An isoperimetric problem with applications to diblock copolymer melts

E. Acerbi¹ N. Fusco² M. Morini¹

¹Dipartimento di Matematica Università di Parma

²Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università di Napoli "Federico II"

Regularity theory for elliptic and parabolic systems and problems in continuum mechanics

Telč, May 1, 2014

Block copolymers

2 Model energies

3 Second variation and local minimality

Copolymers

Polymer = a chain of many equal molecular structures, with high chemical affinity

Copolymers

Polymer = a chain of many equal molecular structures, with high chemical affinity

Block copolymer = union via covalent bond of two or more NON affine polymer chains

···-A-A-A-A-A-B-B-B-B-C-C-C-B-B-B-B-···

Copolymers

Polymer = a chain of many equal molecular structures, with high chemical affinity

Block copolymer = union via covalent bond of two or more NON affine polymer chains

···-A-A-A-A-A-A-B-B-B-B-C-C-C-B-B-B-B-···

Multiplication of properties

An example

Three-block copolymer Styrene-Butadiene-Styrene

An example

Three-block copolymer Styrene-Butadiene-Styrene

When cold,

rigid – a little tacky – rigid

An example

Three-block copolymer Styrene-Butadiene-Styrene

When hot, very fluid - viscous, adhesive - very fluid

···-A-A-A-A-A-B-B-B-B-B-B--

Multiplication of properties Microscale phase separation Nanostructures

Multiplication of properties Microscale phase separation Nanostructures

Proportion of components \implies different nanostructures

Multiplication of properties Microscale phase separation Nanostructures

Proportion of components \implies different nanostructures (also given by confinement, viewpoint disregarded here)

Spheres Cylinders Gyroids Lamellae

Ability to self-assemble in different nanostructures according to proportion \Rightarrow Applications in nanoengineering

Ability to self-assemble in different nanostructures according to proportion \Rightarrow Applications in nanoengineering

Building CHLOROSOMES

Mathematical model (Ohta-Kawasaki)

 $u: \Omega \to \mathbb{R}$ describes density:

$$\begin{cases} u(x) = 1 & \text{in phase } A \\ u(x) = -1 & \text{in phase } B \end{cases}$$

$$m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx$$
 fixed

Mathematical model (Ohta-Kawasaki)

 $u: \Omega \to {\rm I\!R}$ describes density:

$$\begin{cases} u(x) = 1 & \text{in phase } A \\ u(x) = -1 & \text{in phase } B \end{cases} \qquad \mathbf{m} = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$$

Mathematical model (Ohta-Kawasaki)

 $u: \Omega \to \mathbb{R}$ describes density:

$$\begin{cases} u(x) = 1 & \text{in phase } A \\ u(x) = -1 & \text{in phase } B \end{cases} \qquad \mathbf{m} = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$$

$$\mathcal{E}_{\varepsilon}(u) = \varepsilon \int_{\Omega} |\nabla u|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 dx + \gamma_0 \int_{\Omega} \int_{\Omega} G(x, y) (u(x) - m) (u(y) - m) dx dy$$

G(x, y) Green's function for the Laplacian

${\sf Modica\text{-}Mortola} \ \ \Rightarrow \ \ {\sf Separation} \ \ {\sf in} \ \ {\sf bulky} \ \ {\sf phases}$

Modica-Mortola ⇒ Separation in bulky phases

Non local term ⇒ Rapid intertwining of materials

Modica-Mortola ⇒ Separation in bulky phases

Non local term ⇒ Rapid intertwining of materials

(Non homogeneous distribution at solidification time ⇒ Different nanostructures)

$$G(x,y)$$
 Green's function for the Laplacian \Rightarrow

$$\int_{\Omega} G(x,y)(u-m)(u-m) dx dy = \int_{\Omega} |\nabla(\Delta^{-1}(u-m))|^2 dx$$

$$G(x,y)$$
 Green's function for the Laplacian \Rightarrow

$$\int_{\Omega} G(x,y)(u-m)(u-m) dx dy = \int_{\Omega} |\nabla(\Delta^{-1}(u-m))|^2 dx$$

Mathematically easier to handle: (Ren-Wei, 2003) as $\varepsilon \to 0$ the functionals $\frac{3}{16}$ $\mathcal{E}_{\varepsilon}$ Γ -converge in L^1 to

$$\mathcal{E}(u) = \frac{1}{2} |Du|(\Omega) + \gamma \int_{\Omega} |\nabla(\Delta^{-1}(u-m))|^2 dx$$

where $\gamma = 3\gamma_0/16 \ge 0$ (from Modica-Mortola),

$$u \in BV(\Omega; \{-1, 1\}), \text{ i.e. } u = \chi_E - \chi_{\Omega \setminus E}, \text{ } |Du|(\Omega) = 2P(E; \Omega)$$

For an easier handling . . .

Diffuse energy $u\mapsto \mathcal{E}_{\varepsilon}(u)$

For an easier handling . . .

Diffuse energy
$$u\mapsto \mathcal{E}_{arepsilon}(u)$$

$$\Gamma$$
-limit $u \mapsto \mathcal{E}(u)$

For an easier handling . . .

