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Copolymers

Polymer = a chain of many equal molecular structures,
with high chemical affinity

Block copolymer = union via covalent bond of two
or more NON affine polymer chains

· · · -A-A-A-A-A-A-B-B-B-B-C-C-C-B-B-B-B-· · ·

Multiplication of properties
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Three-block copolymer
Styrene-Butadiene-Styrene

When cold, rigid – a little tacky – rigid
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An example

Three-block copolymer
Styrene-Butadiene-Styrene

When hot, very fluid – viscous, adhesive – very fluid
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Diblock copolymers

· · · -A-A-A-A-A-A-B-B-B-B-B-B-· · ·

Multiplication of properties
Microscale phase separation
Nanostructures

Proportion of components =⇒ different nanostructures
(also given by confinement, viewpoint disregarded here)

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 5/38



Block copolymers
Model energies

Second variation and local minimality

Diblock copolymers

· · · -A-A-A-A-A-A-B-B-B-B-B-B-· · ·

Multiplication of properties
Microscale phase separation
Nanostructures

Proportion of components =⇒ different nanostructures
(also given by confinement, viewpoint disregarded here)

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 5/38



Block copolymers
Model energies

Second variation and local minimality

Diblock copolymers

· · · -A-A-A-A-A-A-B-B-B-B-B-B-· · ·

Multiplication of properties
Microscale phase separation
Nanostructures

Proportion of components =⇒ different nanostructures

(also given by confinement, viewpoint disregarded here)

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 5/38



Block copolymers
Model energies

Second variation and local minimality

Diblock copolymers

· · · -A-A-A-A-A-A-B-B-B-B-B-B-· · ·

Multiplication of properties
Microscale phase separation
Nanostructures

Proportion of components =⇒ different nanostructures
(also given by confinement, viewpoint disregarded here)

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 5/38



Block copolymers
Model energies

Second variation and local minimality

Lamellae Spheres

Spheres Cylinders Gyroids Lamellae
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Ability to self-assemble in different nanostructures according to
proportion ⇒ Applications in nanoengineering

Building CHLOROSOMES
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Mathematical model (Ohta-Kawasaki)

u : Ω→ IR describes density:{
u(x) = 1 in phase A
u(x) = −1 in phase B

m =
1
|Ω|

∫
Ω
u dx fixed

Ohta-Kawasaki = Modica-Mortola
+ Non local term
(+ Volume constraint)

Eε(u) = ε

∫
Ω
|∇u|2dx +

1
ε

∫
Ω
(1−u2)2dx

+ γ0

∫
Ω

∫
Ω
G (x , y)(u(x)−m)(u(y)−m) dx dy

G (x , y) Green’s function for the Laplacian
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Modica-Mortola ⇒ Separation in bulky phases

Non local term ⇒ Rapid intertwining of materials

(Non homogeneous distribution at solidification time
⇒ Different nanostructures)
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G (x , y) Green’s function for the Laplacian ⇒∫
Ω
G (x , y)(u−m)(u−m) dx dy =

∫
Ω
|∇(∆−1(u−m))|2dx

Mathematically easier to handle: (Ren-Wei, 2003) as ε→ 0 the
functionals 3

16 Eε Γ-converge in L1 to

E(u) =
1
2
|Du|(Ω) + γ

∫
Ω
|∇(∆−1(u −m))|2 dx

where γ = 3γ0/16 ≥ 0 (from Modica-Mortola),

u ∈ BV (Ω; {−1, 1}), i.e. u = χE − χΩ\E , |Du|(Ω) = 2P(E ; Ω)
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For an easier handling . . .

Diffuse energy u 7→ Eε(u)

Γ-limit u 7→ E(u)

Geometric version

E 7→ J(E ) = P(E ; Ω) + γ

∫
Ω
|∇(∆−1(uE −mE ))|2 dx

where uE = χE − χΩ\E , mE = |E | − |Ω \ E |

. . . then we will try to get back
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Problem: are minima of J(E ) periodic?
Or maybe approximately so?

