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Bert Jüttler

Johannes Kepler University of Linz, Austria

Abstract

We consider the space of rational functions of degree n with a common denominator.
It is shown that the corresponding rational Bézier curves admit up to 1 + n! different
de Casteljau-type algorithms, depending on the ordering of the elementary factors of the
polynomial. Our observations generalize recent results of Han, Chu and Qiu [2], which cover
the case of denominators of the form

∏n

i=1(1− t+ qi−1t) where q is a positive constant, to
rational curves with general denominators.
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1. Introduction

Rational Bézier and B-spline curves and surfaces are one of the the standard repre-
sentations for free-form geometry in Computer Aided Design and Geometric Modeling
[1, 3, 6]. The use of rational representations allows the exact description of conic sections
and quadric surfaces (including spheres and cylinders), which are of fundamental interest
for various applications.

Bernstein polynomials and B-splines form bases with optimal properties for the spaces of
polynomials and spline functions of given degree (and knots in the case of spline function).
The spaces of rational (spline) functions with a common denominator are spanned by basis
functions with similar properties, which are constructed by collecting rational Bernstein
functions or NURBS (Non-Uniform Rational B-splines) basis functions.

In a recent paper, Han, Chu and Qiu [2] consider rational functions with denominators
of the form

∏n

i=1(1 − t + qi−1t) where q is positive a real constant. Based on an operator
that has been introduced by Lupaş [4], they introduce a system of rational basis functions
that shares many properties with Bernstein polynomials.

The present paper shows how these observations can be extended to spaces of rational
functions with more general denominators, simply by using rational Bernstein functions.
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Preprint submitted to Elsevier April 14, 2014



More precisely, we consider nested spaces of rational functions, obtained by successively
multiplying the denominator with linear factors and raising the degree of the denominator.
We derive recurrence formulas for the weights and basis functions of these spaces. Based
on these recurrences it is observed that each ordering of the denominator factors provides
a de Casteljau-type algorithm for curves expressed with respect to this basis.

2. Rational Bernstein functions

We consider an infinite sequence of linear factors

Li(t) = ai(1− t) + bit, i ∈ Z+, (1)

which are defined by the real coefficients ai and bi, (ai, bi) 6= (0, 0). If all coefficients are
positive, then these factors do not possess roots in the interval [0, 1]. Some of these factors
may degenerate to constants. This is the case if the coefficients satisfy ai = bi.

For any positive integer n, we denote the product of the first n factors by

ωn(t) = L1(t) · . . . · Ln(t). (2)

The product is a polynomial of degree at most n. It possesses a unique representation

ωn(t) =

n
∑

i=0

wn
i β

n
i (t). (3)

with respect to the Bernstein polynomials βn
i (t) =

(

n

i

)

ti(1 − t)n−i of degree n. Following
the usual approach in Computer Aided Geometric Design [1, 3, 6], the coefficients of this
representation are called the weights, and we use them do define the rational Bernstein
functions

ρni (t) =
wn

i β
n
i (t)

ωn(t)
. (4)

If all weights are non-zero, then these functions span the space of rational functions of
degree n with denominator ωn,

Rn = span{ρni | i = 0, . . . , n} = {P/ωn | P ∈ Πn}, (5)

where Πn is the space of polynomials of degree n. These spaces are nested, i.e. Rn−1 ⊂ Rn.
We extend these definitions to include the case n = 0 by defining

ω0 = ρ00 = 1.

Consequently, R0 is the linear space of constant functions. Moreover, the functions in (4)
are defined for all integers i by setting of ρni = 0 whenever i < 0 or i > n.

The rational Bernstein functions possess several useful properties, which are similar to
the properties of the “Lupaş q-analogues of the Bernstein functions” [2]:
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Proposition 1.

(i) Non-negativity: If all coefficients ai, bi are positive, then ρni (t) ≥ 0 for t ∈ [0, 1].

(ii) Partition of unity:
∑n

i=0 ρ
n
i (t) = 1 almost everywhere1.

(iii) Endpoint interpolation: If all coefficients ai, bi are non-zero, then ρni (0) = δi0 and
ρni (1) = δin.

(iv) Inverse property: ρni (t) = ρ̂ni (1 − t), where ρ̂ are the basis functions defined in an
analogous way using the linear factors L̂i(t) = bi(1− t) + ait.