Diffuse energy
$$u\mapsto \mathcal{E}_{\varepsilon}(u)$$

$$\Gamma$$
-limit $u \mapsto \mathcal{E}(u)$

Geometric version

$$E \mapsto J(E) = P(E; \Omega) + \gamma \int_{\Omega} |\nabla(\Delta^{-1}(u_E - m_E))|^2 dx$$

where
$$u_E = \chi_E - \chi_{\Omega \setminus E}$$
, $m_E = |E| - |\Omega \setminus E|$

...then we will try to get back

Known in dimension 1; in general, partial answer (Alberti-Choksi-Otto, 2009)

Known in dimension 1; in general, partial answer (Alberti-Choksi-Otto, 2009)

Problem: are critical points at which J'' > 0 local minimizers?

Known in dimension 1; in general, partial answer (Alberti-Choksi-Otto, 2009)

Problem: are critical points at which J'' > 0 local minimizers?

Choksi-Sternberg: computation of J'' at critical points

Ren-Wei: for spheres, cylinders and lamellae J'' > 0 (under certain restrictions)

Ross: gyroids are strictly stable constant mean curvature surfaces

$$\Omega = \mathbb{T}^n =$$
 flat torus

$$\Omega = \mathbb{T}^n =$$
flat torus

$$J(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx$$

$$\begin{cases} -\Delta v_E = u_E - m & \text{in } \mathbb{T}^n \\ \int_{\mathbb{T}^n} v_E = 0 \end{cases} \qquad m = 2|E| - 1 \Rightarrow |E| = \frac{m+1}{2}$$

$$\Omega = \mathbb{T}^n =$$
flat torus

$$J(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx$$

$$\begin{cases} -\Delta v_E = u_E - m & \text{in } \mathbb{T}^n \\ \int_{\mathbb{T}^n} v_E = 0 \end{cases} \qquad m = 2|E| - 1 \Rightarrow |E| = \frac{m+1}{2}$$

E.L. equation for (smooth) minimizers of J(E) under volume constraint

(E.L.)
$$H_{\partial E}(x) + \gamma v_E(x) = \lambda$$
 on ∂E

where $H_{\partial F} = \text{sum of principal curvatures}$

$$\Omega = \mathbb{T}^n =$$
flat torus

$$J(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx$$

$$\begin{cases} -\Delta v_E = u_E - m & \text{in } \mathbb{T}^n \\ \int_{\mathbb{T}^n} v_E = 0 \end{cases} \qquad m = 2|E| - 1 \Rightarrow |E| = \frac{m+1}{2}$$

E.L. equation for (smooth) minimizers of J(E) under volume constraint

(E.L.)
$$H_{\partial E}(x) + \gamma v_E(x) = \lambda$$
 on ∂E

where $H_{\partial E} = \text{sum of principal curvatures}$

a regular critical point is a solution $E \in C^2$ of (E.L.) (Spheres, cylinders, gyroids and lamellae are r.c.p.)

Translation invariance

We shall see that on r.c.p. the second variation depends on normal displacement on the boundary of E, thus a function of the type

$$J''(E)[\varphi]$$
, $\varphi \in H^1(\partial E)$

We shall see that on r.c.p. the second variation depends on normal displacement on the boundary of E, thus a function of the type

$$J''(E)[\varphi]$$
, $\varphi \in H^1(\partial E)$

but
$$J(E)=J(E+ au)$$
 therefore
$$J''(E)[au\cdot
u_E(x)]=0 ext{ for all } au$$

We shall see that on r.c.p. the second variation depends on normal displacement on the boundary of E, thus a function of the type

$$J''(E)[\varphi]$$
, $\varphi \in H^1(\partial E)$

but
$$J(E) = J(E + au)$$
 therefore
$$J''(E)[au \cdot
u_E(x)] = 0$$
 for all au

In which sense is E a strict local minimizer?

We shall see that on r.c.p. the second variation depends on normal displacement on the boundary of E, thus a function of the type

$$J''(E)[\varphi]$$
, $\varphi \in H^1(\partial E)$

but
$$J(E) = J(E + \tau)$$
 therefore
$$J''(E)[\tau \cdot \nu_E(x)] = 0$$
 for all τ

In which sense is E a strict local minimizer?

In which sense is J''(E) positive?

Distance between (equivalence classes of) sets:

$$d(E,F) = \min_{\tau} |E \triangle (F + \tau)|$$

Distance between (equivalence classes of) sets:

$$d(E,F) = \min_{\tau} |E \triangle (F + \tau)|$$

Natural definition: $E \subset \mathbb{T}^n$ is a (strict) local minimizer if $\exists \delta > 0$ s.t.

for all $F \subset \mathbb{T}^n$ with $0 < d(E, F) < \delta$, and always satisfying |F| = |E|

Remark:

$$\left| \int_{\mathbb{T}^n} |\nabla v_E|^2 \, dx - \int_{\mathbb{T}^n} |\nabla v_F|^2 \, dx \right| \le c |E \Delta F|$$

Remark:

$$\left| \int_{\mathbb{T}^n} |\nabla v_E|^2 \, dx - \int_{\mathbb{T}^n} |\nabla v_F|^2 \, dx \right| \le c |E\Delta F|$$

Remark (Esposito-Fusco-like, much more a theorem than a remark...):

volume-constrained minimizer \longleftrightarrow minimizer of $J(F) + \Lambda ||F| - |E||$

Remark:

$$\left| \int_{\mathbb{T}^n} |\nabla v_E|^2 \, dx - \int_{\mathbb{T}^n} |\nabla v_F|^2 \, dx \right| \le c |E \Delta F|$$