Known in dimension 1; in general, partial answer
(Alberti-Choksi-Otto, 2009)

Problem: are critical points at which J ′′ > 0
local minimizers?
Choksi-Sternberg: computation of J ′′ at critical points

Ren-Wei: for spheres, cylinders and lamellae J ′′ > 0 (under certain
restrictions)

Ross: gyroids are strictly stable constant mean curvature surfaces
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Confine ourselves to the periodic case: Ω = Tn = flat torus

J(E ) = PTn(E ) + γ

∫
Tn
|∇vE |2 dx

{
−∆vE = uE −m in Tn∫
Tn vE = 0

m = 2|E | − 1⇒ |E | =
m + 1

2

E.L. equation for (smooth) minimizers of J(E ) under volume
constraint

(E .L.) H∂E (x) + γvE (x) = λ on ∂E

where H∂E = sum of principal curvatures

a regular critical point is a solution E ∈ C 2 of (E .L.)
(Spheres, cylinders, gyroids and lamellae are r.c.p.)
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Translation invariance

We shall see that on r.c.p. the second variation depends on normal
displacement on the boundary of E , thus a function of the type

J ′′(E )[ϕ] , ϕ ∈ H1(∂E )

but J(E ) = J(E + τ) therefore

J ′′(E )[τ · νE (x)] = 0 for all τ

In which sense is E a strict local minimizer?

In which sense is J ′′(E ) positive?

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 14/38
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Second variation and local minimality

Distance between (equivalence classes of) sets:

d(E ,F ) = min
τ
|E4(F + τ)|

Natural definition: E ⊂ Tn is a (strict) local minimizer if ∃δ > 0
s.t.

J(F ) > J(E )

for all F ⊂ Tn with 0 < d(E ,F ) < δ, and always satisfying
|F | = |E |
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Second variation and local minimality

Remark: ∣∣∣∫
Tn
|∇vE |2 dx −

∫
Tn
|∇vF |2 dx

∣∣∣≤ c |E∆F |

Remark (Esposito-Fusco-like, much more a theorem than a
remark. . . ):

volume-constrained minimizer ←→ minimizer of J(F ) + Λ
∣∣|F | − |E |∣∣

Consequence: Regularity of local minimizers
Sternberg-Topaloglu 2011 for N = 2
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Local minimizers of

J(E ) = PTn(E ) + γ

∫
Tn
|∇vE |2 dx

are (ω,R)-minimizers of the area functional:

PTn(E ) ≤ PTn(F ) + ωrn

for all F ⊂ Tn s.t. E∆F ⊂⊂ Br (x0), 0 < r < R

Theorem

If E ⊂ Tn is a local minimizer of J, then ∂∗E \ Σ is C 3,α for all
α < 1, and the closed set Σ satisfies dimH(Σ) ≤ n − 8

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 17/38
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Translation invariance

We shall see that on r.c.p. the second variation depends on normal
displacement on the boundary of E , thus a function of the type

J ′′(E )[ϕ] , ϕ ∈ H1(∂E )

but J(E ) = J(E + τ) therefore

J ′′(E )[τ · νE (x)] = 0 for all τ

In which sense is E a strict local minimizer?

In which sense is J ′′(E ) positive?
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Second variation and local minimality

J ′′(E )[νi ] = 0 ∀i ⇒

consider T = L{ν1, . . . νn}

Infinitesimal volume-preserving deformations ⇒

Ambient space H̃1 = {ϕ ∈ H1(∂E ) :
∫
ϕ = 0}

Decomposition

H̃1 = T ⊕ T⊥
so

T⊥ = {ϕ ∈ H1(∂E ) :
∫
ϕ =

∫
ϕνi = 0}

J ′′(E ) > 0 means J ′′(E )[ϕ] > 0 ∀ϕ ∈ T⊥ \ {0}

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 19/38
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J ′′(E )[νi ] = 0 ∀i ⇒

consider T = L{ν1, . . . νn}

Infinitesimal volume-preserving deformations ⇒

Ambient space H̃1 = {ϕ ∈ H1(∂E ) :
∫
ϕ = 0}

Decomposition
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Good decomposition; indeed

J ′′(E ) > 0 ⇒ J ′′(E )[ϕ] ≥ m0‖ϕ‖H1 ∀ϕ ∈ T⊥
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Second variation and local minimality

Main problem:
Are regular critical points local minimizers? Under
which conditions? Is J ′′ > 0 enough?