(v) Reducibility: We obtain the classical polynomial Bernstein basis when ai = bi = 1.

The proofs of these observations follow directly from the definition of the rational Bernstein
functions.

3. Recurrence relations

Before establishing recurrence relations, we need to analyze the weights in more detail.

Proposition 2. The weights take the form

wn
i =

1
(

n

i

)

(

∑

K∪L={1,...,n}
|K|=(n−i),|L|=i

∏

k∈K

ak
∏

l∈L

bk
)

. (6)

They satisfy the recurrence formula

wn
i = an

(n− i)

n
wn−1

i + bn
i

n
wn−1

i−1 . (7)

Proof. The recurrence of the denominators

ωn = ωn−1Ln (8)

implies the equation

n
∑

i=0

wn
i β

n
i (t) =

[

n−i
∑

i=0

wn−1
i Bn−1

i (t)

]

[an(1− t) + bnt], (9)

from which we obtain

wn
i β

n
i (t) = an(1− t)wn−1

i βn−1
i (t) + bntw

n−1
i−1 β

n−1
i−1 (t). (10)

Dividing both sides by βn
i (t) gives (7). The explicit formula (6) can be proved directly by

expanding the product and comparing coefficients. �

1except for the roots of ωn
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In particular, if all coefficients ai and bi are positive, then so are the weights.
Based on these observations we derive a recurrence relation for the rational Bernstein

functions.

Proposition 3. The rational Bernstein functions satisfy the recurrence formula

ρni (t) =
αn(1− t)

Ln(t)
ρn−1
i (t) +

bnt

Ln(t)
ρn−1
i−1 (t). (11)

Proof. Combining (8), (10) and (4) confirms (11). �

This recurrence will be used in the next section to derive a de Casteljau-type algorithm
for evaluating rational Bézier curves.

Note that there are infinitely many formulas expressing ρni as a (non-constant) linear
combination of ρn−1

i and ρn−1
i−1 . More precisely we have

ρni (t) =
n

n− i

(1− t)

Ln(t)

wn
i

wn−1
i

ρn−1
i (t), (12)

ρni (t) =
n

i

t

Ln(t)

wn
i

wn−1
i−1

ρn−1
i−1 (t) (13)

and any affine combination of (12) and (13) provides a valid formula. In order to obtain a de
Casteljau-type algorithm, however, the coefficients in the formula need to be independent
of i, and the recurrence (11) is the only one with this property.

Another formula expresses each rational Bernstein function of degree n in terms of two
functions of degree n + 1, thereby confirming the nested nature of the spaces Rn.

Proposition 4. The rational Bernstein functions satisfy

ρni (t) = an+1
n+ 1− i

n + 1

wn
i

wn+1
i

ρn+1
i (t) + bn+1

i+ 1

n+ 1

wn
i

wn+1
i+1

ρn+1
i+1 (t). (14)

Proof. Expressing ρn+1
i+1 (t) using equation (13) and ρn+1

i (t) using equation (12) leads to
the formula. �

This result allows to formulate an algorithm for degree elevation. Due to the linear
independence of the rational Bernstein functions, there exists only one formula of this
kind.

4. De Casteljau-type algorithms

Given the control points P0, . . . , Pn ∈ R
d for some dimension d, we define a rational

Bézier curve in R
d,

c(t) =

n
∑

i=0

Piρ
n
i (t). (15)
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Definition 5. For any given value of t ∈ [0, 1], the de Casteljau-type algorithm defines
recursively the points

P 0
i = Pi, for i = 0, . . . n; (16)

P j
i =

αj(1− t)

Lj

P j−1
i +

bjt

Lj

P j−1
i+1 , for j = 1, . . . , n and i = 0, . . . , (n− j). (17)

Proposition 6. The points defined in the de Casteljau-type algorithm satisfy

P j
i =

j
∑

k=0

Pi+kρ
j

k(t). (18)

In particular we have P n
0 = c(t).