Remark (Esposito-Fusco-like, much more a theorem than a remark...):

volume-constrained minimizer \longleftrightarrow minimizer of $J(F) + \Lambda ||F| - |E||$

Consequence: Regularity of local minimizers

Sternberg-Topaloglu 2011 for N=2

Local minimizers of

$$J(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx$$

are (ω, R) -minimizers of the area functional:

$$P_{\mathbb{T}^n}(E) \leq P_{\mathbb{T}^n}(F) + \omega r^n$$

for all
$$F \subset \mathbb{T}^n$$
 s.t. $E\Delta F \subset\subset B_r(x_0)$, $0 < r < R$

Local minimizers of

$$J(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx$$

are (ω, R) -minimizers of the area functional:

$$P_{\mathbb{T}^n}(E) \leq P_{\mathbb{T}^n}(F) + \omega r^n$$

for all $F \subset \mathbb{T}^n$ s.t. $E\Delta F \subset\subset B_r(x_0)$, 0 < r < R

$\mathsf{Theorem}$

If $E \subset \mathbb{T}^n$ is a local minimizer of J, then $\partial^* E \setminus \Sigma$ is $C^{3,\alpha}$ for all $\alpha < 1$, and the closed set Σ satisfies $\dim_{\mathcal{H}}(\Sigma) \leq n - 8$

We shall see that on r.c.p. the second variation depends on normal displacement on the boundary of E, thus a function of the type

$$J''(E)[\varphi]$$
, $\varphi \in H^1(\partial E)$

but
$$J(E) = J(E + au)$$
 therefore
$$J''(E)[au \cdot
u_E(x)] = 0$$
 for all au

In which sense is E a strict local minimizer?

In which sense is J''(E) positive?

$$J''(E)[\nu_i] = 0 \quad \forall i \implies$$
consider $T = \mathcal{L}\{\nu_1, \dots \nu_n\}$

$$J''(E)[\nu_i] = 0 \quad \forall i \quad \Rightarrow$$

$$consider \quad T = \mathcal{L}\{\nu_1, \dots \nu_n\}$$

Ambient space
$$\widetilde{H}^1 = \{ \varphi \in H^1(\partial E) : \int \varphi = 0 \}$$

$$J''(E)[\nu_i] = 0 \quad \forall i \quad \Rightarrow$$

$$consider \quad T = \mathcal{L}\{\nu_1, \dots \nu_n\}$$

Infinitesimal volume-preserving deformations

Ambient space
$$\widetilde{H}^1 = \{ \varphi \in H^1(\partial E) : \int \varphi = 0 \}$$

Decomposition

$$\widetilde{H}^1 = T \oplus T^{\perp}$$

SO

$$T^{\perp} = \{ \varphi \in H^1(\partial E) : \int \varphi = \int \varphi \nu_i = 0 \}$$

$$J''(E)[\nu_i] = 0 \quad \forall i \quad \Rightarrow$$

$$consider \quad T = \mathcal{L}\{\nu_1, \dots \nu_n\}$$

Infinitesimal volume-preserving deformations

Ambient space
$$\widetilde{H}^1 = \{ \varphi \in H^1(\partial E) : \int \varphi = 0 \}$$

Decomposition

$$\widetilde{H}^1 = T \oplus T^{\perp}$$

SO

$$T^{\perp} = \{ \varphi \in H^1(\partial E) : \int \varphi = \int \varphi \nu_i = 0 \}$$

$$J''(E) > 0$$
 means $J''(E)[\varphi] > 0 \quad \forall \varphi \in T^{\perp} \setminus \{0\}$

Good decomposition; indeed

$$J''(E) > 0 \quad \Rightarrow \quad J''(E)[\varphi] \ge m_0 \|\varphi\|_{H^1} \qquad \forall \varphi \in T^{\perp}$$

Are regular critical points local minimizers? Under which conditions? Is J'' > 0 enough?

Are regular critical points local minimizers? Under which conditions? Is J'' > 0 enough?

And ... with respect to which perturbations is second variation made?

Are regular critical points local minimizers? Under which conditions? Is J'' > 0 enough?

And ... with respect to which perturbations is second variation made?

```
E \in C^2 \Phi: \mathbb{T}^n \times (-1,1) \mapsto \mathbb{T}^n smooth diffeomorphism s.t. \Phi(x,0) = x E_t := \Phi(\cdot,t)(E),
```

Are regular critical points local minimizers? Under which conditions? Is J'' > 0 enough?

And ... with respect to which perturbations is second variation made?

$$E \in C^2$$
 $\Phi: \mathbb{T}^n \times (-1,1) \mapsto \mathbb{T}^n$ smooth diffeomorphism s.t. $\Phi(x,0) = x$ $E_t := \Phi(\cdot,t)(E)$,

$$\frac{d^2}{dt^2}J(E_t)\Big|_{t=0}$$

Theorem 1 (A.-Fusco-Morini; Choksi-Sternberg 2007)