And . . . with respect to which perturbations is
second variation made?

E ∈ C 2

Φ : Tn × (−1, 1) 7→ Tn smooth diffeomorphism s.t. Φ(x , 0) = x

Et := Φ(·, t)(E ),

d2

dt2
J(Et)∣∣∣

t=0
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Theorem 1 (A.-Fusco-Morini; Choksi-Sternberg 2007)

If X (x) :=
∂Φ

∂t
(x , 0), we have

d2

dt2
J(Et)∣∣t=0

=

∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |2(X · ν)2

)
dHn−1

+ 8γ
∫
∂E

∫
∂E

G (x , y)
(
X · ν

)
(x)
(
X · ν

)
(y)dHn−1(x)dHn−1(y)

+ 4γ
∫
∂E
∂νvE (X ·ν)2dHn−1

−
∫
∂E

(4γvE +H∂E )divτ
(
Xτ (X ·ν)

)
dHn−1

+

∫
∂E

(4γvE + H∂E )(divX )(X · ν) dHn−1

|B∂E |2 = sum of squares of principal curvatures
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Simplifications:

If Φ is volume preserving, that is |Et | = |E |,∫
∂E

(divX )(X · ν) dHn−1 = 0

If E is a critical point, then H∂E + 4γvE = const.

Then (↑) the second variation reduces (Choksi-Sternberg) to

d2

dt2
J(Et)∣∣t=0

=

∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |2(X · ν)2

)
dHn−1

+ 8γ
∫
∂E

∫
∂E

G (x , y)
(
X · ν

)
(x)
(
X · ν

)
(y)dHn−1(x) dHn−1(y)

+ 4γ
∫
∂E
∂νvE (X · ν)2 dHn−1

[
' F (X|∂E · ν)

]
Remark:

∫
∂E X · ν dHn−1 = d |Et |

dt |t=0
= 0 if volume-preserving
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For every critical point E of class C 2 set

∂2J(E )[ϕ] =

∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHn−1

+ 8γ
∫
∂E

∫
∂E

G (x , y)ϕ(x)ϕ(y)dHn−1(x) dHn−1(y)

+ 4γ
∫
∂E
∂νvE ϕ

2 dHn−1

for all ϕ ∈ H̃1(∂E )
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A first quantitative result:

Theorem 2 (W 2,p perturbations — A.-Fusco-Morini)

Let E be a C 2 critical point with

∂2J(E )[ϕ] > 0 ∀ϕ ∈ T⊥(∂E ) \ {0} ,

and let p > max{2, n − 1}. There exist δ > 0 and C0 > 0 s.t. if
F ⊂ Tn satisfies

d(E ,F ) < δ |F | = |E |
and

∂F = {x + ψ(x)ν(x) : x ∈ ∂E}, with ‖ψ‖W 2,p(∂E) < δ
then

(Q) J(F ) ≥ J(E ) + C0[d(E ,F )]2

E.A„ N.Fusco, M.Morini Minimum via second variation ... Telč 2014 25/38



Block copolymers
Model energies

Second variation and local minimality

Key points:

Construction of a volume-preserving flow:
in a neighbourhood of ∂E there exists a smooth field X with
divX = 0 s.t. the associated flow

Φ(x , 0) = x ,
∂Φ

∂t
= X (Φ)

satisfies

‖Φ(·, t)− Id‖2,p ≤ c‖ψ‖2,p |Et | ≡ |E | E1 = F

Removal (control) of the translation part:
there exist σ ∈ IRn, ϕ ∈W 2,p(∂E ) s.t. |σ|+ ‖ϕ‖2,p ≤ C‖ψ‖2,p
and

∂F − σ = {x + ϕ(x)ν(x) : x ∈ ∂E},
∣∣∣∫
∂E
ϕνE

∣∣∣ ≤ Cδ‖ϕ‖2
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From W 2,p to L1 minimality

Theorem 3 (L1 perturbations — A.-Fusco-Morini)

Let E ⊂ Tn be a regular critical point of J such that

∂2J(E )[ϕ] > 0 ∀ϕ ∈ T⊥(∂E ) \ {0} .

