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1 A.C. & V.Maz’ya Global Lipschitz regularity for a class of quasilinear
elliptic equations, Comm. Part. Diff. Equat. (2011)

2 A.C. & V.Maz’ya Global boundedness of the gradient for a class of
nonlinear elliptic systems, Arch. Ration. Mech. Anal. (2014)

3 A.C. & V.Maz’ya Gradient regularity via rearrangements for
p-Laplacian type elliptic boundary value problems, J. Europ. Math.
Soc. (2014)

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 2 / 38



1

Consider nonlinear elliptic Dirichlet problems having the form{
−div(a(x,∇u)) = f(x) in Ω

u = 0 on ∂Ω .
(1)

Here:
• Ω is an open set in Rn, n ≥ 2, having finite Lebesgue measure |Ω|;
•

a : Ω × Rn → Rn

is a Carathéodory function, and ∃ p > 1 and C > 0 s.t., for a.e. x ∈ Ω :

a(x, ξ) · ξ ≥ |ξ|p for ξ ∈ Rn ,

|a(x, ξ)| ≤ C(|ξ|p−1 + 1) for ξ ∈ Rn .

[a(x, ξ)− a(x, η)] · (ξ − η) > 0 for ξ, η ∈ Rn with ξ 6= η .
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Model case: p-Laplace Dirichlet problem{
−div(|∇u|p−2∇u) = f(x) in Ω

u = 0 on ∂Ω .
(2)
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3

If f ∈ (W 1,p
0 (Ω))′ ∩ L1(Ω), then weak solutions u ∈W 1,p

0 (Ω) are well
defined; namely ∫

Ω
a(x,∇u) · ∇φdx =

∫
Ω
fφ dx

for every φ ∈W 1,p
0 (Ω).

If f is just in L1(Ω), solutions u to the Dirichlet problem (1) can be
defined as limits of solutions to approximating problems with smooth
right-hand sides.
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4

Pb.: Estimates for |∇u| in terms of f .

Classical problem.

We shall discuss an approach via rearrangements.

Enables to reduce the original estimates to one-dimensional inequalities.

Covers a full range of norm bounds for solutions and their gradient in
terms of norms of the datum f .
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The decreasing rearrangement u∗ : [0,∞)→ [0,∞] of a measurable
function u in Ω is defined as

u∗(s) = sup{t ≥ 0 : |{|u(x)| > t}| > s} for s ∈ [0,∞).

Since
|{u∗ > t}| = |{|u| > t}| for t > 0,

the functions u∗ and u have the same integrability properties.

We also set u∗∗(s) =
1

s

∫ s

0
u∗(r) dr.
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5

The decreasing rearrangement u∗ : [0,∞)→ [0,∞] of a measurable
function u in Ω is defined as

u∗(s) = sup{t ≥ 0 : |{|u(x)| > t}| > s} for s ∈ [0,∞).

Since
|{u∗ > t}| = |{|u| > t}| for t > 0,

the functions u∗ and u have the same integrability properties.

We also set u∗∗(s) =
1

s

∫ s

0
u∗(r) dr.

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 7 / 38
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6

A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.

Let:
• ΩF be the ball (centered at 0) such that |ΩF| = |Ω|.
• fF : ΩF → [0,∞) be the spherically symmetric rearrangement of f

,

i.e.
{fF > t} is a ball for t > 0;

|{fF > t}| = |{|f | > t}| for t > 0.

In formulas,
fF(x) = f∗(ωn|x|n) for x ∈ ΩF,

where ωn is the volume of the unit ball in Rn.
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7

Theorem [Talenti]

Let u be the solution to the Dirichlet problem{
−div(a(x,∇u)) = f(x) in Ω

u = 0 on ∂Ω .

and let v be the solution to the symmetrized problem{
−div(|∇v|p−2∇v) = fF(x) in ΩF

v = 0 on ∂ΩF .
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Let 0 < q ≤ p. Then ∫
Ω
|∇u|qdx ≤

∫
ΩF
|∇v|qdx;

equivalently,

‖∇u‖Lq(Ω) ≤ (nω1/n
n )

− 1
p−1

(∫ |Ω|
0

r
− q
n′(p−1)

(∫ r

0
f∗(%)d%

) q
p−1

dr

) 1
q

,

where n′ =
n

n− 1
.
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9

Via this estimate, bounds for the norms ‖∇u‖Lq(Ω) , with q ≤ p, in terms
of rearrangement invariant norms of the datum f are reduced to
one-dimensional Hardy-type inequalities.

