# Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms

Stanislav Hencl and Aldo Pratelli

Charles University, Prague, Czech Republic

2.5.2014, Regularity theory for elliptic and parabolic systems and problems in continuum mechanics



**Problem [Ball-Evans]:**  $\Omega \subset \mathbb{R}^n$  domain,  $f \in W^{1,p}(\Omega, \mathbb{R}^n)$  homeomorphism. Can we find  $f_k$  piecewise affine (or diffeomorphisms) such that  $f_k \to f$  in  $W^{1,p}$ ?

**Problem [Ball-Evans]:**  $\Omega \subset \mathbb{R}^n$  domain,  $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism. Can we find  $f_k$  piecewise affine (or diffeomorphisms) such that  $f_k \to f$  in  $W^{1,p}$ ?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k \text{ smooth} \stackrel{\text{easy Pratelli&Mora-Corral}}{\Rightarrow} \exists f_k \text{ piecewise affine}$ 



**Problem [Ball-Evans]:**  $\Omega \subset \mathbb{R}^n$  domain,  $f \in W^{1,p}(\Omega, \mathbb{R}^n)$  homeomorphism. Can we find  $f_k$  piecewise affine (or diffeomorphisms) such that  $f_k \to f$  in  $W^{1,p}$ ?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k \text{ smooth} \stackrel{\text{easy Pratelli&Mora-Corral}}{\Rightarrow} \exists f_k \text{ piecewise affine}$ 

#### Motivation

• Regularity for models in Nonlinear Elasticity Ball models min  $\int W(Du)$  where  $E(u) \to \infty$  as  $J_u \to 0$ 

**Problem [Ball-Evans]:**  $\Omega \subset \mathbb{R}^n$  domain,  $f \in W^{1,p}(\Omega, \mathbb{R}^n)$  homeomorphism. Can we find  $f_k$  piecewise affine (or diffeomorphisms) such that  $f_k \to f$  in  $W^{1,p}$ ?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k \text{ smooth} \stackrel{\mathsf{easy}}{\Rightarrow} \overset{\mathsf{Pratelli\&Mora-Corral}}{\Leftarrow} \exists f_k \text{ piecewise affine}$ 





#### Motivation

- Regularity for models in Nonlinear Elasticity Ball models min  $\int W(Du)$  where  $E(u) \to \infty$  as  $J_u \to 0$
- Numerics finite elements method

**Problem [Ball-Evans]:**  $\Omega \subset \mathbb{R}^n$  domain,  $f \in W^{1,p}(\Omega, \mathbb{R}^n)$  homeomorphism. Can we find  $f_k$  piecewise affine (or diffeomorphisms) such that  $f_k \to f$  in  $W^{1,p}$ ?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k \text{ smooth} \stackrel{\mathsf{easy}}{\Rightarrow} \overset{\mathsf{Pratelli} \& \mathsf{Mora-Corral}}{\Leftarrow} \exists f_k \text{ piecewise affine}$ 



- Regularity for models in Nonlinear Elasticity Ball models min  $\int W(Du)$  where  $E(u) \to \infty$  as  $J_u \to 0$
- Numerics finite elements method
- Easier proofs of known (and new) statements



#### Known results

C. Mora-Corral: f smooth up to one point

#### Theorem (Iwaniec, Kovalev, Onninen)

Let n=2 and  $1 . Given a homeomorphism <math>f \in W^{1,p}(\Omega, \mathbf{R}^2)$  there are diffeomorphisms  $f_k$  with  $f_k \to f$  in  $W^{1,p}$ ,  $f_k \rightrightarrows f$  and  $f_k - f \in W_0^{1,p}$ 

#### Known results

C. Mora-Corral: f smooth up to one point

#### Theorem (Iwaniec, Kovalev, Onninen)

Let n=2 and  $1 . Given a homeomorphism <math>f \in W^{1,p}(\Omega, \mathbf{R}^2)$  there are diffeomorphisms  $f_k$  with  $f_k \to f$  in  $W^{1,p}$ ,  $f_k \rightrightarrows f$  and  $f_k - f \in W^{1,p}_0$ 

**Open problem:** Can you find  $f_k$  with  $f_k \to f$  in  $W^{1,p}$  and  $f_k^{-1} \to f^{-1}$  in  $W^{1,p}$ 

#### Theorem (Daneri, Pratelli)

Let n=2 and  $1 \le p < \infty$ . Given a bi-Lipschitz f there are diffeomorphims  $f_k$  with  $f_k \to f$  in  $W^{1,p}$  and  $f_k^{-1} \to f^{-1}$  in  $W^{1,p}$ .



