Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms

Stanislav Hencl and Aldo Pratelli

Charles University, Prague, Czech Republic

2.5.2014, Regularity theory for elliptic and parabolic systems and problems in continuum mechanics

70 じ

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega,\mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega,\mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k$ smooth $\stackrel{\textup{easy}~\textup{Pratelli&}\textup{Mora-Corral}}{\Rightarrow} \exists f_k$ piecewise affine

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega,\mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k$ smooth $\stackrel{\textup{easy}~\textup{Pratelli&}\textup{Mora-Corral}}{\Rightarrow} \exists f_k$ piecewise affine

Motivation

• Regularity for models in Nonlinear Elasticity Ball models min $\int W(Du)$ where $E(u)\to\infty$ as $J_u\to 0$

റ ദൈ

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega,\mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k$ smooth $\stackrel{\textup{easy}~\textup{Pratelli&}\textup{Mora-Corral}}{\Rightarrow} \exists f_k$ piecewise affine

Motivation

- Regularity for models in Nonlinear Elasticity Ball models min $\int W(Du)$ where $E(u)\to\infty$ as $J_u\to 0$
- Numerics finite elements method

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega,\mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k$ smooth $\stackrel{\textup{easy}~\textup{Pratelli&}\textup{Mora-Corral}}{\Rightarrow} \exists f_k$ piecewise affine

Motivation

- Regularity for models in Nonlinear Elasticity Ball models min $\int W(Du)$ where $E(u)\to\infty$ as $J_u\to 0$
- Numerics finite elements method
- Easier proofs of known (and new) statements

Known results

C. Mora-Corral: f smooth up to one point

Theorem (Iwaniec, Kovalev, Onninen)

Let $n = 2$ and $1 < p < \infty$. Given a homeomorphism $f\in W^{1,p}(\Omega,\mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k\to f$ in $W^{1,p}$, $f_k \rightrightarrows f$ and $f_k - f \in W_0^{1,p}$ 0

Known results

C. Mora-Corral: f smooth up to one point

Theorem (Iwaniec, Kovalev, Onninen)

Let $n = 2$ and $1 < p < \infty$. Given a homeomorphism $f\in W^{1,p}(\Omega,\mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k\to f$ in $W^{1,p}$, $f_k \rightrightarrows f$ and $f_k - f \in W_0^{1,p}$ 0

Open problem: Can you find f_k with $f_k \to f$ in $W^{1,p}$ and $f_k^{-1} \rightarrow f^{-1}$ in $W^{1,p}$

Theorem (Daneri, Pratelli)

Let $n = 2$ and $1 \le p < \infty$. Given a bi-Lipschitz f there are diffeomorphims f_k with $f_k \to f$ in $W^{1,p}$ and $f_k^{-1} \to f^{-1}$ in $W^{1,p}$.

- オート オート オート

 $n = 2, 1 < p < \infty$, $f \in W^{1,p}$ homeomorphism - $\exists f_k$

Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let $n = 2$ and $1 < p < \infty$. f $A \rightarrow Q$ homeomorphism onto convex Q. There is $g : A \to Q$, $f = g$ on ∂A such that g minimizes $\int_A |Dg|^p$. This g is a homeomorphism and it is smooth inside A.

 $n = 2, 1 < p < \infty$, $f \in W^{1,p}$ homeomorphism - $\exists f_k$

Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let $n = 2$ and $1 < p < \infty$. f $A \rightarrow Q$ homeomorphism onto convex Q. There is $g : A \to Q$, $f = g$ on ∂A such that g minimizes $\int_A |Dg|^p$. This g is a homeomorphism and it is smooth inside A.

Cover $f(\Omega)$ by cubes $(\leq 1/k)$ - construct f_k , smooth (technical difficulty)

 $A \oplus B$ $A \oplus B$ $B \oplus A$

 $n = 2, 1 < p < \infty, f \in W^{1,p}$ homeomorphism - $\exists f_k$

Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let $n = 2$ and $1 < p < \infty$. f $A \rightarrow Q$ homeomorphism onto convex Q. There is $g : A \to Q$, $f = g$ on ∂A such that g minimizes $\int_A |Dg|^p$. This g is a homeomorphism and it is smooth inside A.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $n = 2, 1 < p < \infty, f \in W^{1,p}$ homeomorphism - $\exists f_k$

Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let $n = 2$ and $1 < p < \infty$. f $A \rightarrow Q$ homeomorphism onto convex Q. There is $g : A \to Q$, $f = g$ on ∂A such that g minimizes $\int_A |Dg|^p$. This g is a homeomorphism and it is smooth inside A.

