Newtonian-fluid. αb is a shear-thinning viscosity, ηb1 is the viscosity of plasma,γb is a shear-
thinning index. Anand takes neo-Hookean form of stored energy:

W =
µb

2
(IB − 3), (2.19)

where µb an elastic modulus. The final model for the blood continuum takes this form

T = −p1 + S,

S = µbBκp(t),+η
b
1D

O
Bκp(t)

= −2

(
µb

αb

)1+2nb (
tr(Bκp(t))− 3λ

)nb [
Bκp(t) − λ1

]
, (2.20)

λ =
3

tr(B−1
κp(t))

,

nb =
γb − 1

1− 2γb
;nb > 0.

Remark: Although the phenomenological models are developed in an elegant way, they seem
to underestimate the role of aggregation and disaggregation of rouleaux leading to specific
rheological behaviour of blood such as thixotropy. Indeed the Anand’s model was fitted to
experimental data in steady Poiseuille flow and oscillatory flow. Anand stated that the model
can be fitted to experimenat results of Bureau, but it was now shown in the Anand’s work.
One remedy for unability of a model to capture the microstructure related phenomena is
to make the microstructure part of the model. As thixotropy is a phenomenon based on
microstructure properties of blood it seems reasonable to add a field corresponding to the
microstructure.
Recent development in the framework of Rajagopal has also shown, that the framework can
also be used in such a way that fits well with data Bureau, see [15].
However it must be said, that the microstructure modelling has further advantages for us,
which will be discussed later.

2.2 Microstructure based models

2.2.1 Example - derivation of Oldroyd-B

Above we arrived at Oldroyd-B model by two phenomenological approaches. In this part we
derive Oldroyd-B by microstructure based modelling in order to show the relevance of this
type of modelling. In the following sections we will derive microstructure based model of
blood.
Microstructure based modelling has one great advantage over phenomenological modelling -
the parameters that we discover in constitutive equations have clear physical interpretation.
These parameters are namely related to the microstructure properties of fluid, which are
measurable.
The Oldroyd-B model derivation is based on a simplification of basic microstructure in fluid
flow - the elastic dumbbell model. The elastic dumbbell is an idealization consisting of two
identical beads connected by a massless spring. The derivation of the constitutive model
begins with postulation of the force balance

F
(f)
i + F

(c)
i + F

(b)
i = 0 i = 1, 2, (2.21)
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Figure 2: Elastic dumbbell

where F
(f)
i is a friction force, F

(c)
i a spring force, F

(b)
i a Brownian force. As we are dealing with

the Brownian force, which is a stochastic process, we have to solve the following stochastic
differential equastions for elements of q -the end to end vector of a dumbbell.

dq

dt
= ∇u · q− 2H

ζ
q−

√
4kT

ζ
dW(t), (2.22)

where ζ is so-called friction coefficient, W (t) is a multidimensional Wiener process, H is a
spring constant, k is Boltzmann constant, T the temperature. A viable possibility how to
solve the equation is to transform it to Fokker-Planck or diffusion equation

∂

∂t
ψ(q, t) = − ∂

∂q
·
[(
∇u · q− 2H

ζ
q

)
ψ(q, t) +

2kT

ζ

∂

∂q
ψ(q, t)

]
, (2.23)

where ψ(q, t) is the probability density function. Having the probability density function
ψ(q, t) we can define the expectation of g(q) as

< g(q) >=

∫
g(q)ψ(q, t)dq. (2.24)

From equation (2.23) we can derive the equation of change of < g(q) >

d

dt
< g(q) >=

〈
(∇u · q)

∂

∂q
g(q)

〉
+

2kT

ζ

〈
∂

∂q
· ∂
∂q

g(q)

〉
− 2H

ζ

〈
q · ∂

∂q
g(q)

〉
. (2.25)

The equation for g(q) = 〈qq〉 takes the following form:

∂

∂t
〈qq〉 − ∇u 〈qq〉 − 〈qq〉∇uT =

4kT

ζ
I− 4H

ζ
〈qq〉 . (2.26)

Let us suppose the following decomposition of the total stress tensor σ

σ = σS + σP = (−pSI + TS) + (−pP I + τ ) = −pI + T, (2.27)

where p = pS + pP and T = TS + τ = 2ηSD + τ . Kramers performed elementary physical
derivation of σP . He got in the end so called Kramers expression for the extra-stress tensor

