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Consider nonlinear elliptic Dirichlet problems having the form
—div(a(z,Vu)) = f(z) in Q
u=20 on 0f).
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—div(a(z,Vu)) = f(z) in Q
u=20 on 0f).

Here:
e () is an open set in R", n > 2, having finite Lebesgue measure |Q[;
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Consider nonlinear elliptic Dirichlet problems having the form

—div(a(z, Vu)) = f(z) in Q (1)
w=0 on Of).

Here:

e () is an open set in R", n > 2, having finite Lebesgue measure |Q[;
[ ]

a: Q2 x R* - R”
is a Carathéodory function, and 3 p > 1 and C > 0 s.t., for a.e. x € Q) :
a(x,§) - & =[P for L € R,
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Consider nonlinear elliptic Dirichlet problems having the form

—div(a(z, Vu)) = f(z) in Q (1)
w=0 on Of).

Here:

e () is an open set in R", n > 2, having finite Lebesgue measure |Q[;
[ ]

a: Q2 x R* - R”
is a Carathéodory function, and 3 p > 1 and C > 0 s.t., for a.e. x € Q) :
a(x,§) - & =[P for L € R,

ja(z, )] < C(IEP" +1) for £ €R™.

A. CiancHI (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



Consider nonlinear elliptic Dirichlet problems having the form

—div(a(z,Vu)) = f(z) in Q (1)
u=20 on 0f}.

Here:

e () is an open set in R", n > 2, having finite Lebesgue measure |Q[;

[ ]

a: Q2 x R* - R”
is a Carathéodory function, and 3 p > 1 and C > 0 s.t., for a.e. x € Q) :
a(x,§) - & =[P for L € R,

ja(z, )] < C(IEP" +1) for £ €R™.

la(z,&) —a(z,n)] - (§—n) >0 for {neR™ with &#17.
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Model case: p-Laplace Dirichlet problem

—div(|VulP2Vu) = f(z) in Q
u=20 on 0N.
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If f e (WyP(Q2)) N L), then weak solutions u € W, (£2) are well
defined; namely

/Qa(x,Vu)-ngd:z:/Qfgi)da:

for every ¢ € Wol’p(Q).
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If f e (WyP(Q2)) N L), then weak solutions u € W, (£2) are well
defined; namely

/a(az,Vu)-qud:p :/fgi)da:
Q Q
for every ¢ € Wol’p(Q).

If f is just in L'(€2), solutions u to the Dirichlet problem (1) can be
defined as limits of solutions to approximating problems with smooth
right-hand sides.
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Pb.: Estimates for |Vu/| in terms of f.
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Pb.: Estimates for |Vu/| in terms of f.

Classical problem.
We shall discuss an approach via rearrangements.

Enables to reduce the original estimates to one-dimensional inequalities.
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Pb.: Estimates for |Vu/| in terms of f.

Classical problem.
We shall discuss an approach via rearrangements.
Enables to reduce the original estimates to one-dimensional inequalities.

Covers a full range of norm bounds for solutions and their gradient in
terms of norms of the datum f.
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The decreasing rearrangement u* : [0,00) — [0, o] of a measurable
function u in Q is defined as

u*(s) = sup{t > 0: [{|u(z)| > t}| > s} for s € [0, 00).
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The decreasing rearrangement u* : [0,00) — [0, o] of a measurable
function u in Q is defined as

u*(s) = sup{t > 0: [{|u(z)| > t}| > s} for s € [0, 00).
Since

H{u* >t} = [{|u] >t} for t > 0,

the functions «™ and u have the same integrability properties.
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The decreasing rearrangement u* : [0,00) — [0, o] of a measurable
function u in Q is defined as

u*(s) = sup{t > 0: [{|u(z)| > t}| > s} for s € [0, 00).
Since

H{u* >t} = [{|u] >t} for t > 0,

the functions «™ and u have the same integrability properties.

1 S
We also set u**(s) = / u*(r)dr.
0
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A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.
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A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.

Let:
e O be the ball (centered at 0) such that |Q*| = Q).
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A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.

Let:
e O be the ball (centered at 0) such that |Q*| = Q).
o [F.O* [0,00) be the spherically symmetric rearrangement of f,
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A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.

