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Ball-Evans Problem

Problem [Ball-Evans]: Ω ⊂ Rn domain, f ∈ W 1,p(Ω, Rn)
homeomorphism. Can we find fk piecewise affine (or
diffeomorphisms) such that fk → f in W 1,p?

It is not easy: triangulization or
mollification destroy injectivity

∃fk smooth
easy⇒ Pratelli&Mora-Corral⇐ ∃fk piecewise affine

Motivation

Regularity for models in Nonlinear Elasticity
Ball models min

∫
W (Du) where E (u)→∞ as Ju → 0

Numerics - finite elements method

Easier proofs of known (and new) statements
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Known results

C. Mora-Corral: f smooth up to one point

Theorem (Iwaniec, Kovalev, Onninen)

Let n = 2 and 1 < p <∞. Given a homeomorphism
f ∈ W 1,p(Ω,R2) there are diffeomorphisms fk with fk → f in
W 1,p, fk ⇒ f and fk − f ∈ W 1,p

0

Open problem: Can you find fk with fk → f in W 1,p and
f −1k → f −1 in W 1,p

Theorem (Daneri, Pratelli)

Let n = 2 and 1 ≤ p <∞. Given a bi-Lipschitz f there are
diffeomorphims fk with fk → f in W 1,p and f −1k → f −1 in
W 1,p.
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Idea of the proof - Iwaniec, Kovalev, Onninnen

n = 2, 1 < p <∞, f ∈ W 1,p homeomorphism - ∃ fk

Theorem (Rado-Choquet-Knee; Allesandrini-Sigalloti)

Let n = 2 and 1 < p <∞. f A→ Q homeomorphism onto
convex Q. There is g : A→ Q, f = g on ∂A such that g
minimizes

∫
A
|Dg |p. This g is a homeomorphism and it is

smooth inside A.

Cover f (Ω) by cubes (≤ 1/k) - construct
fk , smooth (technical difficulty)

fk ⇒ f and ‖Dfk‖p ≤ ‖Df ‖p
⇒ fk ⇀ f and lsc of norm
⇒ fk → f in W 1,p

Allesandrini-Sigalloti - works only for n = 2 and 1 < p <∞
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Idea of the proof - Daneri, Pratelli

n = 2, 1 ≤ p <∞, f biLipschitz - ∃ fk approximate f and f −1

Theorem (Daneri, Pratelli)

Let n = 2 and f ∂Q → R2 be L-biLipschitz and piecewise
affine. There is piecewise affine and CL4 biLipschitz
g : Q → R2 with f = g on ∂Q.

f is differentiable a.e. and a.e. point x is a Lebesque point of
Df :

∫
Q(x ,2r)

|Df − Df (x)|p < ε|Q| - Good centers

Cover Ω by cubes (≤ 1/k) - Good have measure > |Ω| − δ

Approximate on the grid by piecewise linear mapping.

On good cubes use natural affine approximation - Lebesque
squares - close norm
On bad cubes use Lemma - measure < δ ⇒

∫
≤ δCL4p small
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New results

Theorem (H., Pratelli)

Let n = 2. Given a homeomorphism f ∈ W 1,1(Ω,R2) there are
diffeomorphisms fk with fk → f in W 1,1.
Moreover, if Ω is bounded and f ∈ C (Ω) then fk ⇒ f and
every fk = f on ∂Ω.

Theorem (Extension 1)

Let ϕ : ∂Q0 → R2 be a piecewise linear and one to one. Then
there is a piecewise affine homeomorphism h : Q0 → R2 such
that h = ϕ on ∂Q0 and

∫
Q0
|Dh(x)| dx ≤ C

∫
∂Q0
|Dϕ(t)| dt.