T = TS + τ = 2ηSD + nH < qq > −nkT I, (2.28)

where n is the number density of dumbbells. On substitution of (2.26) in the previous equation
we arrive at Giesekus expression

T = 2ηSD− nζ

4

O
< qq > . (2.29)

We define the relaxation time

λ =
ζ

4H
, (2.30)
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the polymeric viscosity

ηP =
nkTζ

4H
= nkTλ, (2.31)

the total viscosity η0 = ηS + ηP , the characteristic relaxation time

λr =
ηS
η0
λ. (2.32)

Then we can write the equation for the total extra stress tensor

T + λ
O
T= 2η0(D + λr

O
D), (2.33)

which is the Oldroyd-B model. We can write it int the form of split form of the Oldroyd-B
model

T = 2ηSD + τ , (2.34)

τ + λ
O
τ= 2ηPD. (2.35)

2.2.2 Owens’ model of blood

In Owens’ model, see [8], [9] and [10] for details, a rouleaux containing k red blood cells is
represented by an elastic dumbbell. Let ψk(x,q, t) be number of rouleaux containing k red
blood cells which have centre of mass between x and x+dx and an end-to-end vector between
q and q + dq at time t.
Based on some ideas from the classical theory of network models for viscoelastic fluids we
assume that erythrocytes at any point are contained in aggregates of different sizes, which
continuously break up and aggregate with other aggregates. The rate of coalescing and
breaking up depends on time, strain, shear rate and stress. The aggregates represented as
dumbbells are transported, stretched and oriented in a flow. Key assumption of Owens’ model
is, that under condition of sufficiently low shear rates we use a linear spring flow for modelling
of the dumbbells.
The continuity equation for ψk under condition of a homogeneous flow now reads:

∂ψk
∂t

= − ∂

∂q
·
(
∇v · qψk −

2kBT

ζk

∂ψk
∂q
− 2qH

ζk
ψk

)
+ hk(γ̇, t)ψk,0 − gk(γ̇, t)ψk, (2.36)

where hk and gk are rates of creation and destruction because of agglomeration and disaggre-
gation of aggregates, respectively, kB is Boltzmann’s constant, T is the absolute temperature,
H the Hookean spring constant and ζk drag coefficient dependent on the number of erythro-
cytes in an aggregate k.
We multiply equation (2.36) by qq, we integrate over q, integrate by parts, to obtain an
evolution equation for the configuration tensor < qq >ψk :

O
< qq >ψk

=
4kBT

ζk
kNkI −

4H

ζk
< qq >ψk +hk < qq >ψk0 −gk < qq >ψk , (2.37)

where an ensemble average is defined as

< . >ψk=

∫
q

.ψk(q, t)dq. (2.38)

In equilibrium the following holds:

< qq >ψk0=
kBT

H
kNk0I, (2.39)

due to the fact gk = hk in equilibrium. We can than write the Kramers expression for the
elastic extra-stress τ k originating from Nkk-mers in the following manner:

τ k = H < qq >ψk −kNkkBTI. (2.40)
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If we substitute for < qq >ψk from (2.40) into (2.37) we obtain

1

H
(τ k + k

O
Nk kBTI)

=
4kBT

ζk
kNkI −

4

ζk
(τ k + kNkkBTI)

+ hkkNk0
kBT

H
I − gk

H
(τ k + kNkkBTI) .

It holds that

k
O
Nk kBTI = k

dNk
dt

kBTI − kNkkBTD (2.41)

and
dNk
dt

= hkNk0 − gkNk. (2.42)

We will end with a new constitutive equation for τ k:

τ k +

(
4H

ζk
+ gk

)−1
O
τ k = kNkkBT

(
4H

ζk
+ gk

)−1

D k = 1, 2, 3, . . . , (2.43)

We can see, that the relaxation time

µk =

(
4H

ζk
+ gk

)−1

(2.44)

contains not only the well known part from Oldroyd-B like model ζk
4H

, which causes, that the
relaxation time µk is smaller than the mentioned relaxation time originating from Oldroyd-B
model.