If
$$X(x) := \frac{\partial \Phi}{\partial t}(x,0)$$
, we have
$$\frac{d^2}{dt^2} J(E_t)_{|t=0} = \int_{\partial E} \left(|D_{\tau}(X \cdot \nu)|^2 - |B_{\partial E}|^2 (X \cdot \nu)^2 \right) d\mathcal{H}^{n-1} + 8\gamma \int_{\partial E} \int_{\partial E} G(x,y)(X \cdot \nu)(x)(X \cdot \nu)(y) d\mathcal{H}^{n-1}(x) d\mathcal{H}^{n-1}(y) + 4\gamma \int_{\partial E} \partial_{\nu} v_E(X \cdot \nu)^2 d\mathcal{H}^{n-1} - \int_{\partial E} (4\gamma v_E + H_{\partial E}) \operatorname{div}_{\tau} (X_{\tau}(X \cdot \nu)) d\mathcal{H}^{n-1} + \int_{\partial E} (4\gamma v_E + H_{\partial E}) (\operatorname{div} X)(X \cdot \nu) d\mathcal{H}^{n-1}$$

$|B_{\partial F}|^2 = \text{sum of squares of principal curvatures}$

If Φ is volume preserving, that is $|E_t| = |E|$,

$$\int_{\partial E} (\mathrm{div} X) (X \cdot \nu) \, d\mathcal{H}^{n-1} = 0$$

If Φ is volume preserving, that is $|E_t| = |E|$,

$$\int_{\partial E} (\operatorname{div} X)(X \cdot \nu) \, d\mathcal{H}^{n-1} = 0$$

If E is a critical point, then $H_{\partial E} + 4\gamma v_E = const.$

If Φ is volume preserving, that is $|E_t| = |E|$,

$$\int_{\partial E} (\mathrm{div} X)(X \cdot \nu) \, d\mathcal{H}^{n-1} = 0$$

If E is a critical point, then $H_{\partial E} + 4\gamma v_E = const.$

Then (↑) the second variation reduces (Choksi-Sternberg) to

$$\begin{split} \frac{d^2}{dt^2} J(E_t)_{|t=0} &= \int_{\partial E} \left(|D_{\tau}(X \cdot \nu)|^2 - |B_{\partial E}|^2 (X \cdot \nu)^2 \right) d\mathcal{H}^{n-1} \\ &+ 8\gamma \int_{\partial E} \int_{\partial E} G(x, y) (X \cdot \nu) (x) (X \cdot \nu) (y) d\mathcal{H}^{n-1}(x) d\mathcal{H}^{n-1}(y) \\ &+ 4\gamma \int_{\partial E} \partial_{\nu} v_E (X \cdot \nu)^2 d\mathcal{H}^{n-1} \qquad \left[\simeq F(X_{|\partial E} \cdot \nu) \right] \end{split}$$

If Φ is volume preserving, that is $|E_t| = |E|$,

$$\int_{\partial E} (\operatorname{div} X)(X \cdot \nu) \, d\mathcal{H}^{n-1} = 0$$

If E is a critical point, then $H_{\partial E} + 4\gamma v_E = const.$

Then (↑) the second variation reduces (Choksi-Sternberg) to

$$\begin{split} \frac{d^2}{dt^2} J(E_t)_{|t=0} &= \int_{\partial E} \left(|D_{\tau}(X \cdot \nu)|^2 - |B_{\partial E}|^2 (X \cdot \nu)^2 \right) d\mathcal{H}^{n-1} \\ &+ 8\gamma \int_{\partial E} \int_{\partial E} G(x, y) (X \cdot \nu) (x) (X \cdot \nu) (y) d\mathcal{H}^{n-1}(x) d\mathcal{H}^{n-1}(y) \\ &+ 4\gamma \int_{\partial E} \partial_{\nu} v_E (X \cdot \nu)^2 d\mathcal{H}^{n-1} \qquad \left[\simeq F(X_{|\partial E} \cdot \nu) \right] \end{split}$$

Remark: $\int_{\partial E} X \cdot \nu \, d\mathcal{H}^{n-1} = \frac{d|E_t|}{dt}\Big|_{t=0} = 0$ if volume-preserving

For every critical point E of class C^2 set

$$\frac{\partial^{2} J(E)[\varphi]}{\partial E} = \int_{\partial E} \left(|D_{\tau} \varphi|^{2} - |B_{\partial E}|^{2} \varphi^{2} \right) d\mathcal{H}^{n-1}$$

$$+ 8\gamma \int_{\partial E} \int_{\partial E} G(x, y) \varphi(x) \varphi(y) d\mathcal{H}^{n-1}(x) d\mathcal{H}^{n-1}(y)$$

$$+ 4\gamma \int_{\partial E} \partial_{\nu} v_{E} \varphi^{2} d\mathcal{H}^{n-1}$$

for all $\varphi \in \widetilde{H}^1(\partial E)$

A first quantitative result:

Theorem 2 ($W^{2,p}$ perturbations — A.-Fusco-Morini)

Let E be a C^2 critical point with

$$\partial^2 J(E)[\varphi] > 0 \qquad \forall \varphi \in T^{\perp}(\partial E) \setminus \{0\} \;,$$

and let $p > \max\{2, n-1\}$. There exist $\delta > 0$ and $C_0 > 0$ s.t. if $F \subset \mathbb{T}^n$ satisfies

$$d(E,F) < \delta$$
 $|F| = |E|$

and

$$\partial F = \{x + \psi(x)\nu(x) : x \in \partial E\}, \text{ with } \|\psi\|_{W^{2,p}(\partial E)} < \delta$$

then

$$(Q) J(F) \ge J(E) + C_0[d(E, F)]^2$$

Key points:

Key points:

Construction of a volume-preserving flow:

in a neighbourhood of ∂E there exists a smooth field X with $\operatorname{div} X = 0$ s.t. the associated flow

$$\Phi(x,0) = x, \quad \frac{\partial \Phi}{\partial t} = X(\Phi)$$

satisfies

$$\|\Phi(\cdot,t)-\mathrm{Id}\|_{2,p}\leq c\|\psi\|_{2,p} \qquad |E_t|\equiv |E| \qquad E_1=F$$

Key points:

Construction of a volume-preserving flow:

in a neighbourhood of ∂E there exists a smooth field X with $\operatorname{div} X = 0$ s.t. the associated flow

$$\Phi(x,0) = x, \quad \frac{\partial \Phi}{\partial t} = X(\Phi)$$

satisfies

$$\|\Phi(\cdot,t)-\mathrm{Id}\|_{2,p}\leq c\|\psi\|_{2,p} \qquad |E_t|\equiv |E| \qquad E_1=F$$

Removal (control) of the translation part:

there exist $\sigma \in \mathbb{R}^n$, $\varphi \in W^{2,p}(\partial E)$ s.t. $|\sigma| + \|\varphi\|_{2,p} \le C \|\psi\|_{2,p}$ and

$$\partial F - \sigma = \{x + \varphi(x)\nu(x) : x \in \partial E\}, \quad \left| \int_{\partial E} \varphi \nu^{E} \right| \le C\delta \|\varphi\|_{2}$$

From $W^{2,p}$ to L^1 minimality

Theorem 3 (L^1 perturbations — A.-Fusco-Morini)

Let $E \subset \mathbb{T}^n$ be a regular critical point of J such that

$$\partial^2 J(E)[\varphi] > 0 \qquad \forall \varphi \in T^{\perp}(\partial E) \setminus \{0\} \ .$$

There exists $\delta > 0$ s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E,F) < \delta$

$$J(F) \ge J(E) + \frac{C_0}{4} d(E, F)^2$$
.

(C_0 is the constant appearing in the $W^{2,p}$ theorem)

Consequences: Ohta-Kawasaki energy

Proposition

If E regular critical point of J with J''(E) > 0, there exists a family $\{u_{\varepsilon}\}_{{\varepsilon}<{\varepsilon}_0}$ of isolated local minimizers of the diffuse energy ${\mathcal E}_{\varepsilon}$ with prescribed volume $m=\int_{{\mathbb T}^n} u_E \, dx$ such that

$$u_{arepsilon}
ightarrow u_{arepsilon} \quad ext{in} \quad L^1(\mathbb{T}^n)$$

as $\varepsilon \to 0$.

 $\gamma = 0$: area and quantitative isoperimetric inequality

$\gamma=0$: area and quantitative isoperimetric inequality

Corollary

If $E \subset \mathbb{T}^n$ is regular and has constant mean curvature, and if

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall \ \varphi \in T^{\perp}(\partial E) \setminus \{0\} \ ,$$

there exist δ , C > 0 s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \ge P_{\mathbb{T}^n}(E) + C[d(E,F)]^2.$$

$\gamma=0$: area and quantitative isoperimetric inequality

Corollary

If $E \subset \mathbb{T}^n$ is regular and has constant mean curvature, and if

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall \ \varphi \in T^{\perp}(\partial E) \setminus \{0\} \ ,$$

there exist δ , C > 0 s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E,F)]^2.$$

Known only for L^{∞} perturbations, or with minimal surface methods ($\Rightarrow n \le 7$) but always with no quantitative estimate (Morgan-Ros, 2010)

$\gamma=0$: area and quantitative isoperimetric inequality

Corollary

If $E \subset \mathbb{T}^n$ is regular and has constant mean curvature, and if

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall \ \varphi \in T^{\perp}(\partial E) \setminus \{0\} \ ,$$

there exist δ , C > 0 s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E,F)]^2.$$

Corollary

$$P(F) \ge P(B_r) + C[d(B_r, F)]^2 \quad \forall F \subset \mathbb{R}^n, \quad |F| = |B_r|$$

(Fusco-Maggi-Pratelli 2008, Figalli-Maggi-Pratelli 2010, Cicalese-Leonardi 2011)

B. White (Almgren)'s theorem

B. White (Almgren)'s theorem

If some ω -minimizers E_h of the area functional converge in L^1 to a C^2 set, for large h the boundary ∂E_h is a graph on ∂E :

$$\partial E_h = \{ x + \psi_h \nu_E(x) \}$$

with ψ_h of class $C^{1,1/2}$ and $\psi_h \to 0$ in $C^{1,\alpha}$ for $\alpha < 1/2$ (this implies closeness in L^{∞}).

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations From L^{∞} to L^{1} perturbations

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations From L^{∞} to L^{1} perturbations Extension: Neumann case

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

By contradiction, sequence (E_h, γ_h) with $\gamma_h \to 0$, but then

$$J_h = P_{\mathbb{T}^n} + \gamma_h N.L.T.$$

 Γ -converges to $P_{\mathbb{T}^n}$

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

(*) known to be true if N=2 for $|m|<1-2/\pi$; if N=3 only for m=0 (Hadwiger).

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

Remark

In any dimension, the set of values m for which the lamella is the unique minimizer of the perimeter is open.

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

Remark

In any dimension, the set of values m for which the lamella is the unique minimizer of the perimeter is open.

This leads to

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of the isoperimetric problem in \mathbb{T}^n with volume constraint, then also of $P_{\mathbb{T}^n} + \gamma \cdot \text{nonlocal term}$, provided γ small.