Allesandrini-Sigalloti - works only for $n = 2$ and $1 < p < \infty$

 $A \oplus A$ and $A \oplus A$

 $n=2,\ 1\leq p<\infty, \ f$ biLipschitz - $\exists \ f_k$ approximate f and f^{-1}

Theorem (Daneri, Pratelli)

Let $n = 2$ and f $\partial Q \rightarrow \mathbf{R}^2$ be L-biLipschitz and piecewise affine. There is piecewise affine and $CL⁴$ biLipschitz $g:Q\to{\sf R}^2$ with $f=g$ on $\partial Q.$

 $n=2,\ 1\leq p<\infty, \ f$ biLipschitz - $\exists \ f_k$ approximate f and f^{-1}

Theorem (Daneri, Pratelli)

Let $n = 2$ and f $\partial Q \rightarrow \mathbf{R}^2$ be L-biLipschitz and piecewise affine. There is piecewise affine and $CL⁴$ biLipschitz $g:Q\to{\sf R}^2$ with $f=g$ on $\partial Q.$

f is differentiable a.e. and a.e. point x is a Lebesque point of $Df\colon \int_{Q(x,2r)}|Df-Df(x)|^p<\varepsilon|Q|$ - Good centers Cover Ω by cubes $(\leq 1/k)$ - Good have measure $> |\Omega| - \delta$

 \mathcal{A} and \mathcal{A} . The set

 $n=2,\ 1\leq p<\infty, \ f$ biLipschitz - $\exists \ f_k$ approximate f and f^{-1}

Theorem (Daneri, Pratelli)

Let $n = 2$ and f $\partial Q \rightarrow \mathbf{R}^2$ be L-biLipschitz and piecewise affine. There is piecewise affine and $CL⁴$ biLipschitz $g:Q\to{\sf R}^2$ with $f=g$ on $\partial Q.$

f is differentiable a.e. and a.e. point x is a Lebesque point of $Df\colon \int_{Q(x,2r)}|Df-Df(x)|^p<\varepsilon|Q|$ - Good centers Cover Ω by cubes $(\leq 1/k)$ - Good have measure $> |\Omega| - \delta$

Approximate on the grid by piecewise linear mapping.

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A}

 $n=2,\ 1\leq p<\infty, \ f$ biLipschitz - $\exists \ f_k$ approximate f and f^{-1}

Theorem (Daneri, Pratelli)

Let $n = 2$ and f $\partial Q \rightarrow \mathbf{R}^2$ be L-biLipschitz and piecewise affine. There is piecewise affine and $CL⁴$ biLipschitz $g:Q\to{\sf R}^2$ with $f=g$ on $\partial Q.$

f is differentiable a.e. and a.e. point x is a Lebesque point of $Df\colon \int_{Q(x,2r)}|Df-Df(x)|^p<\varepsilon|Q|$ - Good centers Cover $Ω$ by cubes $({\le}1/k)$ - Good have measure $>|Ω| - δ$

Approximate on the grid by piecewise linear mapping.

On good cubes use natural affine approximation - Lebesque squares - close norm On bad cubes use [L](#page-34-0)emma - mea[s](#page-0-0)ure $<\delta \Rightarrow \int \leq \delta CL^{4p}$ $<\delta \Rightarrow \int \leq \delta CL^{4p}$ $<\delta \Rightarrow \int \leq \delta CL^{4p}$ s[m](#page-34-0)[all](#page-0-0)

Theorem (H., Pratelli)

Let n = 2. Given a homeomorphism $f \in W^{1,1}(\Omega,\mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k \to f$ in $W^{1,1}$. Moreover, if Ω is bounded and $f \in C(\overline{\Omega})$ then $f_k \rightrightarrows f$ and every $f_k = f$ on $\partial \Omega$.

Theorem (H., Pratelli)

Let n = 2. Given a homeomorphism $f \in W^{1,1}(\Omega,\mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k \to f$ in $W^{1,1}$. Moreover, if Ω is bounded and $f \in C(\overline{\Omega})$ then $f_k \rightrightarrows f$ and every $f_k = f$ on $\partial \Omega$.

Theorem (Extension 1)

Let $\varphi:\partial Q_0\to{\bf R}^2$ be a piecewise linear and one to one. Then there is a piecewise affine homeomorphism h : $Q_0\to{\bf R}^2$ such that $h = \varphi$ on ∂Q_0 and $\int_{Q_0} |Dh(x)| dx \leq C \int_{\partial Q_0} |D\varphi(t)| dt$.