Proof. We proceed by mathematical induction. For j = 0 we get (18) by the convention
ρ00(t) ≡ 1. For the induction step we get

P j
i =

αj(1− t)

Lj

P j−1
i +

bjt

Lj

P j−1
i+1 = (19)

=
αj(1− t)

Lj

(

j−1
∑

k=0

Pi+kρ
j−1
k (t)

)

+
bjt

Lj

(

j−1
∑

k=0

Pi+k+1ρ
j−1
k (t)

)

= (20)

=

j
∑

k=0

Pi+k

(

αj(1− t)

Lj

ρj−1
k (t) +

bjt

Lj

ρj−1
k−1(t)

)

=

j
∑

k=0

Pi+kρ
j

k(t), (21)

where the last equality follows from (11). �

The maximum number of different de Casteljau-type algorithms of this form is n! (This
is a factorial, not an exclamation mark!). Indeed, if all linear factors are different, then
their permutations define the different algorithms. Note that all these de Casteljau-type
algorithms are different from the standard rational de Casteljau algorithm, see Example 9.

For each step (17) of these algorithms, the ratio used to generate the new point from
the two existing ones is the same for all i. This is different from the standard de Casteljau
algorithm (see Figure 3), where a different ratio is used in each linear combination.

Our approach can be extended to quadratic elementary factors of the denominator as
follows. Consider linear factors with complex coefficients. If two consecutive linear factors
are conjugate complex, then their product is real and the composition of the corresponding
two steps in the de Casteljau-type algorithms gives linear combinations with real coeffi-
cients. This leads to a de Casteljau-type algorithm also for quadratic elementary factors,
since these can be split into two adjacent conjugate complex linear factors. Consequently,
we can extend this approach to rational curves with any denominator.
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5. Examples

We present three examples that illustrate the findings of this paper.

Example 7. For the special choice ai = a, bi = b we obtain wn
i = an−ibi. In this

case, the rational basis functions are the Bernstein polynomials composed with a ratio-
nal reparametrization of degree 1 that maps the boundaries of the interval [0, 1] onto itself.
More precisely we get

ρni (t) = βn
i

(

bt

a(1− t) + bt

)

. (22)

Example 8. For the special choice ai = 1, bi = qi−1, where q is a positive real number we
get the “Lupaş q-analogues of the Bernstein functions”, which were considered earlier in [2].
The authors of that paper observed that the weights admit a particularly nice closed-form
representation in this case.

Example 9. Consider three linear factors

L1(t) = 3(1− t) + t, L2(t) = 6(1− t) + 5t, L3(t) = 1(1− t) + 3t. (23)

We obtain the weights

w1
0 = 6, w1

1 =
2

3
(24)

w2
0 = 36, w2

1 = 14, w2
2 =

10

3
(25)

w3
0 = 216, w3

1 = 300, w3
2 = 272, w3

3 = 180. (26)

The corresponding cubic rational basis functions ρ3i (t) are displayed in Figure 1. We
consider a curve with control points

P0 = [0, 0], P1 = [−1, 1], P2 = [2, 3], P3 = [1, 0]. (27)

The de Casteljau-type algorithm for t = 1/2 generates the points P i
j

i\j 0 1 2 3
0 [0, 0] [−1, 1] [2, 3] [1, 0]

1 [−1
4
, 1
4
] [−1

4
, 3
2
] [7

4
, 9
4
]

2 [−1
4
, 9
11
] [29

44
, 81
44
]

3 [19
44
, 279
176

],

(28)

which are displayed on Figure 2, top left. The five additional permutations of the factors
L1, L2 and L3 lead to five further de Casteljau-type algorithms that generate the same
curve point.

Note that these algorithms do not provide the tangent property of the classical de
Casteljau algorithm, i.e., the line connecting the last two points is generally not tangent
to the curve. Similarly, these algorithms do not have a subdivision property and cannot
be used to split the curve, as they are not based on the blossoming approach, cf. [5].
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Figure 1: The rational Bernstein functions of degree three from Example 9 (black) compared to the
Bernstein polynomials (gray).

Figure 2: Six different de Casteljau-type algorithms for value t = 1/2.
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Figure 3: The standard rational de Casteljau algorithm for value t = 1/2.

6. Conclusion

We have analyzed nested spaces of rational functions, obtained by successively mul-
tiplying the denominator with linear factors. We were able to determine the recurrence
formulas for weights and basis functions of these spaces. Each ordering of the denominator
factors provides a de Casteljau-type algorithm for curves expressed with respect to these
rational basis.

The algorithms can be extended in a straightforward way to the case of tensor-product
patches. Indeed, in this case each variable is handled separately. Future research could be
devoted to triangular rational patches with denominators that have only linear elementary
factors, and to rational spline curves and surfaces.
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