Theorem (Extension 2)

Let ϕ : ∂Q0 → R2 be a piecewise linear and one to one with∫
∂Q0

∣∣∣Dϕ(t)−
(

1, 0
0, 0

)
τ
∣∣∣ dt < δ. Then there is a piecewise

affine homeomorphism g : Q0 → R2 such that g = ϕ on ∂Q0

and
∫
Q

∣∣∣Dg(x)−
(

1, 0
0, 0

)∣∣∣ dx ≤ Cδ .
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Idea of the proof - W 1,1 in the plane

1) Fine (Whitney type) grid on Ω: Good and Bad squares
Q(c , r) Good = f diff. at c on 5Q,

∫
Q
|Df − Df (c)| small

2) Adjust so that (diam Q)
∫
∂Q
|Df | ≤ C

∫
5
4
Q
|Df |

and (diam Q)
∫
∂Q
|Df − Df (c)| ≤ C

∫
5
4
Q
|Df − Df (c)|

3) Approximate f on the grid by piecewise linear

4) On Bad and Zero (Jf (c) = |Df (c)| = 0) - Extension 1
On Null (Jf (c) = 0, |Df (c)| > 0) - Extension 2
On Good natural affine approximation on 2 triangles∑

Q∈B

∫
Q

|Df − Dh| ≤
∑
Q∈B

∫
Q

|Df |+ (diam Q)

∫
∂Q

|Df |

≤
∑
Q∈B

∫
5
4
Q

|Df | < ε . AC of the integral

∑
Q∈Z

∫
Q

|Df − Dh| ≤
∑
Q∈Z

∫
Q

|Df |+ (diam Q)

∫
∂Q

|Df |

≤
∑
Q∈Z

∫
5
4
Q

|Df − Df (c)| < ε . Lebesgue points

∑
Q∈G

∫
Q

|Df − Da| ≤ C
∑
Q∈G

∫
Q

|Df − Df (c)| < ε

Lebesgue points

∑
Q∈N

∫
Q

|Df − Dg | ≤ ε +
∑
Q∈N

∫
Q

|Dg − Df (c)|

≤ ε +
∑
Q∈N

δ|Q| ≤ 2ε

5) Mora-Corral and Pratelli ⇒ approximation by smooth
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4) On Bad and Zero (Jf (c) = |Df (c)| = 0) - Extension 1
On Null (Jf (c) = 0, |Df (c)| > 0) - Extension 2
On Good natural affine approximation on 2 triangles

∑
Q∈B

∫
Q

|Df − Dh| ≤
∑
Q∈B

∫
Q

|Df |+ (diam Q)

∫
∂Q

|Df |

≤
∑
Q∈B

∫
5
4
Q

|Df | < ε . AC of the integral

∑
Q∈Z

∫
Q

|Df − Dh| ≤
∑
Q∈Z

∫
Q

|Df |+ (diam Q)

∫
∂Q

|Df |

≤
∑
Q∈Z

∫
5
4
Q

|Df − Df (c)| < ε . Lebesgue points

∑
Q∈G

∫
Q

|Df − Da| ≤ C
∑
Q∈G

∫
Q

|Df − Df (c)| < ε

Lebesgue points

∑
Q∈N

∫
Q

|Df − Dg | ≤ ε +
∑
Q∈N

∫
Q

|Dg − Df (c)|

≤ ε +
∑
Q∈N

δ|Q| ≤ 2ε

5) Mora-Corral and Pratelli ⇒ approximation by smooth
Stanislav Hencl and Aldo Pratelli Approximation of planar W 1,1 homeomorphisms



Proof of the Extension 1 on Bad squares

Extension with
∫
Q0
|Dh(x)| dx ≤ C

∫
∂Q0
|Dϕ(t)| dt

1) Find shortest paths
+make one-to-one

2) Fill with triangles -
natural affine extension

3) Estimate derivative∫
I

|Dxh| ≤ H1(h(I )) ≤
∫
∂Q0

|Dϕ|∫
J

|Dyh| ≤ H1(h(J)) ≤ max(H1(h(J1)),H1(h(J2)))

≤
∫
J1

|Dϕ|+
∫
J2

|Dϕ|
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Open problems

Open problems:

n = 2, p = 2, f ∈ W 1,2, f −1 ∈ W 1,2 - Can we
approximate? Are the minimizers of∫
|Df |2 + |Df |2

Jf
(=
∫
|Df |2 +

∫
|Df −1|2) smooth?

Anything about the approximation in n = 3?
Is there a minimization where the minimizer is a
diffeomorphism?
Is there some improved construction by hand?

Is there some counterexample in higher dimension?

Thank you for your attention.
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