 \mathbf{A} and \mathbf{A} is a set of \mathbf{B} is a set of \mathbf{B}

Theorem (H., Pratelli)

Let n = 2. Given a homeomorphism $f \in W^{1,1}(\Omega,\mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k \to f$ in $W^{1,1}$. Moreover, if Ω is bounded and $f \in C(\overline{\Omega})$ then $f_k \rightrightarrows f$ and every $f_k = f$ on $\partial \Omega$.

Theorem (Extension 2)

Let $\varphi:\partial Q_0\to{\bf R}^2$ be a piecewise linear and one to one with $\int_{\partial Q_0}$ $D\varphi(t)$ – $(1, 0)$ $0, 0$ \setminus τ $dt < \delta$. Then there is a piecewise affine homeomorphism $g:Q_0\to{\bf R}^2$ such that $g=\varphi$ on ∂Q_0 and \int_Q $\big|Dg(x) (1, 0)$ $0, 0$ $\Bigg) \Bigg|$ $dx \leq C\delta$.

 290

1) Fine (Whitney type) grid on Ω : Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{diam }Q) \int_{\partial Q} |Df - Df(c)| \leq C \int_{\frac{5}{4}Q} |Df - Df(c)|$ 4

 $4.50 \times 4.70 \times 4.70 \times$

1) Fine (Whitney type) grid on Ω : Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{\rm diam }\mathcal{Q})\int_{\partial\mathcal{Q}}|Df-Df(c)|\leq \mathcal{C}\int_{\frac{5}{4}Q}|Df-Df(c)|$ 4

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero $(J_f(c) = |Df(c)| = 0)$ - Extension 1 On Null $(J_f(c) = 0, |Df(c)| > 0)$ - Extension 2

On Good natural affine approximation on 2 triangles

マーティ ミューエム

1) Fine (Whitney type) grid on Ω : Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{\rm diam }\mathcal{Q})\int_{\partial\mathcal{Q}}|Df-Df(c)|\leq \mathcal{C}\int_{\frac{5}{4}Q}|Df-Df(c)|$ 4

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero $(J_f(c) = |Df(c)| = 0)$ - Extension 1 On Null $(J_f(c) = 0, |Df(c)| > 0)$ - Extension 2 On Good natural affine approximation on 2 triangles

$$
\sum_{Q \in \mathcal{B}} \int_{Q} |Df - Dh| \leq \sum_{Q \in \mathcal{B}} \int_{Q} |Df| + (\text{diam } Q) \int_{\partial Q} |Df|
$$

$$
\leq \sum_{Q \in \mathcal{B}} \int_{\frac{5}{4}Q} |Df| < \varepsilon . \text{ AC of the integral}
$$

1) Fine (Whitney type) grid on Ω : Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{\rm diam }\mathcal{Q})\int_{\partial\mathcal{Q}}|Df-Df(c)|\leq \mathcal{C}\int_{\frac{5}{4}Q}|Df-Df(c)|$ 4

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero $(J_f(c) = |Df(c)| = 0)$ - Extension 1 On Null $(J_f(c) = 0, |Df(c)| > 0)$ - Extension 2 On Good natural affine approximation on 2 triangles

$$
\sum_{Q \in \mathcal{Z}} \int_{Q} |Df - Dh| \leq \sum_{Q \in \mathcal{Z}} \int_{Q} |Df| + (\text{diam } Q) \int_{\partial Q} |Df|
$$

$$
\leq \sum_{Q \in \mathcal{Z}} \int_{\frac{5}{4}Q} |Df - Df(c)| < \varepsilon \text{ . Lebesgue points}
$$

マーティ ミューエム

1) Fine (Whitney type) grid on Ω : Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{\rm diam }\mathcal{Q})\int_{\partial\mathcal{Q}}|Df-Df(c)|\leq \mathcal{C}\int_{\frac{5}{4}Q}|Df-Df(c)|$ 4

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero $(J_f(c) = |Df(c)| = 0)$ - Extension 1 On Null $(J_f(c) = 0, |Df(c)| > 0)$ - Extension 2

On Good natural affine approximation on 2 triangles

$$
\sum_{Q \in \mathcal{G}} \int_{Q} |Df - Da| \le C \sum_{Q \in \mathcal{G}} \int_{Q} |Df - Df(c)| < \varepsilon
$$
\nLebesgue points

- イ押 トライチ トラチューチ

1) Fine (Whitney type) grid on Ω: Good and Bad squares $Q(c, r)$ Good = f diff. at c on 5Q, $\int_Q |Df - Df(c)|$ small

2) Adjust so that (diam Q) $\int_{\partial Q} |Df| \leq C \int_{\frac{5}{4}Q} |Df|$ and $(\text{\rm diam }\mathcal{Q})\int_{\partial\mathcal{Q}}|Df-Df(c)|\leq \mathcal{C}\int_{\frac{5}{4}Q}|Df-Df(c)|$ 4