Figure 3: Rouleaux as an elastic dumbbell. From [10]

Owens derived following form of constitutive equation for elastic part of stress tensor due
to k-mer

τ k + µk

(
∂τ k
∂t

+ (u · ∇)τ k −∇u · τ k − τ k · ∇uT
)

= 2ηpkγ̇(u), (2.45)

where the symbol µk is the relaxation time of k-mer,

ηpk := kNkkBTµk (2.46)

is polymeric viscosity due to the k-mer. Here Nk is density of k-mers, therefore kNk gives
density density of ’mers’ , i.e. red blood cells, taking part in k-mer. kB is the Boltzmann
constant, T temperature.
As the rouleaux are associating and disaggregating the relaxation time is not only function
of shear rate, but it also depends on aggregate size.
Owens proceeds with the following simplification - the constitutive equation is summed up
from k = 1 to k =∞ to get

τ + µ

(
∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT

)
= 2ηpγ̇(u). (2.47)
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Figure 4: Rouleaux formation

Figure 5: Rouleaux formation. From
http://www.mediscuss.org/erythrocyte-
sedimentation-rate-77.html

The key step in this procedure is substitution of the relaxation time µk with averaged relax-
ation time µN̂
Owens derived following equation for the time development of the average rouleaux size N̂ :

DN̂

Dt
+

1

2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) = 0, (2.48)

where b(γ̇) is a fragmentation rate and N̂st = N̂st(γ̇) is the value of N̂ in a steady simple
shear flow with shear-rate γ̇.
Owens supplied an equation for relaxation time µ:

µ = µ(N̂ , γ̇) =
λHN̂

1 + gN̂ N̂λH
, (2.49)

where gN̂ is an aggregation coefficient of rouleaux of N̂ cells:

gN̂ N̂ =
1

2
b(γ̇)N̂(N̂ − 1) + a(γ̇). (2.50)

In the equation a(γ̇) is an aggregation rate for the RBC’s and λH is the relaxation time of a
single blood cell. Owens included in the model the Cross model viscosity:

η(γ̇)p = η0

(
1 + θγ̇m

1 + βγ̇m

)
. (2.51)

To sum up, Owens solved the following system of equations:

Re
Du

Dt
− 2ηs∇ ·D−∇ · τ +∇p = 0,

∇ · u = 0,

DN̂

Dt
+

1

2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) = 0, (2.52)

τ +De(γ̇, N̂)(

(
∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT

)
= De(γ̇, N̂)D,

where due to non-dimensionalisation the Deborah number is given by

De = µ
U

L
, (2.53)

with U,L being characteristic velocity and length, respectively.
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2.2.3 Shear induced migration and it’s modeling

In the following we will be mainly dealing with flows of concentrated suspensions. We know
from experiments, that there is a shear-induced migration of particles. This behaviour was
observed in several experimental configurations. The phenomenon was firstly studied in [22].
The discovery of the new phenomenon initiated new development of rheology. We can divide
corresponding mathematical models into two branches.
The first one, which we will follow, gives an expression for the particle migration flux j⊥ ≈
∇ ·Σp. Σp is the particle contribution to the bulk stress.
The second one, called in [21] phenomenological, develops the particle migration flux of the
form j⊥ ≈ −∇γ̇, where γ̇ is the shear rate. It is the approach of the seminal work [22].
In the introduction of [21] is discussed applicability of the phenomenological model. There
and in the references therein is shown, that the phenomenological model does not capture
some experimental configurations appropriately.
On the other hand the first approach, called suspension rheology approach, is, according to
[21], successful in the description of wider set of experimental data than the phenomenological
model is.
The main added value of suspension rheology model is incorporation of normal stresses. In
[21] is shown, that the introduction of particle-fraction dependent and anisotropic suspension
normal stresses captures relatively well observed particle migration in curvilinear flows of
monodisperse suspensions.