Let:
e O be the ball (centered at 0) such that |Q*| = Q).

o [F.O* [0,00) be the spherically symmetric rearrangement of f,
i.e.

{f* >t} isaball for t > 0;
{/* >t} = [{|f| > t}] fort >0,
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A sharp comparison principle by [Talenti, 1976] for Dirichlet type integrals
of solutions holds.

Let:
e O be the ball (centered at 0) such that |Q*| = |Q].

o [F.O* [0,00) be the spherically symmetric rearrangement of f,
i.e.

{f* >t} isaballfort>0;
{f* >t} =[{Ifl >t} fort>0.
In formulas,
f*(x) = f*(walz|®) for z € QX,

where w,, is the volume of the unit ball in R™.
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Theorem [Talentil

Let u be the solution to the Dirichlet problem

—div(a(z,Vu)) = f(z) in Q
u=20 on 0f}.

and let v be the solution to the symmetrized problem

—div(|VoP~2Vv) = f*(z) in Q%
v=20 on 9Q* .
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Let 0 < g < p. Then

/]Vu\qdacS/ |Vo|ldx;
Q x

equivalently,

_ 1 12 __ 4 & ﬁ %
||Vu||L‘1(Q) < (nw}/”) p—1 (/0 r (=1 (/0 f*(g)d,g) dT) ,

where n/ =

3

n—1"
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Via this estimate, bounds for the norms |[Vu||;4(q) , with ¢ < p, in terms
of rearrangement invariant norms of the datum f are reduced to
one-dimensional Hardy-type inequalities.
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Via this estimate, bounds for the norms |[Vu||;4(q) , with ¢ < p, in terms
of rearrangement invariant norms of the datum f are reduced to
one-dimensional Hardy-type inequalities.

A rearrangement invariant (briefly, r.i.) space X () is a Banach function

space such that
sk

HwHX(Q) = ”ZHX(Q) if w* = z*.
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Via this estimate, bounds for the norms |[Vu||;4(q) , with ¢ < p, in terms
of rearrangement invariant norms of the datum f are reduced to
one-dimensional Hardy-type inequalities.

A rearrangement invariant (briefly, r.i.) space X () is a Banach function

space such that
sk

HwHX(Q) = ”ZHX(Q) if w* = z*.

If X(Q) is an r.i. space, then there exists a representation space X (0, [©])
s.t.

lwllx@) = llw'llxe,) YweX(Q).
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Examples.
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Examples.

e Lebesgue spaces L%((2).
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Examples.
e Lebesgue spaces L%((2).

e Lorentz spaces L?"():

1

[ullLar@) = lIs7 ru™(s)[|Lr(0,12))-
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Examples.
e Lebesgue spaces L%((2).

e Lorentz spaces L?"():

1

[ullLar@) = lIs7 ru™(s)[|Lr(0,12))-

e Orlicz spaces L4(Q):

| 2 = inf {)\ >0 /QA(\u(x)\/)\) do < 1}.
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Corollary

Let 0 < ¢ < p and let X () be an r.i. space such that

< CllpllZ o

T 11
1 —
r nl(p—1) (/ gp(g)dg)p
0

for some constant C' and every nonnegative and non-increasing function
v e X(0,|Q]). If fe X(Q) and u is the solution to the Dirichlet problem

—div(a(z, Vu)) = f(z) in Q
u=0 on 02,

L4(0,]2[)

then

[Vl < Coutl™) P I -
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Estimates for ||Vul|1q(q) with ¢ > p, cannot hold without additional
smoothness assumptions on the function a(z, &) and on €.
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Estimates for ||Vul|1q(q) with ¢ > p, cannot hold without additional
smoothness assumptions on the function a(z, &) and on €.

Estimates for more general r.i. norms | - [|y(q) of [Vu| (still weaker than
| -l zr()) are known:
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Estimates for ||Vul|1q(q) with ¢ > p, cannot hold without additional
smoothness assumptions on the function a(z, &) and on €.