Corollary (Cases N = 2 and N = 3)

If N = 2 and $|m| < 1 - 2/\pi$ or N = 3 and $|m| < m_3$ then for all $\gamma < \gamma_0$ the single lamella is the unique minimizer of $P_{\mathbb{T}^n} + \gamma \cdot N.L.T$.

Block copolymers Model energies Second variation and local minimality

Case of multiple lamellae:

Case of multiple lamellae:

Corollary (k lamellae with density m)

For any m and γ , there esists k_0 such that for $k \geq k_0$ the k-lamellar set with volume parameter m is an isolated local minimizer of $P_{\mathbb{T}^n} + \gamma \cdot N.L.T$.

Case of multiple lamellae:

Corollary (k lamellae with density m)

For any m and γ , there esists k_0 such that for $k \geq k_0$ the k-lamellar set with volume parameter m is an isolated local minimizer of $P_{\mathbb{T}^n} + \gamma \cdot N.L.T$.

E.A., N. Fusco, M. Morini: Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013)

B. White (Almgren)'s theorem

B. White (Almgren)'s theorem

If some ω -minimizers E_h of the area functional converge in L^1 to a C^2 set, for large h the boundary ∂E_h is a graph on ∂E :

$$\partial E_h = \{ x + \psi_h \nu_E(x) \}$$

with ψ_h of class $C^{1,1/2}$ and $\psi_h \to 0$ in $C^{1,\alpha}$ for $\alpha < 1/2$ (this implies closeness in L^{∞}).

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations

B. White (Almgren)'s theorem

From $W^{2,p}$ to L^{∞} perturbations

(Penalization + obstacle)

Compare J(F) with $J(F_h)$, truncation at a distance h (on both sides) from ∂E

B. White (Almgren)'s theorem

From $W^{2,p}$ to L^{∞} perturbations

(Penalization + obstacle)

Compare J(F) with $J(F_h)$, truncation at a distance h (on both sides) from ∂E : for large h volume is preserved and F_h solves (another penalization) a problem without obstacle \Rightarrow is a regular graph and (lots of computations ...) the curvatures are equibounded, so ψ_h equibounded in $W^{2,p}$... curvatures converge strongly in L^p

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations From L^{∞} to L^{1} perturbations

B. White (Almgren)'s theorem

From $W^{2,p}$ to L^{∞} perturbations

From L^{∞} to L^{1} perturbations

Via penalization, one can apply Almgren's theorem (in particular $F_h \to E$ in $C^{1,\alpha}$), then needs a delicate comparison between the decay speeds of $d(E_h, E)$ and $J(E_h) - J(E)$.

B. White (Almgren)'s theorem From $W^{2,p}$ to L^{∞} perturbations From L^{∞} to L^{1} perturbations Extension: Neumann case

Let $E \subset \mathbb{T}^n$ a C^2 open set with constant mean curvature s.t.

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \text{for all } \varphi \in \mathcal{T}^{\perp}(\partial E) \setminus \{0\}$$

Let $E \subset \mathbb{T}^n$ a C^2 open set with constant mean curvature s.t.

$$\int_{\partial F} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \text{for all } \varphi \in \mathcal{T}^{\perp}(\partial E) \setminus \{0\}$$

Step 1 By Theorem 2, if |F| = |E|,

$$P_{\mathbb{T}^n}(F) \ge P_{\mathbb{T}^n}(E) + C_0 d(E, F)^2$$

whenever $\partial F = \{x + \psi(x)\nu(x) : x \in \partial E\}$, with $\|\psi\|_{W^{2,p}(\partial E)} < \delta$

Let $E \subset \mathbb{T}^n$ a C^2 open set with constant mean curvature s.t.

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \text{for all } \varphi \in \mathcal{T}^{\perp}(\partial E) \setminus \{0\}$$

Step 1 By Theorem 2, if |F| = |E|,

$$P_{\mathbb{T}^n}(F) \ge P_{\mathbb{T}^n}(E) + C_0 d(E, F)^2$$

whenever $\partial F = \{x + \psi(x)\nu(x) : x \in \partial E\}$, with $\|\psi\|_{W^{2,p}(\partial E)} < \delta$ Step 2 If |F| = |E| and $\operatorname{dist}_{\mathcal{H}}(E,F) < \delta$, then

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E)$$

Let $E \subset \mathbb{T}^n$ a C^2 open set with constant mean curvature s.t.

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \text{for all } \varphi \in \mathcal{T}^{\perp}(\partial E) \setminus \{0\}$$

Step 1 By Theorem 2, if |F| = |E|,

$$P_{\mathbb{T}^n}(F) \ge P_{\mathbb{T}^n}(E) + C_0 d(E, F)^2$$

whenever $\partial F = \{x + \psi(x)\nu(x) : x \in \partial E\}$, with $\|\psi\|_{W^{2,p}(\partial E)} < \delta$ Step 2 If |F| = |E| and $\operatorname{dist}_{\mathcal{H}}(E,F) < \delta$, then

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E)$$

We want to show that if $d(E, F) < \delta$, then

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + \frac{C_0}{4}d(E,F)^2$$

Let $E \subset \mathbb{T}^n$ a C^2 open set with constant mean curvature s.t.

$$\int_{\partial E} \left(|D_{\tau} \varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \text{for all } \varphi \in \mathcal{T}^{\perp}(\partial E) \setminus \{0\}$$