We will now derive the expression for the flux j⊥ in a vein similar to [21] and [18]. It
is supposed, of course that, the particle phase can be approximated as a continuum. If we
suppose low Reynolds number the following equations for mass and momentum balances for
suspension can be derived:

∇ · u = 0, (2.54)

∇ · Σ+ < ρ > g = 0, (2.55)

where < ρ > is the mixture density, u is the bulk suspension velocity, Σ is the bulk suspension
stress, < ρ > g is the mean gravity force. We can write particle-phase mass balance as

∂Φ

∂t
+ u · ∇Φ = −∇ · j⊥, (2.56)

where j⊥ = Φ(up − u) is the particle migration flux relative to the bulk motion, up is the
particle phase average velocity, Φ is the particle volume fraction.
In [18] the migration flux is obtained from the particle momentum balance:

0 = ∇ ·ΣP + n < FH > +Φ∆ρg, (2.57)

where n is the number density of particles, ∆ρ = ρp−ρf is the excess density of particles and
ΣP the particle contribution to the bulk stress.
The mean drag force on any particle < FH > may be derived for Stokes flow:

< FH >= −6πη0af
−1(Φ)(up − u), (2.58)

where f(Φ) represents the mean mobility of the particle phase, i.e.f−1 is the mean resistance,
η0 is the viscosity of the suspending fluid. If we substitute (2.58) into (2.57) we obtain, under
supposition of neutrally buoyant particles, the following expression for the particle migration
flux:

j⊥ = Φ(up − u) =
2a2

9η0
f(Φ)∇ ·ΣP . (2.59)

Therefore the final version of the flux is

J =
2

9
a2 f(Φ)

η0
∇ ·Σp. (2.60)

We will show the derivation of the constitutive equation for Σ = Σf + Σp for the bulk
suspension stress. In [21] the fluid stress is assumed to be

Σf = − < P >f I + 2η0D, (2.61)
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where < P >f is the fluid phase averaged pressure, I is identity tensor,D local rate of strain
tensor. For definition of the averages and the averaging procedure see [21] and references
therein.
The particle stress proposed in [21] has the following form

Σp = −η0ηn(Φ)γ̇Q+ 2η0ηp(Φ)D, (2.62)

where ηp is a monotonous function of particle volume fraction Φ, Q is the tensor parameter of
anisotropy to be specified later. In [21] such a simple form of particle stress tensor was chosen
in order to get some analytical steady state predictions. However it is still rich enough to cap-
ture the normal stresses, which enable the description of the particle migration phenomenon,
as was stated above. It is done so via introduction of ”normal stress viscosity” ηn(Φ), whose
form is given in [21] as

ηn(Φ) = Km
(Φ/Φm)2

(1− Φ/Φm)2
, (2.63)

where Φm is the maximum packing density, Km is a constant determined by the fit to exper-
iment.

2.2.4 Modified Owens’ model

We know from measurements, that red blood cells tend populate the central area of a vessel.
Because of that effect they leave a cell depleted region near the vessel walls.
The behaviour is interesting for us not only because it explains Fahraeus and Fahraeus-
Lindquist effect. There is an another reason - red blood cells expell by their inward migration
other blood species from the central regions of a vessel. This effect is very important for the
blood coagulation process as the key factors of blood coagulation such as blood platelets and
chemical species are present in elevated concetrations near the vessel wall. In the case of a
vessel injury, these elements of blood are near the site of the damaged vessel wall.
[17] added to the equations of conservation (continuity and momentum) a transport equation
for the hematocrit. It was supposed the following general form

DΦ

Dt
= −∇ · J. (2.64)

In [18] it is derived an equation for the particle flux J, see (2.60), supposing that the particles,
in our case red blood cells, have the spherical shape.

However, if we want to develop a blood model, where we want to take into account the
fact, that red blood cells can create aglomerates, rouleaux, we must modify the functinal form
for mobility f(Φ).
Up to know the mobility increased as the concentration, in this case hematocrit, decreased.
We will now take the mobility as a function of both Φ and N̂ , in the case of blood, of
the hematocrit and the average rouleaux size, respectively. It is natural to suppose that
the mobility increases as the rouleaux fragment. Therefore the largest mobility should have
solitary red blood cells, which correspond to the value N̂ equal to 1. From now on we will
take the mobility as a function of both Φ and N̂ , i.e. f(Φ, N̂).
We will now delve into the constitutive equations. As in [17] we will decompose the Cauchy
stress of the bulk into two parts, that of solvent and that of particle phase:

Σ = Σf + Σp. (2.65)

We will suppose that the solvent part behaves as a Newtonian fluid:

Σf = −pI + 2η0D, (2.66)

where p is the solvent pressure and η0 is the viscosity of the solvent.
In similar vein as in [17] we write down the constituive equation for the particle phase:

Σp = ΣNSp + τ , (2.67)

where ΣNSp corresponds to the particle pressure, τ is the elastic part of extra stress tensor,
i.e. the contribution to the extra stress from the particle(red blood cells) phase.
In [17] was supposed that the particle pressure ΣNSp has the following functional form:

ΣNSp = −η0α(Φ)γ̇Q, (2.68)
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where α(Φ) is growing function of the particle fraction, which could be taken as (2.63). Φ, Q
is the tensor parameter of anisotropy:

Q =

 1 0 0
0 λ2 0
0 0 λ3

 , (2.69)

where λ2 ≈ 0.8 and λ3 ≈ 0.5 are in good agreement with concentrated suspension rheology[add
references].
Owens used the relation (2.51) in order to incorporate the shear-thinning behaviour of the
blood into his model. We will suppose, that the viscosity is not only shear-rate dependent,
but it depends on the hematocrit too. This fact was experimentally verified [19]. Therefore
we propose the following form of the viscosity:

ηp(γ̇,Φ) = η0

(
1 + θγ̇m

1 + βγ̇m

)
h(Φ), (2.70)

where h(Φ) is increasing function of the hematocrit Φ. In [20] was proposed a functional
form for dependence of blood viscosity on shear-rate, hematocrit and temperature. However
we will restrict our attention on healthy humans, therefore we will not need the functional
dependence of the blood viscosity on temperature.
It must be noted, that we can simplify our model by taking into account only hematocrit
dependent part polymeric viscosity. Actually there is research on that topic originating from
[19]. The polymeric viscosity would then look like

ηp(Φ) = η0H(Φ), (2.71)

where H(Φ) is an appropriate function fitted to data. We have limited ourselves for our
initial stage of modeling to shear-rate dependent viscosity. There is however a large field for
extension of the model in the way of hematocrit dependent viscosity.
To sum up, in our modified model we solve the following set of equations:

Re
Du

Dt
−∇ ·Σ = 0,

∇ · u = 0,

τ +De(γ̇, N̂)

(
∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT

)
= 2De(γ̇, N̂)D, (2.72)

DN̂

Dt
+

1

2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) = 0,

DΦ

Dt
= −∇ · J , (2.73)

where

J =
2

9
a2 f(φ)

η0
∇ ·Σp

and
Σ = Σf + Σp = −pI + 2η0D + ΣNSp + τ

3 Numerical methods

We concentrate in this work on mathematical modelling of blood flow. Hence we should
describe the numerical treatment of viscoelastic models of fluids. The majority of methods is
described in [11].

3.1 DEVSS

In order to increase convergence in viscoelastic flow simulations one can increase coercivity
of the elliptic operator in the momentum equation. An auxiliary variable d is added to the
system of equation to retain consistency of it.(See (3.4))
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3.2 SUPG

Convection dominated problems require special numerical treatment as their Galerkin formu-
lation suffers from spurious oscillations not present in their true solution.
The first possibility is to introduce into the system artificial diffusion in all direction. It can
however lead to the blurring of sharp layers and nonphysical increase of the concentration in
some regions.
The SUPG approach which is more physically accurate was therefore proposed. Its crux lies
in the introduction of artificial diffusion in streamline upwind direction.
Mathematically, the introduction of artificial diffusion can be formulated as a modification of
the test function of the convective term. On this basis is developed the SUPG stabilization
method for finite element method, but for consistency, the modified test function is applied
to all terms of the weak form. In that case, the exact solution of the problem satisfies the
weak form.
In our case, the test function φτ is modified in the following manner:

φτ → φτ + αSUh u · ∇φτ , (3.1)

where αSUh is a stabilisation parameter.
The test function for N̂ is modified accordingly:

φN̂ → φN̂ + αSUh u · ∇φN̂ . (3.2)

The test function for Φ̂ is modified in similar vein:

φΦ → φΦ + αSUh u · ∇φΦ. (3.3)

We will not write the modified test function in the system of equations for simplicity. We will
implicity treat them as modified in the described manner.

3.3 Time discretization

For the time discretization of the system we use implicit Euler scheme, which is first-order
scheme and unconditionally stable.
We divided the computation time interval I into n time steps < tk, tk+1 >, for k = 0, . . . n−1,
where t0 = 0 and tn = T . The step length of interval < tk, tk+1 > is ∆tk = tk+1 − tk. We
take an equidistant partition of time period, therefore the step length is constant ∆t.