A rearrangement invariant (briefly, r.i.) space X(Ω) is a Banach function
space such that

‖w‖X(Ω) = ‖z‖X(Ω) if w∗ = z∗.

If X(Ω) is an r.i. space, then there exists a representation space X(0, |Ω|)
s.t.

‖w‖X(Ω) = ‖w∗‖X(0,|Ω|) ∀w ∈ X(Ω).
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10

Examples.

• Lebesgue spaces Lq(Ω).

• Lorentz spaces Lq,r(Ω):

‖u‖Lq,r(Ω) = ‖s
1
q
− 1
r u∗(s)‖Lr(0,|Ω|).

• Orlicz spaces LA(Ω):

‖u‖LA(Ω) = inf

{
λ > 0 :

∫
Ω
A
(
|u(x)|/λ

)
dx ≤ 1

}
.
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Corollary

Let 0 < q ≤ p and let X(Ω) be an r.i. space such that∥∥∥∥∥r− 1
n′(p−1)

(∫ r

0
ϕ(%)d%

) 1
p−1

∥∥∥∥∥
Lq(0,|Ω|)

≤ C‖ϕ‖
1
p−1

X(0,|Ω|),

for some constant C and every nonnegative and non-increasing function
ϕ ∈ X(0, |Ω|). If f ∈ X(Ω) and u is the solution to the Dirichlet problem{

−div(a(x,∇u)) = f(x) in Ω

u = 0 on ∂Ω ,

then

‖∇u‖Lq(Ω) ≤ C(nω1/n
n )

− 1
p−1 ‖f‖

1
p−1

X(Ω).

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 13 / 38
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Estimates for ‖∇u‖Lq(Ω) with q > p, cannot hold without additional
smoothness assumptions on the function a(x, ξ) and on Ω.

Estimates for more general r.i. norms ‖ · ‖Y (Ω) of |∇u| (still weaker than
‖ · ‖Lp(Ω)) are known:

• Limiting cases (e.g. weak type estimates, namely estimates in
Marcikiewicz spaces): [Bénilan, Boccardo, Gallouët, Gariepy, Pierre,
Vazquez, 1995], [Dolzmann, Hungerbühler, Müller, 2000].

• Estimates for |∇u|∗ and ensuing bounds in Lorentz spaces: [Alvino,
V.Ferone, G.Trombetti, 2000].

• Local estimates in Lorentz spaces [Mingione 2010].
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A sharpened version of the estimate of [Alvino, V.Ferone, G.Trombetti] is
as follows.

Theorem [Alvino, C. , Maz’ya, Mercaldo, 2010]

Let u be the weak solution to the Dirichlet problem{
−div(a(x,∇u)) = f(x) in Ω

u = 0 on ∂Ω .

Then

|∇u|∗(s) ≤ C(n, p)

(
1

s

∫ |Ω|
s
2

r−
p′
n′

(∫ r

0
f∗(ρ) dρ

)p′
dr

) 1
p

for s ∈ (0, |Ω|).
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Counterparts of the estimates for |∇u| hold for solutions to Neumann
problems {

−div(a(x,∇u)) = f(x) in Ω

a(x,∇u) · n = 0 on ∂Ω .

No symmetrized extremal problem exists.

Constants in estimates are not sharp.

Optimal norms in estimates on irregular domains require the use of
isocapacitary inequalities instead of isoperimetric inequalities [C. , Maz’ya],
[Alvino, C. , Maz’ya, Mercaldo].
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14

Counterparts of the estimates for |∇u| hold for solutions to Neumann
problems {

−div(a(x,∇u)) = f(x) in Ω

a(x,∇u) · n = 0 on ∂Ω .

No symmetrized extremal problem exists.

Constants in estimates are not sharp.

Optimal norms in estimates on irregular domains require the use of
isocapacitary inequalities instead of isoperimetric inequalities [C. , Maz’ya],
[Alvino, C. , Maz’ya, Mercaldo].

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 16 / 38
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isocapacitary inequalities instead of isoperimetric inequalities [C. , Maz’ya],
[Alvino, C. , Maz’ya, Mercaldo].

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 16 / 38
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Estimates for norms ‖∇u‖Y (Ω) stronger than ‖∇u‖Lp(Ω), require
smoothness of the function a(x, ξ) and regularity of Ω.