Estimates for more general r.i. norms | - [|y(q) of [Vu| (still weaker than
| -l zr()) are known:

e Limiting cases (e.g. weak type estimates, namely estimates in
Marcikiewicz spaces): [Bénilan, Boccardo, Gallouét, Gariepy, Pierre,
Vazquez, 1995], [Dolzmann, Hungerbiihler, Miiller, 2000].
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Estimates for ||Vul|1q(q) with ¢ > p, cannot hold without additional
smoothness assumptions on the function a(z, &) and on €.

Estimates for more general r.i. norms | - [|y(q) of [Vu| (still weaker than
| -l zr()) are known:

e Limiting cases (e.g. weak type estimates, namely estimates in
Marcikiewicz spaces): [Bénilan, Boccardo, Gallouét, Gariepy, Pierre,
Vazquez, 1995], [Dolzmann, Hungerbiihler, Miiller, 2000].

e Estimates for |Vu|™ and ensuing bounds in Lorentz spaces: [Alvino,
V.Ferone, G.Trombetti, 2000].
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Estimates for ||Vul|1q(q) with ¢ > p, cannot hold without additional
smoothness assumptions on the function a(z, &) and on €.

Estimates for more general r.i. norms | - [|y(q) of [Vu| (still weaker than
| -l zr()) are known:

e Limiting cases (e.g. weak type estimates, namely estimates in
Marcikiewicz spaces): [Bénilan, Boccardo, Gallouét, Gariepy, Pierre,
Vazquez, 1995], [Dolzmann, Hungerbiihler, Miiller, 2000].

e Estimates for |Vu|™ and ensuing bounds in Lorentz spaces: [Alvino,
V.Ferone, G.Trombetti, 2000].

e Local estimates in Lorentz spaces [Mingione 2010].
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A sharpened version of the estimate of [Alvino, V.Ferone, G. Trombetti] is
as follows.
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A sharpened version of the estimate of [Alvino, V.Ferone, G. Trombetti] is
as follows.
Theorem [Alvino, C. , Maz’ya, Mercaldo, 2010]

Let u be the weak solution to the Dirichlet problem

{—div(a(x,Vu)) = f(z) in Q
u=20 on 0f).

Then

\
<
B =

|Vu|*<><c<np>< /Q' = </f dp) dr)

for s € (0, |Q]).
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Counterparts of the estimates for [Vu| hold for solutions to Neumann
problems

—div(a(z,Vu)) = f(z) in Q

a(z,Vu) -n=0 on 0.
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Counterparts of the estimates for [Vu| hold for solutions to Neumann
problems

—div(a(z,Vu)) = f(z) in Q
a(z,Vu) -n=0 on 0.

No symmetrized extremal problem exists.
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Counterparts of the estimates for [Vu| hold for solutions to Neumann
problems

—div(a(z,Vu)) = f(z) in Q
a(z,Vu) -n=0 on 0.
No symmetrized extremal problem exists.

Constants in estimates are not sharp.
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Counterparts of the estimates for [Vu| hold for solutions to Neumann
problems

—div(a(z,Vu)) = f(z) in Q
a(z,Vu) -n=0 on 0.

No symmetrized extremal problem exists.
Constants in estimates are not sharp.
Optimal norms in estimates on irregular domains require the use of

isocapacitary inequalities instead of isoperimetric inequalities [C. , Maz'ya],
[Alvino, C. , Maz'ya, Mercaldo].
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Estimates for norms ||[Vu|ly () stronger than [|[Vu| (@), require
smoothness of the function a(x, &) and regularity of Q.
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Estimates for norms ||[Vu|ly () stronger than [|[Vu| (@), require
smoothness of the function a(x, &) and regularity of Q.

Consider, for p € (1,00), the model Dirichlet problem

—div(|Vu[P7*Vu) = f(z) in Q (3)
w=0 on 0f),
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Estimates for norms ||[Vu|ly () stronger than [|[Vu| (@), require
smoothness of the function a(x, &) and regularity of Q.