3.4 Discretization in space

We discreitze the system of equation in space by standard finite element method. Start-
ing from a weak form using test functions from appropriate spaces, these spaces are then
discretized to finite dimensional spaces which transforms our system of partial differential
equations to the set of algebraic equations.
The approximation spaces are

Uh =
{

uh ∈ C0(Ω) : uh|K ∈ Qd2, ∀K ∈Mh

}
,

Ph = {ph ∈ C0(Ω) : ph|K ∈ Q1, ∀K ∈Mh} ,

Nh =
{
N̂h ∈ C0(Ω) : N̂h|K ∈ Q1,∀K ∈Mh

}
,

Th =
{
τh ∈ C0(Ω) : τh|K ∈ Q3×3,sym

1 ,∀K ∈Mh

}
,

Dh = Th,

Jh =
{
N̂h ∈ C0(Ω) : N̂h|K ∈ Q1, ∀K ∈Mh

}
.
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The discrete form of equations is following:

Re

〈
(unh − un−1

h )

∆t
, φu

〉
+Re 〈(unh · ∇)unh, φu〉+ (α+ 2ηs) 〈Dn

h,∇φu〉 (3.4)

= 〈∇ · τnh , φu〉+ α 〈dnh,∇φu〉 ∀φu ∈ Utest,h, (3.5)

〈∇ · unh, φp〉 = 0 ∀φp ∈ Ptest,h,

〈dnh, φd〉 = 〈Dn
h, φd〉 ∀φd ∈ Dtest,h, (3.6)

〈
N̂n
h − N̂n−1

h

∆t
, φN̂

〉
+
〈

(unh · ∇)N̂n
h , φN̂

〉
+

〈
1

2
b(γ̇n)(N̂n

h + N̂st(γ̇
n)− 1)N̂n

h , φN̂

〉
=

〈
1

2
b(γ̇n)(N̂n

h + N̂st(γ̇
n)− 1)N̂st(γ̇

n), φN̂

〉
∀φN̂ ∈ Ntest,h,

〈τnh, φτ 〉+

〈
De(N̂n

h )

(
τnh − τnh

∆t
+ (unh · ∇)τnh −∇unh · τnh − τnh · ∇unh

)
, φτ

〉
= 〈DeDn

h, φτ 〉 ∀φτ ∈ Ttest,h,

〈
Φnh − Φn−1

h

∆t
, φΦ

〉
+ 〈(unh · ∇)Φnh, φΦ〉 = −〈Jnh, φΦ〉 ∀φΦ ∈ Jtest,h. (3.7)

3.5 Experimental setting

Figure 6: Mesh for stenosis

4 Results

4.1 Stenosis

We have imposed parabolic boundary condition for velocity on the inlet of the channel. We
have supposed zero boundary condition for stress, nontrivial boundary conditions for average
rouleaux size on inlet and physiological value of hematocrit on inlet.

We can see in the Figure 7, that behind the stenosis there is a stagnation point area. From
the series of development snapshots (we are computing in non-dimensinal time) Figure 8 we
can see, that there are high values of average rouleaux size outwards of stream. The high
values are at the position of stagnation flow, as we expected. Namely in stagnation point
there are low values of shear rates and our model was based on supposition, that buildup of
rouleaux occurs mainly under low shear rate conditions.
We have developed a numerical method to solve the extended Owens’ model. However we
still need further testing of suitable stabilizations for fully physical setting to increase the
robustness of the numerical solver.
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Figure 7: Velocity field for stenosis

5 Conclusions

We developed a non-newtonian model of blood capturing the erythrocytes separation phe-
nomenon. Our model is based on Owens’ model of blood[8], which falls into microstructure
based models. We have preferd such a kind of model, because it treats the thixotropy of
blood.
Our modification of Owens’ model of blood lies in the introduction of an advected field for the
volume fraction of erythrocytes into the system of equations. We have followed the proposals
given in [17], wherein it is proposed to treat blood as suspension of erythrocytes in blood
plasma. We have taken the erythrocytes as rigid spheres with drag exerted on them derived
under the assumption of Stokes flow. Such a kind of simplification could seem very rough, but
we can not do much more if we want to be able to compute problems on realistic geometries.
We have chosen a sample geometry - a channel with stenosis. We arrived at interesting results
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