

LMU Munich • Lars Diening

Lipschitz truncation

Lars Diening Lipschitz truncation 1_j

Lipschitz truncation

Lipschitz truncation

Approximate a Sobolev function in a <u>suitable way</u> by Lipschitz functions.

Requirement: Change the function only on a small set.

Cannot use convolution as it changes the function on a large set!

Acerbi-Fusco 1984

Method first appeared in:

Theorem (Acerbi-Fusco '84)

If $f = f(x, s, \xi)$ is Caratheodory, quasi-convex in ξ and for some p > 1

$$0 \le f(x, s, q) \lesssim a(x) + |s|^p + |q|^p,$$

then
$$f \mapsto \int f(x, u(x), \nabla u(x)) dx$$
 is $W^{1,p}$ -weakly seq. lower continuous.

Idea:

- First show W^{1,∞}-weak-*-sequentially lower continuity.
- Now approximate $W^{1,p}$ functions by $W^{1,\infty}$ functions.

Lipschitz truncation – cutting the gradients

Maximal function:
$$(Mf)(x) = \sup_{B \ni x} \int_{B} |f| dy.$$

Majorant: $|f| \leq Mf$

Bounded: $\|Mf\|_p \lesssim \|f\|_p$ for p > 1 and $\sup_{\lambda > 0} (\lambda |\{Mf > \lambda\}|) \lesssim \|f\|_1$.

For $\mathbf{w} \in W_0^{1,1}(\Omega)$ we have

$$|\mathbf{w}(x) - \mathbf{w}(y)| \lesssim |x - y| (M(\nabla \mathbf{w})(x) + M(\nabla \mathbf{w})(y)),$$

- **w** is Lipschitz outside the small, open bad set $\{M(\nabla \mathbf{w}) > \lambda\}$.
- Cut out the bad set and extend to $\mathbf{w}_{\lambda} \in W_0^{1,\infty}(\Omega)$ with $\|\nabla \mathbf{w}_{\lambda}\|_{\infty} \lesssim \lambda$.

Lipschitz truncation – cutting the gradients

Maximal function:
$$(Mf)(x) = \sup_{B \ni x} \int_{B} |f| dy.$$

Majorant: $|f| \leq Mf$

Bounded: $\|Mf\|_p \lesssim \|f\|_p$ for p > 1 and $\sup_{\lambda > 0} (\lambda |\{Mf > \lambda\}|) \lesssim \|f\|_1$.

For $\mathbf{w} \in W_0^{1,1}(\Omega)$ we have

$$|\mathbf{w}(x) - \mathbf{w}(y)| \lesssim |x - y| \big(M(\nabla \mathbf{w})(x) + M(\nabla \mathbf{w})(y) \big),$$

- **w** is Lipschitz outside the small, open bad set $\{M(\nabla \mathbf{w}) > \lambda\}$.
- Cut out the bad set and extend to $\mathbf{w}_{\lambda} \in W_0^{1,\infty}(\Omega)$ with $\|\nabla \mathbf{w}_{\lambda}\|_{\infty} \lesssim \lambda$.

Applied to weak sequences

• Start with $\mathbf{w}^n \rightharpoonup 0$ in $W^{1,p}$.

Then Lipschitz truncations satisfy for fixed $\lambda>0$

- $\|\nabla \mathbf{w}_{\lambda}^{n}\|_{\infty} \lesssim \lambda$,
- $\mathbf{w}_{\lambda}^{n} \stackrel{*}{\rightharpoonup}$??? in $W^{1,\infty}$ (subsequence).

This makes some technical problems in [Acerbi-Fusco 1984].

• Landes showed in 1996 that $\mathbf{w}_{\lambda}^{n} \stackrel{*}{\rightharpoonup} 0$ in $W^{1,\infty}$: use the bad set $\{M(\nabla \mathbf{w}) > \lambda\} \cup \{M\mathbf{w} > \theta_n\}$ with $\theta_n \to 0$ slowly and $\|\mathbf{w}_{\lambda}\|_{\infty} \lesssim \theta_n$.

Applied to weak sequences

• Start with $\mathbf{w}^n \to 0$ in $W^{1,p}$.