There exists δ > 0 s.t. for all F ⊂ Tn with |F | = |E | and
d(E ,F ) < δ

J(F ) ≥ J(E ) +
C0

4
d(E ,F )2 .

(C0 is the constant appearing in the W 2,p theorem)
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Consequences: Ohta-Kawasaki energy

Proposition

If E regular critical point of J with J ′′(E ) > 0, there exists a family
{uε}ε<ε0 of isolated local minimizers of the diffuse energy Eε with
prescribed volume m =

∫
Tn uE dx such that

uε → uE in L1(Tn)

as ε→ 0.
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γ = 0: area and quantitative isoperimetric inequality

Corollary
If E ⊂ Tn is regular and has constant mean curvature, and if∫

∂E

(
|Dτϕ|2 − |B∂E |2ϕ2) dHn−1 > 0 ∀ ϕ ∈ T⊥(∂E ) \ {0} ,

there exist δ, C > 0 s.t. for all F ⊂ Tn with |F | = |E | and
d(E ,F ) < δ

PTn(F ) ≥ PTn(E ) + C [d(E ,F )]2 .

Known only for L∞ perturbations, or with minimal surface methods
(⇒ n ≤ 7) but always with no quantitative estimate (Morgan-Ros,
2010)
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γ = 0: area and quantitative isoperimetric inequality
Corollary
If E ⊂ Tn is regular and has constant mean curvature, and if∫

∂E

(
|Dτϕ|2 − |B∂E |2ϕ2) dHn−1 > 0 ∀ ϕ ∈ T⊥(∂E ) \ {0} ,

there exist δ, C > 0 s.t. for all F ⊂ Tn with |F | = |E | and
d(E ,F ) < δ

PTn(F ) ≥ PTn(E ) + C [d(E ,F )]2 .

Corollary

P(F ) ≥ P(Br ) + C [d(Br ,F )]2 ∀ F ⊂ IRn , |F | = |Br |

(Fusco-Maggi-Pratelli 2008, Figalli-Maggi-Pratelli 2010,
Cicalese-Leonardi 2011)
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem
If some ω-minimizers Eh of the area functional converge in L1 to a
C 2 set, for large h the boundary ∂Eh is a graph on ∂E :

∂Eh = {x + ψhνE (x)}

with ψh of class C 1,1/2 and ψh → 0 in C 1,α for α < 1/2 (this implies
closeness in L∞).
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Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
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Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
From L∞ to L1 perturbations
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
From L∞ to L1 perturbations
Extension: Neumann case
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.

By contradiction, sequence (Eh, γh) with γh → 0, but then

Jh = PTn + γhN.L.T .

Γ-converges to PTn
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.

(*) known to be true if N = 2 for |m| < 1− 2/π; if N = 3 only for
m = 0 (Hadwiger).
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.

Remark
In any dimension, the set of values m for which the lamella is the
unique minimizer of the perimeter is open.
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.

Remark
In any dimension, the set of values m for which the lamella is the
unique minimizer of the perimeter is open.

This leads to
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Minimality for Lamellae:

Corollary (Single lamella)

If a single lamella of volume m is the unique global minimizer (*) of
the isoperimetric problem in Tn with volume constraint, then also
of PTn + γ·nonlocal term, provided γ small.

Corollary (Cases N = 2 and N = 3)

If N = 2 and |m| < 1− 2/π or N = 3 and |m| < m3 then for all
γ < γ0 the single lamella is the unique minimizer of
PTn + γ · N.L.T .
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Case of multiple lamellae:

Corollary (k lamellae with density m)

For any m and γ, there esists k0 such that for k ≥ k0 the
k-lamellar set with volume parameter m is an isolated local
minimizer of PTn + γ · N.L.T .