Consider, for p € (1,00), the model Dirichlet problem

—div(|VulP2Vu) = f(z) in Q
u=20 on 02,
and Neumann problem

—div(|VulP2Vu) = f(z) in Q
My on 0f),
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Pb. rearrangement estimates for |Vu/|, when wu is the solution to
p-Laplacian type Dirichlet or Neumann problems.
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Pb. rearrangement estimates for |Vu/|, when wu is the solution to
p-Laplacian type Dirichlet or Neumann problems.
Prototypal example.
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Pb. rearrangement estimates for |Vu/|, when wu is the solution to
p-Laplacian type Dirichlet or Neumann problems.
Prototypal example. Consider the solution u decaying to 0 at infinity to

the Laplace equation
—Au=f in R™.
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Pb. rearrangement estimates for |Vu/|, when wu is the solution to
p-Laplacian type Dirichlet or Neumann problems.
Prototypal example. Consider the solution u decaying to 0 at infinity to

the Laplace equation
—Au=f in R™.

If n > 3, u is the Newtonian potential of f, namely

f(y) dy

W for x S Rn
R™ -

u(z) = C(n)
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Pb. rearrangement estimates for |Vu/|, when wu is the solution to
p-Laplacian type Dirichlet or Neumann problems.
Prototypal example. Consider the solution u decaying to 0 at infinity to

the Laplace equation
—Au=f in R™.

If n > 3, u is the Newtonian potential of f, namely

u(z) = C(n) . ’xf(;)n2 dy for z € R™.
Hence,
|Vu(z)| < C'(n)/ m dy for x € R".
Rn [T —
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A rearrangement inequality for convolutions by O'Neil implies that

|Vu|*(s) < C’/ f**(r)rfﬁdr for s > 0. (5)
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A rearrangement inequality for convolutions by O'Neil implies that

|Vu|*(s) < C’/ f**(r)rfﬁdr for s > 0. (5)

Is there an analogue of (5) for nonlinear problems?
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First step, of independent interest: maximal integrability property of |Vu,
namely boundedness of |Vu|.
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First step, of independent interest: maximal integrability property of |Vu,
namely boundedness of |Vu

Ch_regularity of solutions is well-known when f and § are smooth.
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First step, of independent interest: maximal integrability property of |Vu,
namely boundedness of |Vu|.

Ch_regularity of solutions is well-known when f and § are smooth.

Vu is bounded (and Holder continuous) if f € LY(Q2), with ¢ > n, and 0Q
is of class C'"* [Liebermann 1991].
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First step, of independent interest: maximal integrability property of |Vu,
namely boundedness of |Vu|.

Ch_regularity of solutions is well-known when f and § are smooth.

Vu is bounded (and Holder continuous) if f € LY(Q2), with ¢ > n, and 0Q
is of class C'"* [Liebermann 1991].

In case of systems, global C*®-regularity, with 9Q € CP, is established in
[Chen, Di Benedetto 1989] for f € L°°(£2), and in [Beirdo da Veiga,
Crispo] for p < 2 (“close " to 2) and f € LI(S2), with ¢ > n.
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First step, of independent interest: maximal integrability property of |Vu,
namely boundedness of |Vu|.

Ch_regularity of solutions is well-known when f and § are smooth.

Vu is bounded (and Holder continuous) if f € LY(Q2), with ¢ > n, and 0Q
is of class C'"* [Liebermann 1991].

In case of systems, global C*®-regularity, with 9Q € CP, is established in
[Chen, Di Benedetto 1989] for f € L°°(£2), and in [Beirdo da Veiga,
Crispo] for p < 2 (“close " to 2) and f € LI(S2), with ¢ > n.

e Pb.: minimal integrability of f and minimal regularity of € for
|Vu| € L*°(Q), i.e. u Lipschitz continuous.
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Consider the case of the Poisson equation on a ball B

—Au=f in B,
u=~0 on 0B.

A. CiancHl (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



19

Consider the case of the Poisson equation on a ball B

—Au=f in B,
u=~0 on 0B.

One has
[Vullpeo(sy < Cll fllLra(m)-
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Consider the case of the Poisson equation on a ball B

—Au=f in B,
u=~0 on 0B.

One has
[Vullpeo(sy < Cll fllLra(m)-

Moreover, the space L' (B) is optimal ([C., 1992]).
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Consider the case of the Poisson equation on a ball B

—Au=f in B,
u=~0 on 0B.