Consider, for p ∈ (1,∞), the model Dirichlet problem{
−div(|∇u|p−2∇u) = f(x) in Ω

u = 0 on ∂Ω ,
(3)

and Neumann problem−div(|∇u|p−2∇u) = f(x) in Ω
∂u

∂n
= 0 on ∂Ω ,

(4)

where

∫
Ω
f(x) dx = 0.
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16

Pb. rearrangement estimates for |∇u|, when u is the solution to
p-Laplacian type Dirichlet or Neumann problems.

Prototypal example. Consider the solution u decaying to 0 at infinity to
the Laplace equation

−∆u = f in Rn.

If n ≥ 3, u is the Newtonian potential of f , namely

u(x) = C(n)

∫
Rn

f(y)

|x− y|n−2
dy for x ∈ Rn.

Hence,

|∇u(x)| ≤ C ′(n)

∫
Rn

|f(y)|
|x− y|n−1

dy for x ∈ Rn.
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17

A rearrangement inequality for convolutions by O’Neil implies that

|∇u|∗(s) ≤ C ′
∫ ∞
s

f∗∗(r)r−
1
n′ dr for s > 0. (5)

Is there an analogue of (5) for nonlinear problems?
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18

First step, of independent interest: maximal integrability property of |∇u|,
namely boundedness of |∇u|.

C1,α-regularity of solutions is well-known when f and Ω are smooth.

∇u is bounded (and Hölder continuous) if f ∈ Lq(Ω), with q > n, and ∂Ω
is of class C1,β [Liebermann 1991].

In case of systems, global C1,α-regularity, with ∂Ω ∈ C1,β, is established in
[Chen, Di Benedetto 1989] for f ∈ L∞(Ω), and in [Beirão da Veiga,
Crispo] for p < 2 (“close ” to 2) and f ∈ Lq(Ω), with q > n.

• Pb.: minimal integrability of f and minimal regularity of Ω for
|∇u| ∈ L∞(Ω), i.e. u Lipschitz continuous.
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Consider the case of the Poisson equation on a ball B{
−∆u = f in B,

u = 0 on ∂B.

One has
‖∇u‖L∞(B) ≤ C‖f‖Ln,1(B).

Moreover, the space Ln,1(B) is optimal ([C., 1992]).
Ln,1(Ω) is a kind of borderline space. Recall that, if |Ω| <∞ and q > n ,
then

Lq(Ω) $ Ln,1(Ω) $ Ln(Ω).
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Theorem [C., Maz’ya]

Let Ω be a bounded subset of Rn, n ≥ 3, such that ∂Ω ∈ W 2Ln−1,1.
Assume that f ∈ Ln,1(Ω). Let u be a weak solution to either the Dirichlet
or the Neumann p-Laplacian problem. Then there exists a constant C =
C(p,Ω) such that

‖∇u‖L∞(Ω) ≤ C‖f‖
1
p−1

Ln,1(Ω)
. (6)

In particular, u is Lipschitz continuous on Ω.

The same conclusion holds if Ω is just a convex set.
The theorem holds, both for ∂Ω ∈W 2Ln−1,1 and for convex domains, also
for systems.
Counterexamples show that, even for the scalar Laplace operator, a
solution u /∈ C1(Ω) can exist in a convex domain with ∂Ω ∈ C1.

Independent result, in the same spirit, by [Duzaar, Mingione, 2010] for
local solutions (approach via nonlinear potentials)
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• The spaces W 2Ln−1,1 and Ln,1 are independent of p, and they are
essentially optimal. In particular, the space Ln,1 is the same as for the
Laplace equation in B.

• The result is new even for{
−∆u = f(x) in Ω

u = 0 on ∂Ω .
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Idea of the proof.

• Approximate the differential operator, the datum f and the domain Ω,
in such a way that u is smooth.
• Multiply the equation

−div(|∇u|p−2∇u) = f(x)

by ∆u, and integrate over the level sets of the gradient∫
{|∇u|>t}

∆ufdx = −
∫
{|∇u|>t}

∆udiv(|∇u|p−2∇u)dx for t > 0.

• Estimate
∆udiv(|∇u|p−2∇u)

by an expression in divergence form, integrate by parts, use the boundary
condition.