Step 1 By Theorem 2, if |F| = |E|,

$$P_{\mathbb{T}^n}(F) \ge P_{\mathbb{T}^n}(E) + C_0 d(E, F)^2$$

whenever $\partial F = \{x + \psi(x)\nu(x) : x \in \partial E\}$, with $\|\psi\|_{W^{2,p}(\partial F)} < \delta$ **Step 2** If |F| = |E| and $\operatorname{dist}_{\mathcal{H}}(E, F) < \delta$, then

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E)$$

We want to show that if $d(E, F) < \delta$, then

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + \frac{C_0}{4}d(E,F)^2$$

We argue by contradiction, assuming that this is not true, i.e.

$$\varepsilon_h = d(E_h, E) \to 0, \qquad P_{\mathbb{T}^n}(E_h) < P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2$$

$$\varepsilon_h = d(E_h, E) \to 0, \qquad P_{\mathbb{T}^n}(E_h) < P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2$$

Step 3 Consider the minimizers F_h of the following problems

(1)
$$\operatorname{\mathsf{Min}}\left\{P_{\mathbb{T}^n}(F) + \Lambda_1 \sqrt{\left(d(F,E) - \varepsilon_h\right)^2 + \varepsilon_h} + \Lambda_2 ||F| - |E||\right\}$$

$$\varepsilon_h = d(E_h, E) \to 0, \qquad P_{\mathbb{T}^n}(E_h) < P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2$$

Step 3 Consider the minimizers F_h of the following problems

(1)
$$\operatorname{Min}\left\{P_{\mathbb{T}^n}(F) + \Lambda_1 \sqrt{\left(d(F,E) - \varepsilon_h\right)^2 + \varepsilon_h} + \Lambda_2 ||F| - |E||\right\}$$

One can prove:

- if Λ_2 is sufficiently large (independently on Λ_1), then $|F_h| = |E|$

$$\varepsilon_h = d(E_h, E) \to 0, \qquad P_{\mathbb{T}^n}(E_h) < P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2$$

Step 3 Consider the minimizers F_h of the following problems

(1)
$$\operatorname{Min}\left\{P_{\mathbb{T}^n}(F) + \Lambda_1 \sqrt{\left(d(F,E) - \varepsilon_h\right)^2 + \varepsilon_h} + \Lambda_2 ||F| - |E||\right\}$$

One can prove:

- if Λ_2 is sufficiently large (independently on Λ_1), then $|F_h| = |E|$
- $\chi_{F_h} \to \chi_{F_0}$ in $L^1(\mathbb{T}^n)$, where F_0 is a minimizer of

(2)
$$J(F) + \Lambda_1 d(F, E) + \Lambda_2 ||F| - |E||$$

$$\varepsilon_h = d(E_h, E) \to 0, \qquad P_{\mathbb{T}^n}(E_h) < P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2$$

Step 3 Consider the minimizers F_h of the following problems

(1)
$$\operatorname{Min}\left\{P_{\mathbb{T}^n}(F) + \Lambda_1 \sqrt{\left(d(F,E) - \varepsilon_h\right)^2 + \varepsilon_h} + \Lambda_2 ||F| - |E||\right\}$$

One can prove:

- if Λ_2 is sufficiently large (independently on Λ_1), then $|F_h| = |E|$

- $\chi_{F_h} \to \chi_{F_0}$ in $L^1(\mathbb{T}^n)$, where F_0 is a minimizer of

(2)
$$J(F) + \Lambda_1 d(F, E) + \Lambda_2 ||F| - |E||$$

- if Λ_1 is sufficiently large (independently on Λ_2), the only minimizer of the functional in (2), is E (up to a translation), hence

$$\chi_{F_h} \to \chi_E$$
 in $L^1(\mathbb{T}^n)$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\sigma^2 \varepsilon_h^2 + \varepsilon_h}$$

$$\leq P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\left(d(F_h, E) - \varepsilon_h\right)^2 + \varepsilon_h}$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$P_{\mathbb{T}^{n}}(F_{h}) + \Lambda_{1}\sqrt{\sigma^{2}\varepsilon_{h}^{2} + \varepsilon_{h}}$$

$$\leq P_{\mathbb{T}^{n}}(F_{h}) + \Lambda_{1}\sqrt{\left(d(F_{h}, E) - \varepsilon_{h}\right)^{2} + \varepsilon_{h}}$$

$$\leq P_{\mathbb{T}^{n}}(E_{h}) + \Lambda_{1}\sqrt{\varepsilon_{h}}$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$\begin{split} P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\sigma^2 \varepsilon_h^2 + \varepsilon_h} \\ &\leq P_{\mathbb{T}^n}(E_h) + \Lambda_1 \sqrt{\varepsilon_h} \\ &\leq P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2 + \Lambda_1 \sqrt{\varepsilon_h} \end{split}$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$\begin{split} P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\sigma^2 \varepsilon_h^2 + \varepsilon_h} \\ &\leq P_{\mathbb{T}^n}(E) + \frac{C_0}{4} d(E_h, E)^2 + \Lambda_1 \sqrt{\varepsilon_h} \\ &= P_{\mathbb{T}^n}(E) + \frac{C_0}{4} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h} \end{split}$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

$$\begin{split} P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\sigma^2 \varepsilon_h^2 + \varepsilon_h} \\ & \leq P_{\mathbb{T}^n}(E) + \frac{C_0}{4} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h} \\ & \leq P_{\mathbb{T}^n}(F_h) + \frac{C_0}{4} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h} \,, \end{split}$$

$$\partial F_h = \{x + \psi_h(x)\nu(x) : x \in \partial E\}, \ \psi_h \to 0 \text{ in } C^{1,\alpha}(\partial E), \ \alpha \in (0,1/2)$$