Then Lipschitz truncations satisfy for fixed $\lambda>0$

- $\|\nabla \mathbf{w}_{\lambda}^{n}\|_{\infty} \lesssim \lambda$,
- $\mathbf{w}_{\lambda}^{n} \stackrel{*}{\rightharpoonup}$??? in $W^{1,\infty}$ (subsequence).

This makes some technical problems in [Acerbi-Fusco 1984].

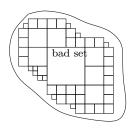
• Landes showed in 1996 that $\mathbf{w}_{\lambda}^{n} \stackrel{*}{\rightharpoonup} 0$ in $W^{1,\infty}$: use the bad set $\{M(\nabla \mathbf{w}) > \lambda\} \cup \{M\mathbf{w} > \theta_{n}\}$ with $\theta_{n} \to 0$ slowly and $\|\mathbf{w}_{\lambda}\|_{\infty} \lesssim \theta_{n}$.

Lipschitz truncation – today

 $\mathbf{w} \in W^{1,1}$ is Lipschitz outside bad set $\mathrm{Bad}_{\lambda} := \{M(\nabla \mathbf{w}) > \lambda\}.$

Whitney covering $\operatorname{Bad}_{\lambda} = \bigcup_{i} Q_{i}$ with partition of unity φ_{i}

$$\mathbf{w}_{\lambda} := egin{cases} \mathbf{w} & \text{on good set,} \\ \sum_{i} \varphi_{i} \langle \mathbf{w} \rangle_{Q_{i}} & \text{on bad set.} \end{cases}$$



Rewrite as
$$\mathbf{w} = \mathbf{w}_{\lambda} + \sum_{i} \varphi_{i}(\mathbf{w} - \langle \mathbf{w} \rangle_{Q_{i}})$$
 since $\sum_{i} \varphi_{i} = 1$ on Bad_{λ} .

Basic properties

Well defined

We have $\mathbf{w}_{\lambda} \in W^{1,1}$

Use
$$\mathbf{w} = \mathbf{w}_{\lambda} + \sum_{i} \varphi_{i}(\mathbf{w} - \langle \mathbf{w} \rangle_{Q_{i}})$$
. Sum converges in $W^{1,1}$.

Stability

$$\|\mathbf{w}_{\lambda}\|_{p} \lesssim \|\mathbf{w}\|_{p} \text{ and } \|\nabla \mathbf{w}_{\lambda}\|_{p} \lesssim \|\nabla \mathbf{w}\|_{p} \text{ for } 1 \leq p \leq \infty.$$

Lipschitz property

 $M(\nabla \mathbf{w}_{\lambda}) \lesssim \lambda$. In particular, $\|\nabla \mathbf{w}_{\lambda}\|_{\infty} \lesssim \lambda$.

Calderón-Zygmund decomposition

Lipschitz truncation

We can decompose $\mathbf{w} \in W^{1,1}$ into

$$\mathbf{w} = \mathbf{w}_{\lambda} + \sum_{i} arphi_{i} (\mathbf{w} - \langle \mathbf{w}
angle_{Q_{i}})$$

with $\mathbf{w}_{\lambda} \in W^{1,\infty}$.

Calderón-Zygmund decomposition

We can decompose $f \in L^1$ into

$$f = g + \sum_{i} \varphi_{i} (f - \langle f \rangle_{Q_{i}})$$

with $g \in L^{\infty}$.

Additional smallness

Let 1 .

Note that $\{\mathbf{w} \neq \mathbf{w}_{\lambda}\} \subset \{M(\nabla \mathbf{w}) > \lambda\}.$

Weak type estimate: $\lambda^p |\{M(\nabla \mathbf{w}) > \lambda\}| \le c \|\nabla \mathbf{w}\|_p^p$.

Strong type estimate: $\sum_{j} (2^{j})^{p} |\{M(\nabla \mathbf{w}) > 2^{j}\}| \le c \|\nabla \mathbf{w}\|_{p}^{p}.$

Most summands are small.