 $n=2,\ 1< p<\infty,\ f\in W^{1,p}$  homeomorphism -  $\exists\ f_k$ 

#### Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let n=2 and  $1 . <math>f A \to Q$  homeomorphism onto convex Q. There is  $g: A \to Q$ , f=g on  $\partial A$  such that g minimizes  $\int_A |Dg|^p$ . This g is a homeomorphism and it is smooth inside A.

 $n=2, \ 1 homeomorphism - <math>\exists \ f_k$ 

#### Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let n=2 and  $1 . <math>f A \to Q$  homeomorphism onto convex Q. There is  $g:A \to Q$ , f=g on  $\partial A$  such that g minimizes  $\int_A |Dg|^p$ . This g is a homeomorphism and it is smooth inside A.

Cover  $f(\Omega)$  by cubes  $(\leq 1/k)$  - construct  $f_k$ , smooth (technical difficulty)



 $n=2, \ 1 homeomorphism - <math>\exists \ f_k$ 

#### Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let n=2 and  $1 . <math>f A \to Q$  homeomorphism onto convex Q. There is  $g:A \to Q$ , f=g on  $\partial A$  such that g minimizes  $\int_A |Dg|^p$ . This g is a homeomorphism and it is smooth inside A.

Cover  $f(\Omega)$  by cubes  $(\leq 1/k)$  - construct

 $f_k$ , smooth (technical difficulty)

$$f_k \rightrightarrows f$$
 and  $||Df_k||_p \le ||Df||_p$ 

 $\Rightarrow f_k \rightharpoonup f$  and lsc of norm

 $\Rightarrow f_k \to f$  in  $W^{1,p}$ 



 $n=2, 1 homeomorphism - <math>\exists f_{\nu}$ 

#### Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let n = 2 and  $1 . <math>f A \rightarrow Q$  homeomorphism onto convex Q. There is  $g: A \to Q$ , f = g on  $\partial A$  such that gminimizes  $\int_{A} |Dg|^{p}$ . This g is a homeomorphism and it is smooth inside A.

Cover  $f(\Omega)$  by cubes  $(\leq 1/k)$  - construct

 $f_k$ , smooth (technical difficulty)

$$f_k \rightrightarrows f$$
 and  $||Df_k||_p \leq ||Df||_p$ 

 $\Rightarrow f_k \rightharpoonup f$  and lsc of norm

 $\Rightarrow f_{\nu} \to f$  in  $W^{1,p}$ 



Allesandrini-Sigalloti - works only for n = 2 and 1

 $n=2,\ 1\leq p<\infty,\ f$  biLipschitz -  $\exists\ f_k$  approximate f and  $f^{-1}$ 

#### Theorem (Daneri, Pratelli)

Let n = 2 and  $f \partial Q \to \mathbb{R}^2$  be L-biLipschitz and piecewise affine. There is piecewise affine and  $CL^4$  biLipschitz  $g: Q \to \mathbb{R}^2$  with f = g on  $\partial Q$ .

 $n=2,\ 1\leq p<\infty,\ f$  biLipschitz -  $\exists\ f_k$  approximate f and  $f^{-1}$ 

#### Theorem (Daneri, Pratelli)

Let n = 2 and  $f \partial Q \rightarrow \mathbb{R}^2$  be L-biLipschitz and piecewise affine. There is piecewise affine and  $CL^4$  biLipschitz  $g: Q \rightarrow \mathbb{R}^2$  with f = g on  $\partial Q$ .

f is differentiable a.e. and a.e. point x is a Lebesque point of Df:  $\int_{Q(x,2r)} |Df - Df(x)|^p < \varepsilon |Q|$  - Good centers Cover  $\Omega$  by cubes  $(\leq 1/k)$  - Good have measure  $> |\Omega| - \delta$ 

 $n=2,\ 1\leq p<\infty,\ f$  biLipschitz -  $\exists\ f_k$  approximate f and  $f^{-1}$ 

#### Theorem (Daneri, Pratelli)

Let n = 2 and  $f \partial Q \rightarrow \mathbb{R}^2$  be L-biLipschitz and piecewise affine. There is piecewise affine and  $CL^4$  biLipschitz  $g: Q \rightarrow \mathbb{R}^2$  with f = g on  $\partial Q$ .

f is differentiable a.e. and a.e. point x is a Lebesque point of Df:  $\int_{Q(x,2r)} |Df - Df(x)|^p < \varepsilon |Q|$  - Good centers Cover  $\Omega$  by cubes  $(\leq 1/k)$  - Good have measure  $> |\Omega| - \delta$ 

Approximate on the grid by piecewise linear mapping.