E.A., N. Fusco, M. Morini: Minimality via second variation for a
nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013)
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem
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C 2 set, for large h the boundary ∂Eh is a graph on ∂E :

∂Eh = {x + ψhνE (x)}
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Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
(Penalization + obstacle)

Compare J(F ) with J(Fh), truncation at a distance h (on both sides)
from ∂E
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
(Penalization + obstacle)

Compare J(F ) with J(Fh), truncation at a distance h (on both sides)
from ∂E : for large h volume is preserved and Fh solves (another
penalization) a problem without obstacle ⇒ is a regular graph and
(lots of computations . . . ) the curvatures are equibounded, so ψh
equibounded in W 2,p . . . curvatures converge strongly in Lp
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Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
From L∞ to L1 perturbations
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Second variation and local minimality

Key points:

B. White (Almgren)’s theorem

From W 2,p to L∞ perturbations
From L∞ to L1 perturbations
Via penalization, one can apply Almgren’s theorem (in particular
Fh → E in C 1,α), then needs a delicate comparison between the
decay speeds of d(Eh,E ) and J(Eh)− J(E ).
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Second variation and local minimality

Theorem 3 in the case γ = 0

Let E ⊂ Tn a C 2 open set with constant mean curvature s.t.∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2) dHn−1 > 0 for all ϕ ∈ T⊥(∂E ) \ {0}

Step 1 By Theorem 2, if |F | = |E |,

PTn(F ) ≥ PTn(E ) + C0d(E ,F )2

whenever ∂F = {x + ψ(x)ν(x) : x ∈ ∂E}, with ‖ψ‖W 2,p(∂E) < δ
Step 2 If |F | = |E | and distH(E ,F ) < δ, then

PTn(F ) ≥ PTn(E )

We want to show that if d(E ,F ) < δ, then

PTn(F ) ≥ PTn(E ) +
C0

4
d(E ,F )2

We argue by contradiction, assuming that this is not true, i.e.
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Second variation and local minimality

there exist Eh such that, |Eh| = |E |,

εh = d(Eh,E )→ 0, PTn(Eh) < PTn(E ) +
C0

4
d(Eh,E )2

Step 3 Consider the minimizers Fh of the following problems

(1) Min
{
PTn(F ) + Λ1

√(
d(F ,E )− εh

)2
+ εh + Λ2

∣∣|F | − |E |∣∣}
One can prove:

- if Λ2 is sufficiently large (independently on Λ1), then |Fh| = |E |
- χFh → χF0 in L1(Tn), where F0 is a minimizer of

(2) J(F ) + Λ1d(F ,E ) + Λ2
∣∣|F | − |E |∣∣

- if Λ1 is sufficiently large (independently on Λ2), the only
minimizer of the functional in (2), is E (up to a translation), hence

χFh → χE in L1(Tn)
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Second variation and local minimality

- each Fh is a (ω,R)-minimizer of the perimeter, hence

∂Fh = {x+ψh(x)ν(x) : x ∈ ∂E}, ψh → 0 in C 1,α(∂E ), α ∈ (0, 1/2)

Step 4 Claim: The functions ψh → 0 in W 2,p(∂E ) for all p ≥ 1

To this aim observe that ε−1h d(Fh,E )→ 1. In fact if
|d(Fh,E )− εh| ≥ σεh for some σ > 0, then
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To this aim observe that ε−1h d(Fh,E )→ 1. In fact if
|d(Fh,E )− εh| ≥ σεh for some σ > 0, then

PTn(Fh) + Λ1

√
σ2ε2h+εh

≤ PTn(Fh) + Λ1

√(
d(Fh,E )−εh

)2
+εh
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Impossible!
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Second variation and local minimality

H∂Fh =


Λ1
(
d(Fh,E )−εh

)√(
d(Fh,E )−εh

)2
+ εh

sign (χFh−χE ) + λh on ∂Fh \ ∂E ,

λ on ∂Fh ∩ ∂E ,

for some Lagrange multipliers λh → λ.

Since ε−1h d(Fh,E )→ 1,

H∂Fh → H∂E in L∞(∂E ) =⇒ ψh → 0 in W 2,p(∂E ) ∀p ≥ 1

But PTn(Fh) + Λ1
√
εh ≤ PTn(Fh) + Λ1

√(
d(Eh,E )−εh

)2
+εh

≤ PTn(Eh) + Λ1
√
εh ≤ PTn(E ) +

C0

4
ε2h + Λ1

√
εh

≤ PTn(E ) +
C0

2
d(Fh,E )2 + Λ1

√
εh

=⇒ PTn(Fh) ≤ PTn(E ) +
C0

2
d(Fh,E )2

Contradiction to the W 2,p-minimality of E !
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