Smallness [D., Malek, Steinhauer '08; FMS '03]

There exists $\lambda \in [2^{2^j}, 2^{2^{j+1}}]$ with

$$\|\chi_{\{\mathbf{w}\neq\mathbf{w}_{\lambda}\}}\nabla\mathbf{w}_{\lambda}\|_{p}^{p} \leq c \,\lambda^{p}|\{\mathit{M}(\nabla\mathbf{w})>\lambda\}| \leq c \,2^{-j} \,\|\nabla\mathbf{w}\|_{p}^{p}.$$

Preserving zero boundary values

Theorem

Lipschitz truncation can preserve zero boundary values!

Recall
$$\mathbf{w} = \mathbf{w}_{\lambda} + \sum_{i} \varphi_{i} (\mathbf{w} - \langle \mathbf{w} \rangle_{i}).$$

away from $\partial\Omega$: $\mathbf{w}_i := \langle \mathbf{w} \rangle_{Q_i}$

close to $\partial\Omega$: $\mathbf{w}_i := 0$

Need assumptions on Ω for Poincaré: fat complement.

Applied to weak sequences

Theorem (Diening, Málek, Steinhauer '07, +Breit '11)

For $\mathbf{w}^n \rightharpoonup 0 \in W_0^{1,p}$ and p > 1 exists $\mathbf{w}_k^n \in W_0^{1,\infty}$ such that

- $\mathbf{w}_k^n \stackrel{n}{\to} 0$ strongly in L^{∞} ,
- $\nabla \mathbf{w}_k^n \stackrel{n}{\to} 0$ *-weakly in L^{∞} ,
- $\|\nabla \mathbf{w}_k^n \chi_{\{\mathbf{w}_n \neq \mathbf{w}_k^n\}}\|_p^p \lesssim \lambda^p |\mathrm{Bad}_k^n| \lesssim 2^{-k}$.

Reproving the result of Acerbi-Fusco

Let $\mathbf{u} \in W^{1,p}(\Omega)$ and $\mathbf{w}^n \rightharpoonup 0$ in $W_0^{1,p}(\Omega)$. Then

$$\begin{split} F(\mathbf{u},\Omega) &:= \int_{\Omega} f(x,\mathbf{u},\nabla\mathbf{u}) \, dx \\ &\leq \liminf_n F(\mathbf{u}+\mathbf{w}_k^n) \qquad \text{by } \mathbf{w}_k^n \stackrel{*}{\rightharpoonup} 0 \text{ in } W_0^{1,\infty}(\Omega) \text{ for } n \to \infty \\ &\leq \lim_n F(\mathbf{u}+\mathbf{w}_k^n, \operatorname{Bad}_k^n) + \liminf_n F(\mathbf{u}+\mathbf{w}^n, \operatorname{Good}_k^n) \\ &\leq \lim_n F(\mathbf{u}+\mathbf{w}_k^n, \operatorname{Bad}_k^n) + \liminf_n F(\mathbf{u}+\mathbf{w}^n, \Omega) \qquad \text{using } f \geq 0 \\ &\leq \lim_n \int_{\operatorname{Bad}_k^n} |\nabla u|^p + \lambda^p \, dx + \liminf_n F(\mathbf{u}+\mathbf{w}^n, \Omega) \qquad \text{growth cond.} \\ &\leq \varepsilon_k + 2^{-k} + \liminf_n F(\mathbf{u}+\mathbf{w}^n, \Omega). \end{split}$$

Now $j \to \infty$ proves the $W^{1,p}$ -weak-seq. lsc property of F.

4日ト4団ト4豆ト4豆ト 豆 かなぐ

Lars Diening

Power law fluids

Lipschitz truncation can be used to prove:

Theorem (Frehse, Málek, Steinhauer '03; +Diening '07)

There exists a weak solution for $p > \frac{6}{5}$ in \mathbb{R}^3 to

$$-\operatorname{div}(|\varepsilon(\mathbf{u})|^{p-2}\varepsilon(\mathbf{u})) + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla q = \mathbf{f},$$

$$\operatorname{div}\mathbf{u} = 0.$$

- Convection $(\mathbf{u} \cdot \nabla)\mathbf{u} = \operatorname{div}(\mathbf{u} \otimes \mathbf{u})$, requires $W^{1,p} \hookrightarrow L^2$, i.e. $p \geq \frac{6}{5}$.
- Use Lipschitz truncation & pointwise monotonicity.
- Use Bogovskiĭ correction to overcome $\operatorname{div} \mathbf{u}_{\lambda} \neq 0$.
- $p(\cdot)$ is possible (electrorheological fluids).