 $n=2,\ 1\leq p<\infty,\ f$  biLipschitz -  $\exists\ f_k$  approximate f and  $f^{-1}$ 

#### Theorem (Daneri, Pratelli)

Let n=2 and  $f \partial Q \to \mathbf{R}^2$  be L-biLipschitz and piecewise affine. There is piecewise affine and  $CL^4$  biLipschitz  $g:Q\to\mathbf{R}^2$  with f=g on  $\partial Q$ .

f is differentiable a.e. and a.e. point x is a Lebesque point of Df:  $\int_{Q(x,2r)} |Df - Df(x)|^p < \varepsilon |Q|$  - Good centers Cover  $\Omega$  by cubes  $(\leq 1/k)$  - Good have measure  $> |\Omega| - \delta$ 

Approximate on the grid by piecewise linear mapping.

On good cubes use natural affine approximation - Lebesque squares - close norm

On bad cubes use Lemma - measure  $<\delta \Rightarrow \int \leq \delta \textit{CL}^{4p}$  small



#### New results

#### Theorem (H., Pratelli)

Let n=2. Given a homeomorphism  $f\in W^{1,1}(\Omega,\mathbf{R}^2)$  there are diffeomorphisms  $f_k$  with  $f_k\to f$  in  $W^{1,1}$ . Moreover, if  $\Omega$  is bounded and  $f\in C(\overline{\Omega})$  then  $f_k\rightrightarrows f$  and every  $f_k=f$  on  $\partial\Omega$ .

#### New results

#### Theorem (H., Pratelli)

Let n=2. Given a homeomorphism  $f\in W^{1,1}(\Omega,\mathbf{R}^2)$  there are diffeomorphisms  $f_k$  with  $f_k\to f$  in  $W^{1,1}$ . Moreover, if  $\Omega$  is bounded and  $f\in C(\overline{\Omega})$  then  $f_k\rightrightarrows f$  and every  $f_k=f$  on  $\partial\Omega$ .

#### Theorem (Extension 1)

Let  $\varphi: \partial Q_0 \to \mathbf{R}^2$  be a piecewise linear and one to one. Then there is a piecewise affine homeomorphism  $h: Q_0 \to \mathbf{R}^2$  such that  $h = \varphi$  on  $\partial Q_0$  and  $\int_{Q_0} |Dh(x)| dx \leq C \int_{\partial Q_0} |D\varphi(t)| dt$ .

#### New results

#### Theorem (H., Pratelli)

Let n=2. Given a homeomorphism  $f\in W^{1,1}(\Omega,\mathbf{R}^2)$  there are diffeomorphisms  $f_k$  with  $f_k\to f$  in  $W^{1,1}$ . Moreover, if  $\Omega$  is bounded and  $f\in C(\overline{\Omega})$  then  $f_k\rightrightarrows f$  and every  $f_k=f$  on  $\partial\Omega$ .

#### Theorem (Extension 2)

Let  $\varphi:\partial Q_0\to \mathbf{R}^2$  be a piecewise linear and one to one with  $\int_{\partial Q_0} \left| D\varphi(t) - \begin{pmatrix} 1,0\\0,0 \end{pmatrix} \tau \right| \, dt < \delta$ . Then there is a piecewise affine homeomorphism  $g:Q_0\to \mathbf{R}^2$  such that  $g=\varphi$  on  $\partial Q_0$  and  $\int_Q \left| Dg(x) - \begin{pmatrix} 1,0\\0,0 \end{pmatrix} \right| \, dx \leq C\delta$ .

- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on SQ,  $\int_{Q} |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$

- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on SQ,  $\int_{Q} |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$
- 3) Approximate f on the grid by piecewise linear
- 4) On Bad and Zero  $(J_f(c) = |Df(c)| = 0)$  Extension 1 On Null  $(J_f(c) = 0, |Df(c)| > 0)$  Extension 2 On Good natural affine approximation on 2 triangles

- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on 5Q,  $\int_Q |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$
- 3) Approximate f on the grid by piecewise linear
- 4) On Bad and Zero  $(J_f(c) = |Df(c)| = 0)$  Extension 1 On Null  $(J_f(c) = 0, |Df(c)| > 0)$  - Extension 2 On Good natural affine approximation on 2 triangles

$$\begin{split} \sum_{Q \in \mathcal{B}} \int_{Q} |Df - Dh| &\leq \sum_{Q \in \mathcal{B}} \int_{Q} |Df| + (\operatorname{diam} Q) \int_{\partial Q} |Df| \\ &\leq \sum_{Q \in \mathcal{B}} \int_{\frac{5}{4}Q} |Df| < \varepsilon \text{ . AC of the integral} \end{split}$$