A. Cianchi (Univ. Firenze) Gradient regularity Telč, May 2014 24 / 38
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• Use:

- the coarea formula applied to |∇u|, namely∫
Ω
φ(x)|∇|∇u|| dx =

∫ ∞
0

∫
{|∇u|=t}

φ(x)dHn−1(x) dt ,

- a relative isoperimetric inequality on Ω:

min{|E|, |Ω \ E|}
1
n′ ≤ CHn−1(∂E ∩ Ω) for smooth E ⊂ Ω,

- properties of rearrangements,

to derive a differential inequality for the distribution function of |∇u|

ν(t) = |{|∇u| > t}|.
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Obtain

t2p−2 ≤ C‖∇u‖pL∞(Ω)(−ν
′(t))ν(t)−1/n′φ(ν(t)) (7)

+ C‖∇u‖L∞(Ω)(−ν ′(t))ν(t)−2/n′
∫ ν(t)

0
f∗(r)2dr

+ C‖∇u‖2p−1
L∞(Ω)(−ν

′(t))ν(t)−1/n′k∗∗
(
C ′ν(t)1/n′

)
for a.e. t > med(|∇u|).

Here,

• φ(s) =

(
d

ds

∫
{|∇u|>|∇u|∗(s)}

f2dx

)1/2

for a.e. s ∈ (0,Hn(M)),

a so-called pseudo-rearrangement of f2,
• k stands for the curvature of Ω.
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Obtain

t2p−2 ≤ C‖∇u‖pL∞(Ω)(−ν
′(t))ν(t)−1/n′φ(ν(t)) (7)

+ C‖∇u‖L∞(Ω)(−ν ′(t))ν(t)−2/n′
∫ ν(t)

0
f∗(r)2dr

+ C‖∇u‖2p−1
L∞(Ω)(−ν

′(t))ν(t)−1/n′k∗∗
(
C ′ν(t)1/n′

)
for a.e. t > med(|∇u|). Here,

• φ(s) =

(
d

ds

∫
{|∇u|>|∇u|∗(s)}

f2dx

)1/2

for a.e. s ∈ (0,Hn(M)),
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25

• Integrate the differential inequality (7) and use again properties of
rearrangements to conclude that

‖∇u‖L∞(Ω) ≤ C‖f‖
1
p−1

Ln,1(Ω)
.
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Pb.: Rearrangement estimate for |∇u|.

Theorem [C., Maz’ya]

Let Ω be a bounded subset of Rn, n ≥ 3, such that ∂Ω ∈ W 2Ln−1,1.
Assume that 2 ≤ p < n, f ∈ L1(Ω), and let u be the solution to either the
Dirichlet problem or the Neumann p-Laplacian problem. Then there exists
a constant C = C(p,Ω) such that

|∇u|∗(s)p−1 ≤ C
∫ |Ω|
s

f∗∗(r)r−
1
n′ dr for s ∈ (0, |Ω|). (8)

Recall that for the Laplace equation in Rn

|∇u|∗(s) ≤ C
∫ ∞
s

f∗∗(r)r−
1
n′ dr for s > 0.
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Important consequence of the estimate

|∇u|∗(s)p−1 ≤ C
∫ |Ω|
s

f∗∗(r)r−
1
n′ dr.

It translates verbatim the linear theory of integrability of |∇u| for the
Laplace equation to the theory of integrability of |∇u|p−1 for the nonlinear
p-Laplace equation.

Pointwise estimates, for local solutions, involving Riesz potentials are
established in [Kuusi-Mingione, 2011].
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Idea of the proof.

• We already know that

‖∇u‖L∞(Ω) ≤ C‖f‖
1
p−1

Ln,1(Ω)
, (9)

if f ∈ Ln,1(Ω).
• An opposite endpoint estimate tells us that

‖∇u‖
L
n(p−1)
n−1 ,∞

(Ω)
≤ C‖f‖

1
p−1

L1(Ω)
, (10)

if f ∈ L1(Ω).
An idea would be to interpolate between these two estimates, on making
use of Peetre K-functional.
Pb.: the map

f 7→ ∇u

is not linear!
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However:
• One can prove the stability estimate

‖∇u−∇v‖
L
n(p−1)
n−1 ,∞

(Ω)
≤ C‖f − g‖

1
p−1

L1(Ω)
, (11)

where v is the solution to the same problem, with the right-hand side f
replaced by g.