Prantl-Eyring fluids

Stationary problems

Prandtl-Eyring fluids: constitutive law reads

$$\mathsf{S}(arepsilon(\mathsf{u})) = rac{\log(1+|arepsilon(\mathsf{u})|)}{|arepsilon(\mathsf{u})|} arepsilon(\mathsf{u}).$$

- Natural spaces $L^{t \ln t}$ (almost p = 1).
- Critical already for n = 2 due to convection $div(\mathbf{u} \otimes \mathbf{u})$.
- Problem: Bogovskii-operator unbounded on L^{t ln t}.
- \Rightarrow Need solenoidal Lipschitz truncation, i.e. $\operatorname{div}(\mathbf{u}_{\lambda}) = 0$.

Solenoidal Lipschitz truncation; stationary

Curl representation for \mathbb{R}^3

For $\mathbf{u} \in W^{1,p}_{0,\mathrm{div}}$ exists $\boldsymbol{\omega} := \mathrm{curl}^{-1} \mathbf{u} \in W^{2,p}_{\mathrm{div}}(\Omega)$.

Use $W^{2,\infty}$ -truncation for ω (Lipschitz truncation of second order)

$$\omega = \omega_{\lambda} + \sum_{i} \varphi_{i}(\omega - \omega_{i}).$$

with ω_i local, linear approximations of ω .

Solenoidal Lipschitz truncation [Breit, Diening, Schwarzacher '12]

 $\mathbf{u}_{\lambda} := \operatorname{curl}(oldsymbol{\omega}_{\lambda})$ is solenoidal and behaves like Lipschitz truncation.

Also: [Breit, Diening, Fuchs '11; Diening, Kreuzer, Süli '12]

Almost harmonic (1/3)

Definition

 $u \in W^{1,1}(B)$ is almost harmonic on B if for suitable small $\delta > 0$

$$\left| \oint_{B} \mathcal{A} \nabla u \nabla \xi \, dx \right| \leq \frac{\delta}{\delta} \oint_{B} |\nabla u| \, dx \, \|\nabla \xi\|_{\infty} \qquad \text{for } \xi \in C_{0}^{\infty}(B).$$

Can use $\xi \in W_0^{1,\infty}(B)$.

Theorem (Approximation Lemma)

If u is almost harmonic, then there exists harmonic h close to u.

Giaquinta, Simon, Duzaar, Mingione, ...

Important for partial regularity!

Almost harmonic (2/3)

Theorem (Classical approximation Lemma)

If u is almost harmonic, then there exists harmonic h L^2 -close to u

Classical: Contradiction argument with harmonic limit and compactness.

New direct approach:
$$-\Delta h = 0 \qquad \text{on } \Omega$$

$$h = u \qquad \text{on } \partial \Omega.$$

Use $W_0^{1,\infty}$ -truncation of u-h as test function.

Theorem (Diening, Stroffolini, Verde)

$$\left(\int_{B} |\nabla (u-h)|^{2\theta} dx\right)^{\frac{1}{\theta}} \leq \varepsilon(\delta,\theta) \int_{B} |\nabla u|^{2} dx \qquad \text{for } \theta \in (0,1)$$

《□》《意》《意》 意》 りへで Lipschitz truncation 17/23

Almost harmonic (3/3)

What about the quasi-convex case?

Consider $-\mathrm{div}(\mathcal{A}\nabla u)$ with \mathcal{A} Legendre-Hadamard elliptic tensor

Theorem (Diening, Lengeler, Stroffolini, Verde, Cruz-Uribe)

$$\int_{B} |\nabla (u-h)|^{q} dx \leq c \, \delta^{\frac{q(s-1)}{sq-1}} \left(\int_{B} |\nabla u|^{qs} dx \right)^{\frac{1}{s}} \qquad q \in (1,\infty), s > 1$$

Idea:

$$\|\nabla(u-h)\|_q \sim \sup_{\xi \in W_0^{1,q'}(B)} \frac{|\langle \mathcal{A}\nabla(u-h), \nabla \xi \rangle|}{\|\nabla h\|_{q'}}$$