# ldea of the proof - $\mathcal{W}^{1,1}$ in the plane

- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on SQ,  $\int_{Q} |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$
- 3) Approximate f on the grid by piecewise linear
- 4) On Bad and Zero  $(J_f(c) = |Df(c)| = 0)$  Extension 1 On Null  $(J_f(c) = 0, |Df(c)| > 0)$  Extension 2 On Good natural affine approximation on 2 triangles

$$\begin{split} \sum_{Q \in \mathcal{Z}} \int_{Q} |Df - Dh| &\leq \sum_{Q \in \mathcal{Z}} \int_{Q} |Df| + (\operatorname{diam} Q) \int_{\partial Q} |Df| \\ &\leq \sum_{Q \in \mathcal{Z}} \int_{\frac{5}{4}Q} |Df - Df(c)| < \varepsilon \text{ . Lebesgue points} \end{split}$$

- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on 5Q,  $\int_Q |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$
- 3) Approximate f on the grid by piecewise linear
- 4) On Bad and Zero  $(J_f(c) = |Df(c)| = 0)$  Extension 1 On Null  $(J_f(c) = 0, |Df(c)| > 0)$  - Extension 2 On Good natural affine approximation on 2 triangles

$$\sum_{Q \in \mathcal{G}} \int_{Q} |Df - Da| \le C \sum_{Q \in \mathcal{G}} \int_{Q} |Df - Df(c)| < \varepsilon$$

Lebesgue points



- 1) Fine (Whitney type) grid on  $\Omega$ : Good and Bad squares Q(c,r) Good = f diff. at c on 5Q,  $\int_{Q} |Df Df(c)|$  small
- 2) Adjust so that (diam Q)  $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$  and (diam Q)  $\int_{\partial Q} |Df Df(c)| \leq C \int_{\frac{5}{4}Q} |Df Df(c)|$
- 3) Approximate f on the grid by piecewise linear
- 4) On Bad and Zero  $(J_f(c) = |Df(c)| = 0)$  Extension 1 On Null  $(J_f(c) = 0, |Df(c)| > 0)$  - Extension 2 On Good natural affine approximation on 2 triangles

$$\sum_{Q \in \mathcal{N}} \int_{Q} |Df - Dg| \le \varepsilon + \sum_{Q \in \mathcal{N}} \int_{Q} |Dg - Df(c)|$$

$$\le \varepsilon + \sum_{Q \in \mathcal{N}} \delta |Q| \le 2\varepsilon$$

5) Mora-Corral and Pratelli ⇒ approximation by smooth



Extension with  $\int_{Q_0} |Dh(x)| dx \le C \int_{\partial Q_0} |D\varphi(t)| dt$ 

Extension with  $\int_{Q_0} |Dh(x)| dx \le C \int_{\partial Q_0} |D\varphi(t)| dt$ 

1) Find shortest paths +make one-to-one



Extension with  $\int_{Q_0} |Dh(x)| dx \le C \int_{\partial Q_0} |D\varphi(t)| dt$ 

- 1) Find shortest paths +make one-to-one
- 2) Fill with triangles natural affine extension



Extension with  $\int_{O_0} |Dh(x)| dx \le C \int_{\partial O_0} |D\varphi(t)| dt$ 

- 1) Find shortest paths +make one-to-one
- 2) Fill with triangles natural affine extension
- 3) Estimate derivative



Extension with  $\int_{Q_0} |Dh(x)| dx \leq C \int_{\partial Q_0} |D\varphi(t)| dt$ 

- 1) Find shortest paths +make one-to-one
- 2) Fill with triangles natural affine extension
- 3) Estimate derivative



$$\int_{I} |D_{x}h| \leq \mathcal{H}^{1}(h(I)) \leq \int_{\partial Q_{0}} |D\varphi|$$
 $\int_{J} |D_{y}h| \leq \mathcal{H}^{1}(h(J)) \leq \max(\mathcal{H}^{1}(h(J_{1})), \mathcal{H}^{1}(h(J_{2})))$ 
 $\leq \int_{J_{1}} |D\varphi| + \int_{J_{2}} |D\varphi|$ 

#### Open problems:

•  $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$  - Can we approximate? Are the minimizers of  $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$  smooth?

#### Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$  Can we approximate? Are the minimizers of  $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$  smooth?
- Anything about the approximation in n = 3?
   Is there a minimization where the minimizer is a diffeomorphism?
   Is there some improved construction by hand?

#### Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$  Can we approximate? Are the minimizers of  $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$  smooth?
- Anything about the approximation in n = 3?
   Is there a minimization where the minimizer is a diffeomorphism?
   Is there some improved construction by hand?
- Is there some counterexample in higher dimension?



#### Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$  Can we approximate? Are the minimizers of  $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$  smooth?
- Anything about the approximation in n = 3?
   Is there a minimization where the minimizer is a diffeomorphism?
   Is there some improved construction by hand?
- Is there some counterexample in higher dimension?



#### Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$  Can we approximate? Are the minimizers of  $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$  smooth?
- Anything about the approximation in n = 3?
   Is there a minimization where the minimizer is a diffeomorphism?
   Is there some improved construction by hand?
- Is there some counterexample in higher dimension?

Thank you for your attention.