Step 4 Claim: The functions $\psi_h \to 0$ in $W^{2,p}(\partial E)$ for all $p \ge 1$

To this aim observe that $\varepsilon_h^{-1}d(F_h,E) \to 1$. In fact if $|d(F_h,E) - \varepsilon_h| \ge \sigma \varepsilon_h$ for some $\sigma > 0$, then

$$P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\sigma^2 \varepsilon_h^2 + \varepsilon_h}$$

$$\leq P_{\mathbb{T}^n}(F_h) + \frac{C_0}{4} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h},$$

Impossible!

$$H_{\partial F_h} = \begin{cases} \frac{\Lambda_1 \big(d(F_h, E) - \varepsilon_h \big)}{\sqrt{\big(d(F_h, E) - \varepsilon_h \big)^2 + \varepsilon_h}} \operatorname{sign} \big(\chi_{F_h} - \chi_E \big) + \lambda_h & \text{on } \partial F_h \setminus \partial E, \\ \lambda & \text{on } \partial F_h \cap \partial E, \end{cases}$$

for some Lagrange multipliers $\lambda_h \to \lambda$.

$$H_{\partial F_h} = \begin{cases} \frac{\Lambda_1 \big(d(F_h, E) - \varepsilon_h \big)}{\sqrt{\big(d(F_h, E) - \varepsilon_h \big)^2 + \varepsilon_h}} \operatorname{sign} \big(\chi_{F_h} - \chi_E \big) + \lambda_h & \text{on } \partial F_h \setminus \partial E, \\ \lambda & \text{on } \partial F_h \cap \partial E, \end{cases}$$

for some Lagrange multipliers $\lambda_h \to \lambda$. Since $\varepsilon_h^{-1} d(F_h, E) \to 1$,

$$H_{\partial F_h} \to H_{\partial E} \text{ in } L^{\infty}(\partial E) \implies \psi_h \to 0 \text{ in } W^{2,p}(\partial E) \ \forall p \ge 1$$

$$H_{\partial F_h} = \begin{cases} \frac{\Lambda_1 \big(d(F_h, E) - \varepsilon_h \big)}{\sqrt{\big(d(F_h, E) - \varepsilon_h \big)^2 + \varepsilon_h}} \operatorname{sign} \big(\chi_{F_h} - \chi_E \big) + \lambda_h & \text{on } \partial F_h \setminus \partial E, \\ \lambda & \text{on } \partial F_h \cap \partial E, \end{cases}$$

for some Lagrange multipliers
$$\lambda_h \to \lambda$$
. Since $\varepsilon_h^{-1} d(F_h, E) \to 1$, $H_{\partial F_h} \to H_{\partial E}$ in $L^{\infty}(\partial E) \implies \psi_h \to 0$ in $W^{2,p}(\partial E) \ \forall p \ge 1$

$$\text{But} \qquad P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\varepsilon_h} \le P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\left(d(E_h, E) - \varepsilon_h\right)^2 + \varepsilon_h}$$

$$\le P_{\mathbb{T}^n}(E_h) + \Lambda_1 \sqrt{\varepsilon_h} \le P_{\mathbb{T}^n}(E) + \frac{C_0}{\Lambda} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h}$$

 $\leq P_{\mathbb{T}^n}(E) + \frac{C_0}{2}d(F_h, E)^2 + \Lambda_1\sqrt{\varepsilon_h}$

$$H_{\partial F_h} = \begin{cases} \frac{\Lambda_1 \big(d(F_h, E) - \varepsilon_h \big)}{\sqrt{\big(d(F_h, E) - \varepsilon_h \big)^2 + \varepsilon_h}} \operatorname{sign} \big(\chi_{F_h} - \chi_E \big) + \lambda_h & \text{on } \partial F_h \setminus \partial E, \\ \lambda & \text{on } \partial F_h \cap \partial E, \end{cases}$$

for some Lagrange multipliers $\lambda_h \to \lambda$. Since $\varepsilon_h^{-1} d(F_h, E) \to 1$,

$$H_{\partial F_h} \to H_{\partial E} \text{ in } L^{\infty}(\partial E) \implies \psi_h \to 0 \text{ in } W^{2,p}(\partial E) \ \forall p \ge 1$$

But
$$P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\varepsilon_h} \leq P_{\mathbb{T}^n}(F_h) + \Lambda_1 \sqrt{\left(d(E_h, E) - \varepsilon_h\right)^2 + \varepsilon_h}$$
$$\leq P_{\mathbb{T}^n}(E_h) + \Lambda_1 \sqrt{\varepsilon_h} \leq P_{\mathbb{T}^n}(E) + \frac{C_0}{4} \varepsilon_h^2 + \Lambda_1 \sqrt{\varepsilon_h}$$
$$\leq P_{\mathbb{T}^n}(E) + \frac{C_0}{2} d(F_h, E)^2 + \Lambda_1 \sqrt{\varepsilon_h}$$

$$\implies P_{\mathbb{T}^n}(F_h) \leq P_{\mathbb{T}^n}(E) + \frac{C_0}{2} d(F_h, E)^2$$

Contradiction to the $W^{2,p}$ -minimality of E!