One has
[Vullpeo(sy < Cll fllLra(m)-

Moreover, the space L' (B) is optimal ([C., 1992]).
L™1(Q) is a kind of borderline space. Recall that, if || < co and ¢ > 7,
then

L9(Q) G L™ (Q) G L™(Q).
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Theorem [C., Maz’yal

Let  be a bounded subset of R?, n > 3, such that 9Q € W2L» bt
Assume that f € L™'(Q). Let u be a weak solution to either the Dirichlet

or the Neumann p-Laplacian problem. Then there exists a constant C' =
C(p, Q) such that

1
IVullLoo@) < ClFIEn - ©)

In particular, u is Lipschitz continuous on .
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Theorem [C., Maz’yal

Let  be a bounded subset of R?, n > 3, such that 9Q € W2L» bt
Assume that f € L™'(Q). Let u be a weak solution to either the Dirichlet

or the Neumann p-Laplacian problem. Then there exists a constant C' =
C(p, Q) such that

1
IVullLoo@) < ClFIEn - ©)

In particular, u is Lipschitz continuous on .

The same conclusion holds if 2 is just a convex set.
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Theorem [C., Maz’yal

Let  be a bounded subset of R?, n > 3, such that 9Q € W2L» bt
Assume that f € L™'(Q). Let u be a weak solution to either the Dirichlet

or the Neumann p-Laplacian problem. Then there exists a constant C' =
C(p, Q) such that

1
IVullLoo@) < ClFIEn - ©)

In particular, u is Lipschitz continuous on .

The same conclusion holds if 2 is just a convex set.
The theorem holds, both for 9Q € W2L" 1! and for convex domains, also
for systems.
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Theorem [C., Maz’yal

Let  be a bounded subset of R?, n > 3, such that 9Q € W2L» bt
Assume that f € L™'(Q). Let u be a weak solution to either the Dirichlet

or the Neumann p-Laplacian problem. Then there exists a constant C' =
C(p, Q) such that

1
IVullLoo@) < ClFIEn - ©)

In particular, u is Lipschitz continuous on .

The same conclusion holds if €2 is just a convex set.

The theorem holds, both for 9Q € W2L" 1! and for convex domains, also
for systems.

Counterexamples show that, even for the scalar Laplace operator, a
solution u ¢ C'*(Q) can exist in a convex domain with 9Q € C.

A. CiancHl (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



20

Theorem [C., Maz’yal

Let  be a bounded subset of R?, n > 3, such that 9Q € W2L» bt
Assume that f € L™'(Q). Let u be a weak solution to either the Dirichlet

or the Neumann p-Laplacian problem. Then there exists a constant C' =
C(p, Q) such that

1
IVullLoo@) < ClFIEn - ©)

In particular, u is Lipschitz continuous on .

The same conclusion holds if €2 is just a convex set.

The theorem holds, both for 9Q € W2L" 1! and for convex domains, also
for systems.

Counterexamples show that, even for the scalar Laplace operator, a
solution u ¢ C'*(Q) can exist in a convex domain with 9Q € C.

Independent result, in the same spirit, by [Duzaar, Mingione, 2010] for
local solutions (approach via nonlinear potentials)
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e The spaces W?L" 5! and L™ are independent of p, and they are
essentially optimal. In particular, the space L™! is the same as for the
Laplace equation in B.
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e The spaces W?L" 5! and L™ are independent of p, and they are
essentially optimal. In particular, the space L™! is the same as for the
Laplace equation in B.

e The result is new even for

—Au = f(x) in Q
u=20 on 0.
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Idea of the proof.
e Approximate the differential operator, the datum f and the domain §2,
in such a way that u is smooth.
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Idea of the proof.
e Approximate the differential operator, the datum f and the domain §2,

in such a way that u is smooth.
e Multiply the equation

—div(|Vu[P~2Vu) = f(z)

by Awu, and integrate over the level sets of the gradient

/ Aufdr = —/ Audiv(|VuP~2Vu)dz  for t > 0.
{|Vu|>t} {|Vu|>t}
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Idea of the proof.
e Approximate the differential operator, the datum f and the domain §2,

in such a way that u is smooth.
e Multiply the equation

—div(|Vu[P~2Vu) = f(z)

by Awu, and integrate over the level sets of the gradient

/ Aufdr = —/ Audiv(|VuP~2Vu)dz  for t > 0.
{|Vu|>t} {|Vu|>t}

e Estimate
A div(|Vu[P~2Vu)

by an expression in divergence form, integrate by parts, use the boundary
condition.
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e Use:

- the coarea formula applied to |Vu|, namely

T ull dx = - T n=1(g
/Q¢< )V|Vul|d /0/W:t}¢< JiH () dt
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e Use:

- the coarea formula applied to |Vu|, namely
[ et@nervalias= [ [ o@an @,
Q 0 J{vVul=t}

- a relative isoperimetric inequality on €2:

min{|E|,|Q\ E|}» < CH" Y (OENQ) for smooth E C Q,
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e Use:

- the coarea formula applied to |Vu|, namely
[ et@nervalias= [ [ o@an @,
Q 0 J{vVul=t}

- a relative isoperimetric inequality on €2:

min{|E|,|Q\ E|}» < CH" Y (OENQ) for smooth E C Q,

- properties of rearrangements,
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e Use:

- the coarea formula applied to |Vu|, namely
[ et@nervalias= [ [ o@an @,
Q 0 J{vVul=t}

- a relative isoperimetric inequality on €2:

min{|E|,|Q\ E|}» < CH" Y (OENQ) for smooth E C Q,

- properties of rearrangements,

to derive a differential inequality for the distribution function of |Vu/|

v(t) = [{[Vul > t}].
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Obtain
-2 scw|w|rpw(m<—v’<t>>v<> (o <t>> (7)
OVl e (= ()82 / 1 (r)2dr
Ol oy (—/ ()~ K () )

for a.e. t > med(|Vul).

A. CiancHl (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



Obtain
-2 gcuwupw(m(—v’u»u() 1 (o <t>> (7)
F 1Pl owey [ et
+ OVl ) (= ) ()™ k™ (Cv () ™)
for a.e. t > med(|Vu|). Here,

d 1/2
o o(s) = (/ dex) for a.e. s € (0,H"(M)),
ds J{|Tul>vul*(s)}

a so-called pseudo-rearrangement of f2,
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Obtain
-2 gcuwupw(m(—v’u»u() 1 (o <t>> (7)
F 1Pl owey [ et
+ OVl ) (= ) ()™ k™ (Cv () ™)
for a.e. t > med(|Vu|). Here,

d 1/2
o o(s) = (/ dex) for a.e. s € (0,H"(M)),
ds J{|Tul>vul*(s)}

a so-called pseudo-rearrangement of f2,
e [ stands for the curvature of €.
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e Integrate the differential inequality (7) and use again properties of
rearrangements to conclude that

1
IVl < CF Ik -
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Pb.: Rearrangement estimate for |Vul.
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Pb.: Rearrangement estimate for |Vu].

Theorem [C., Maz’yal

Let Q be a bounded subset of R”, n > 3, such that 9Q € W2 bl
Assume that 2 <p<mn, f € LI(Q), and let u be the solution to either the
Dirichlet problem or the Neumann p-Laplacian problem. Then there exists
a constant C' = C(p,?) such that

|€2] "
|Vu|*(s)7”*1 <C [ (r)yr—w’dr for s € (0,|Q]). (8)

S
v

TELC, MAY 2014
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26

Pb.: Rearrangement estimate for |Vu].

Theorem [C., Maz’yal

Let Q be a bounded subset of R”, n > 3, such that 9Q € W2 bl
Assume that 2 <p<mn, f € LI(Q), and let u be the solution to either the
Dirichlet problem or the Neumann p-Laplacian problem. Then there exists
a constant C' = C(p,?) such that

|€2] "
|Vu|*(s)7”*1 <C [ (r)yr—w’dr for s € (0,|Q]). (8)

S
v

Recall that for the Laplace equation in R"

[Vul*(s) < C/ f**(T)rfﬁdr for s > 0.
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Important consequence of the estimate

1

o
V()P < C / Py dr,

It translates verbatim the linear theory of integrability of |Vu| for the
Laplace equation to the theory of integrability of |Vu[P~! for the nonlinear
p-Laplace equation.
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Important consequence of the estimate

1

o
V()P < C / Py dr,

It translates verbatim the linear theory of integrability of |Vu| for the
Laplace equation to the theory of integrability of |Vu[P~! for the nonlinear
p-Laplace equation.