Use $W_0^{1,\infty}$ -Lipschitz truncation for ξ and weak-type estimates.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ かなぐ

Almost p-harmonic

Definition

 $u \in W^{1,\max\{p-1,1\}}(B)$ is almost harmonic on B if for suitable small $\delta > 0$

$$\left| \oint_{B} |\nabla u|^{\rho-2} \nabla u \nabla \xi \, dx \right| \leq \frac{\delta}{\delta} \oint_{B} |\nabla u|^{\rho-1} \, dx \|\nabla \xi\|_{\infty} \qquad \text{for } \xi \in C_0^{\infty}(B).$$

Duzaar, Mingione, ...

Theorem (Diening, Stroffolini, Verde)

Then the p-harmonic h with u - h = 0 on ∂B satisfies

$$\left(\int_{B} |\nabla (u-h)|^{\theta p} dx\right)^{\frac{1}{\theta}} \leq \varepsilon(\delta,\theta) \int_{B} |\nabla u|^{p} dx \qquad \theta \in (0,1)$$

Problem: Cannot go below power p.

Parabolic problems

Assume
$$u \in L^p(W^{1,p})$$
 and $H \in L^{p'}(L^{p'})$ and

$$\partial_t u = \mathrm{div} H$$
 in $\mathcal{D}'(I \times \Omega)$

Parabolic Poincaré-inequality

On parabolic cube $Q_r := (-\alpha r^2, \alpha r^2) \times B_r$

$$\oint_{Q_r} \left| \frac{u - u_{Q_r}}{r} \right| dx dt \le c \oint_{Q_r} |\nabla u| dx dt + c\alpha \oint_{Q_r} |H| dx dt,$$

To match ∇u with H we need $\alpha = \lambda^{2-p}$.

Parabolic Lipschitz truncation [Kinnunen, Lewis '02, D. R. W. '10]

Roughly
$$u_{\lambda} \in L^{\infty}(W^{1,\infty}) \cap L^{\infty}(W^{-1,\infty})$$

• Solenoidal version is possible! [Breit, Diening, Schwarzacher '13]

Parabolic Lipschitz truncation

Theorem (Diening, Schwarzacher, Stroffolini, Verde)

Let $\partial_t w = \operatorname{div} G$ on Q with w = 0 on $\partial_p Q$. Then there exists w^α_λ with

- **3** w_{λ}^{α} is λ -Lipschitz with respect to metric $\left(\frac{|t-s|}{\alpha}\right)^{\frac{1}{2}}+|x-y|$

where $\operatorname{Bad}_{\lambda}^{\alpha} := \{ \mathcal{M}^{\alpha}(\nabla u) + \alpha \mathcal{M}^{\alpha}(G) > \lambda \}.$

p-caloric approximation lemma

Extension of: Duzaar, Mingione, Bögelein, Scheven, ...

Theorem (Diening, Schwarzacher, Stroffolini, Verde)

Let $\partial_t u = \mathrm{div} H$ and let u be p-caloric in the sense that for $\xi \in C_0^\infty(Q)$

$$\left| \oint_{Q} -u \partial_{t} \xi + A(\nabla u) \nabla \xi \, dz \right| \leq \frac{\delta}{\delta} \left(\oint_{Q} |\nabla u|^{p} dz + \oint_{Q} |H|^{p'} dz + \|\nabla \xi\|_{\infty}^{p'} \right)$$

Then the p-caloric h with h = u on $\partial_p Q$ satisfies for $\theta \in (0,1)$

$$\left(\int\limits_{Q}|\nabla u-\nabla h|^{p\theta}\,dz\right)^{\frac{1}{\theta}}\leq\varepsilon(\delta,\theta)\left(\int\limits_{Q}|\nabla u|^{p}dz+\int\limits_{Q}|H|^{p'}dz\right).$$

Use parabolic Lipschitz truncation perserving zero boundary values.

(ロ) (部) (重) (重) (重) の(()

Lars Diening Lipschitz truncation 22/2

Conclusion

- Lipschitz truncation is useful in many PDE problems (Existence; almost harmonic; almost caloric)
- Close relation to Calderón-Zygmund decomposition