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero $(J_f(c) = |Df(c)| = 0)$ - Extension 1 On Null $(J_f(c) = 0, |Df(c)| > 0)$ - Extension 2

On Good natural affine approximation on 2 triangles

$$
\sum_{Q \in \mathcal{N}} \int_{Q} |Df - Dg| \leq \varepsilon + \sum_{Q \in \mathcal{N}} \int_{Q} |Dg - Df(c)|
$$

$$
\leq \varepsilon + \sum_{Q \in \mathcal{N}} \delta |Q| \leq 2\varepsilon
$$

5) Mora-Corral a[n](#page-25-0)d Pratelli \Rightarrow approxima[tio](#page-23-0)n [b](#page-18-0)[y](#page-19-0) [s](#page-25-0)[m](#page-0-0)[oo](#page-34-0)[th](#page-0-0)

Extension with $\int_{Q_0} |Dh(x)| \; dx \leq C \int_{\partial Q_0} |D\varphi(t)| \; dt$

K 御 と K 唐 と K 唐 と…

Extension with $\int_{Q_0} |Dh(x)| \; dx \leq C \int_{\partial Q_0} |D\varphi(t)| \; dt$

1) Find shortest paths $+$ make one-to-one

Extension with $\int_{Q_0} |Dh(x)| \; dx \leq C \int_{\partial Q_0} |D\varphi(t)| \; dt$

1) Find shortest paths $+$ make one-to-one

2) Fill with triangles natural affine extension

Extension with $\int_{Q_0} |Dh(x)| \; dx \leq C \int_{\partial Q_0} |D\varphi(t)| \; dt$

1) Find shortest paths +make one-to-one

2) Fill with triangles natural affine extension

3) Estimate derivative

Z

I

つへへ

Extension with $\int_{Q_0} |Dh(x)| \; dx \leq C \int_{\partial Q_0} |D\varphi(t)| \; dt$

1) Find shortest paths +make one-to-one

2) Fill with triangles natural affine extension

3) Estimate derivative

$$
\int_I |D_x h| \leq \mathcal{H}^1(h(I)) \leq \int_{\partial Q_0} |D\varphi|
$$

$$
\begin{aligned} \int_J |D_y h|&\leq \mathcal{H}^1(h(J))\leq \max(\mathcal{H}^1(h(J_1)),\mathcal{H}^1(h(J_2)))\\ &\leq \int_{J_1} |D\varphi|+\int_{J_2} |D\varphi|\end{aligned}
$$

Open problems:

•
$$
n = 2
$$
, $p = 2$, $f \in W^{1,2}$, $f^{-1} \in W^{1,2}$ - Can we
approximate? Are the minimizers of
 $\int |Df|^2 + \frac{|Df|^2}{J_f} = \int |Df|^2 + \int |Df^{-1}|^2$) smooth?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

 298

Open problems:

- $n=2,$ $p=2, \ f\in W^{1,2}, \ f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{Ic}$ $\int_{f}^{\frac{Df}{2}}$ $(= \int |Df|^{2} + \int |Df^{-1}|^{2})$ smooth?
- Anything about the approximation in $n = 3$? Is there a minimization where the minimizer is a diffeomorphism?
	- Is there some improved construction by hand?

A + + = + +

Open problems:

- $n=2,$ $p=2, \ f\in W^{1,2}, \ f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{Ic}$ $\int_{f}^{\frac{Df}{2}}$ $(= \int |Df|^{2} + \int |Df^{-1}|^{2})$ smooth?
- Anything about the approximation in $n = 3$? Is there a minimization where the minimizer is a diffeomorphism?

Is there some improved construction by hand?

• Is there some counterexample in higher dimension?

AD - 4 E - 4

Open problems:

- $n=2,$ $p=2, \ f\in W^{1,2}, \ f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{Ic}$ $\int_{f}^{\frac{Df}{2}}$ $(= \int |Df|^{2} + \int |Df^{-1}|^{2})$ smooth?
- Anything about the approximation in $n = 3$? Is there a minimization where the minimizer is a diffeomorphism?

Is there some improved construction by hand?

• Is there some counterexample in higher dimension?

AD - 4 E - 4

Open problems:

- $n=2,$ $p=2, \ f\in W^{1,2}, \ f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{Ic}$ $\int_{f}^{\frac{Df}{2}}$ $(= \int |Df|^{2} + \int |Df^{-1}|^{2})$ smooth?
- Anything about the approximation in $n = 3$? Is there a minimization where the minimizer is a diffeomorphism?

Is there some improved construction by hand?

• Is there some counterexample in higher dimension?

Thank you for your attention.

All x 2 x 4 2