Pointwise estimates, for local solutions, involving Riesz potentials are
established in [Kuusi-Mingione, 2011].
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Idea of the proof.
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Idea of the proof.
e We already know that

1
IVull o) < CIFIT - (9)

if f e L™Y(Q).
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Idea of the proof.
e We already know that

1
IVull o) < CIFIT - (9)

if f e L™Y(Q).
e An opposite endpoint estimate tells us that

1
p—1
IVall nezn o ) < CM L 0 (10)

if f e LY(Q).
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Idea of the proof.
e We already know that

1
IVl oy < CHF Ik (9)
if f e L™Y(Q).
e An opposite endpoint estimate tells us that

1
p—1
IVall nezn o ) < CM L 0 (10)

if f e LY(Q).
An idea would be to interpolate between these two estimates, on making
use of Peetre K -functional.
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Idea of the proof.
e We already know that

1
IVull o) < CIFIT - (9)

if f e L™Y(Q).
e An opposite endpoint estimate tells us that

1
p—1
IVall nezn o ) < CM L 0 (10)

if f e LY(Q).

An idea would be to interpolate between these two estimates, on making
use of Peetre K -functional.

Pb.: the map

f—Vu

is not linear!
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However:
e One can prove the stability estimate

1
f— - p-l
IV W||Ln;p:11)m(mgcuf 9llrr oy (11)

where v is the solution to the same problem, with the right-hand side f
replaced by g.

A. CiancHl (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



However:
e One can prove the stability estimate

1
f— - p-l
IV W||Ln;p:11)m(mgcuf 9llrr oy (11)

where v is the solution to the same problem, with the right-hand side f
replaced by g.

e Use a nonlinear interpolation argument, again relying upon Peetre

K -functional, between inequalities (9) and (11) to conclude that

9]
IVul*(s)PL < C FEyrwdr for s € (0,]9)).

s
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30

Distinctive feature of the rearrangement estimate: it is independent of
specific function spaces. It reduces any inequality between r.i.
(quasi-)norms of |Vu| and f to one-dimensional Hardy-type inequalities
involving the corresponding representation quasi-norms.
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30

Distinctive feature of the rearrangement estimate: it is independent of
specific function spaces. It reduces any inequality between r.i.
(quasi-)norms of |Vu| and f to one-dimensional Hardy-type inequalities
involving the corresponding representation quasi-norms.
Corollary

Let © be as above. Let X(Q2) and Y(£2) be r.i. spaces on . Assume that
there exists a constant C' such that

ol pr -
H/ /Ow(p)dpr_n’_ dr

for every o € X(0,]Q]). If f € X(2) and u is the solution to either the
Dirichlet problem or the Neumann p-Laplacian problem, then there exists a
constant C’ such that

Y (0,19])

< Cllellx o, -

VUl v < CNlfllxe)-
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Applications.
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Applications.
1. Bounds in Lorentz spaces.
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Applications.

1. Bounds in Lorentz spaces.
Assume that f € LT"(Q).
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Applications.

1. Bounds in Lorentz spaces.

Assume that f € LT"(Q).

() If1<r<ooand1l<gq<n, then

_1
p—1

Vul|l gnep— <C O -
| HL%*‘;)’T@_U(Q) ”f”Lq, Q)
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Applications.

1. Bounds in Lorentz spaces.

Assume that f € LT"(Q).

() If1<r<ooand1l<gq<n, then

1
VUl ane—1) < ClflI e
L n—q )

aT(P_l)(Q L‘LT(Q)‘
(i) If g =1 and r = 1, then LY (Q) = L}(Q)

1
p—1
Hvu||Ln§lP:11)7m(Q) < CHfHLl(Q)
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(iii) If g=n and r > 1, then

9u < ke,

Loor 01 (log L) 7T (Q)

where

Y] ds r(p—1)
_ x(\r(p—1)  H=2
Hvu||Loo,r(p71)(10gL)7p%I(Q) <A ’VU| (8) Slogr(l/s)) .
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(iii) If g=n and r > 1, then

9u < ke,

Loor 01 (log L) 7T (Q)

where

Y] ds ﬁ
_ (p—1)___ %2
Hvu||Loo,r(p71)(10gL)7p%I(Q) <A IVU| ( ) S],Ogr(]./s)) .