• Use a nonlinear interpolation argument, again relying upon Peetre
K-functional, between inequalities (9) and (11) to conclude that

|∇u|∗(s)p−1 ≤ C
∫ |Ω|
s

f∗∗(r)r−
1
n′ dr for s ∈ (0, |Ω|).
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Distinctive feature of the rearrangement estimate: it is independent of
specific function spaces. It reduces any inequality between r.i.
(quasi-)norms of |∇u| and f to one-dimensional Hardy-type inequalities
involving the corresponding representation quasi-norms.

Corollary

Let Ω be as above. Let X(Ω) and Y (Ω) be r.i. spaces on Ω. Assume that
there exists a constant C such that∥∥∥∥∫ |Ω|

s

∫ r

0
ϕ(ρ) dρ r−

1
n′−1dr

∥∥∥∥
Y (0,|Ω|)

≤ C‖ϕ‖X(0,|Ω|).

for every ϕ ∈ X(0, |Ω|). If f ∈ X(Ω) and u is the solution to either the
Dirichlet problem or the Neumann p-Laplacian problem, then there exists a
constant C ′ such that

‖ |∇u|p−1 ‖Y (Ω) ≤ C ′‖f‖X(Ω).
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Applications.

1. Bounds in Lorentz spaces.
Assume that f ∈ Lq,r(Ω).
(i) If 1 ≤ r ≤ ∞ and 1 < q < n, then

‖∇u‖
L
qn(p−1)
n−q ,r(p−1)

(Ω)
≤ C‖f‖

1
p−1

Lq,r(Ω).

(ii) If q = 1 and r = 1, then L1,1(Ω) = L1(Ω)

‖∇u‖
L
n(p−1)
n−1 ,∞

(Ω)
≤ C‖f‖

1
p−1

L1(Ω)
.
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(iii) If q = n and r > 1, then

‖∇u‖
L∞,r(p−1)(logL)

− 1
p−1 (Ω)

≤ C‖f‖
1
p−1

Ln,r(Ω),

where

‖∇u‖
L∞,r(p−1)(logL)

− 1
p−1 (Ω)

=

(∫ |Ω|
0
|∇u|∗(s)r(p−1) ds

s logr(1/s)

) 1
r(p−1)

.

(iv) If either q > n, or q = n and r = 1, then

‖∇u‖L∞(Ω) ≤ C‖f‖
1
p−1

Lq,r(Ω).
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2. Bounds in Orlicz spaces.

Let A be a Young function.
Let Ã be the Young conjugate of A, i.e.

Ã(t) = sup{st−A(s) : s ≥ 0}.

Define

H(s) =

(∫ s

0

(
t

A(t)

) 1
n−1

dt

)1/n′

for s ≥ 0,

and the Sobolev conjugate An of A

An(t) = A
(
H−1(t)

)
for t ≥ 0

[C. 1996].
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Assume that there exists c > 0 s.t.

B(t) ≤ An(ct) and Ã(t) ≤
(
B̃
)
n
(ct) for t > 0.

Then there exist a constant C such that

‖|∇u|p−1‖LB(Ω) ≤ C‖f‖LA(Ω).
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For example, if either q > 1 and α ∈ R, or q = 1 and α ≥ 0 denote by

Lq logα L(Ω)

the Orlicz space associated with

A(t) ≈ tq logα t near infinity.

For β > 0, denote by
expLβ(Ω)

the Orlicz space associated with

A(t) = et
β − 1,

and by
exp expLβ(Ω)

the Orlicz space associated with

A(t) = ee
tβ − e.
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If 1 < q < n, then

‖∇u‖
L
qn(p−1)
n−q log

nα
n−q L(Ω)

≤ C‖f‖
1
p−1

Lq logα L(Ω);

If q = 1, α > 0, then

‖∇u‖
L
n(p−1)
n−1 log

nα
n−1−1

L(Ω)
≤ C‖f‖

1
p−1

L1 logα L(Ω)
;

If q = n and α < n− 1, then

‖∇u‖
expL

n(p−1)
n−1−α (Ω)

≤ C‖f‖
1
p−1

Ln logα L(Ω);

If q = n and and α = n− 1, then

‖∇u‖
exp expL

n(p−1)
n−1 (Ω)

≤ C‖f‖
1
p−1

Ln logn−1 L(Ω)
;

If either q > n or q = n and and α > n− 1, then

‖∇u‖L∞(Ω) ≤ C‖f‖
1
p−1

Lq logα L(Ω).
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