(iv) If either ¢ > n, or ¢ =n and r =1, then

1
IVl ey < CU 1k o
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2. Bounds in Orlicz spaces.
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2. Bounds in Orlicz spaces.
Let A be a Young function.
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2. Bounds in Orlicz spaces.
Let A be a Young function.
Let A be the Young conjugate of A, i.e.

A(t) = sup{st — A(s) : s > 0}.
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2. Bounds in Orlicz spaces.
Let A be a Young function.
Let A be the Young conjugate of A, i.e.

A(t) = sup{st — A(s) : s > 0}.

H(s) = (/O (14’&)) - dt> s

Define
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2. Bounds in Orlicz spaces.
Let A be a Young function.
Let A be the Young conjugate of A, i.e.

A(t) = sup{st — A(s) : s > 0}.

H(s) = (/O (14’&)) - dt> s

and the Sobolev conjugate A,, of A

Define

Ay(t)=A(H ' (t))  fort>0
[C. 1996].
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Assume that there exists ¢ > 0 s.t.

B(t) < Ap(ct) and A(t) < (B), (ct) fort>0.
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Assume that there exists ¢ > 0 s.t.
B(t) < Ap(ct) and A(t) < (B), (ct) fort>0.
Then there exist a constant C' such that

IIVulP=tLe@) < CllfllLay
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For example, if either ¢ > 1 and a € R, or ¢ = 1 and a > 0 denote by
L%]og™ L(Q)
the Orlicz space associated with

A(t) = t?log™t near infinity.
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For example, if either ¢ > 1 and a € R, or ¢ = 1 and a > 0 denote by
L%]og™ L(Q)
the Orlicz space associated with

A(t) = t?log™t near infinity.

For 8 > 0, denote by

exp LP(Q)
the Orlicz space associated with
At) =’ —1,
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For example, if either ¢ > 1 and a € R, or ¢ = 1 and a > 0 denote by
L%]og™ L(Q)
the Orlicz space associated with

A(t) = t?log™t near infinity.

For 8 > 0, denote by

exp LP(Q)
the Orlicz space associated with
At) =’ —1,
and by
exp exp LB(Q)
the Orlicz space associated with
At) = eetﬁ —e.
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If 1 < g < n, then

HVUH qn(ziql) lognn—a L) < CHfHLq log™ L(Q)
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If 1 < g < n, then

HVUHanrgzi;l) log ™ e 7 L) < CHfHLq log® L(Q)
If =1, « >0, then
||vu|| np=1) log# ey L(Q) C||f||L1 log® L(Q)’
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If 1 < g < n, then

HVUHanrgzi;l) log ™ e 7 L) < CHfHquog L(Q)

If =1, « >0, then

||vu|| np=1) log# ey L(Q) C||f||L110g o 1(Q)

If g =n and a <n —1, then

||qu @(Q) < C”f”Ln log® L(Q)’

exp Ln—1-a
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If 1 < g < n, then

HVUHanrgzi;l) log ™ e 7 L) < CHfHquog L(Q)

If =1, « >0, then
||vu|| np=1) log# ey L(Q) C||f||L110g o 1(Q)
If g =n and a <n —1, then

I, 8 g < OV 0
If g=mn and and « = n — 1, then

Vel L () = CHfHL" log" ! L(%2)’

exp exp
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If 1 < g < n, then

HVUHanrgzi;l) log ™ e 7 L) < CHfHL‘Zlog L(Q)

If g=1, a >0, then

logn=T"" L(Q)
If g =n and a <n —1, then

V0l s < I g

I, 8 g < OV 0
If g=mn and and « = n — 1, then

Vel L () = CHfHL" log" ! L(%2)’

exp exp

If either ¢ > n or g =n and and a > n — 1, then

[Vl peo () < CHfHquog L)

A. CiancHl (UN1v. FIRENZE) GRADIENT REGULARITY TELC, MAY 2014



