A quantitative modulus of continuity for the two-phase Stefan problem

Tuomo Kuusi

Aalto University

Regularity theory for elliptic and parabolic systems and problems in continuum mechanics, Telč, May 2nd, 2014

The Stefan problem

The Stefan problem (\approx 1890) is a simplified model to describe the behavior of a substance changing phase. When a change of phase takes place, a latent heat is either absorbed or released, while the temperature of the material changing its phase remains constant. The classical formulation is

$$\left\{ \begin{array}{ll} \partial_t u - \triangle u = 0 & \text{in} \quad \{u > 0\} \cup \{u < 0\} \\ V_\nu = |\nabla u^+| - |\nabla u^-| & \text{on} \quad \partial (\{u > 0\} \cup \{u < 0\}). \end{array} \right.$$

Here u^+ and u^- denotes respectively the limit taken from $\{u>0\}$ and $\{u<0\}$, respectively, and V_{ν} is the outward normal velocity of the free boundary with respect to $\{u>0\}$.

The Stefan problem

It can be shown (see for example Kim-Požár, CPDE '11) that in rather general situations the problem can be reformulated as

$$\partial_t ig[u + \mathcal{L}_h H_0(u) ig]
i \triangle u \qquad \text{in } \Omega_T = \Omega imes (0, T),$$

where \mathcal{L}_h is a positive constant usually called as the latent heat. In practice, in the weak sense for $v \in u + \mathcal{L}_h H_0(u)$ we have

$$\int_{\Omega \times (t_1, t_2)} \left[-v \partial_t \varphi + \langle \nabla u, \nabla \varphi \rangle \right] dx dt + \int_{\Omega} v \varphi dx \bigg|_{t=t_1}^{t_2} = 0$$

holds for $\varphi \in \mathcal{C}^{\infty}_{c}(\Omega_{\mathcal{T}})$ and a.e. $0 < t_{1} < t_{2} < \mathcal{T}$.

More general structures

More in general we can replace the Laplacian with $a:\Omega_{\mathcal{T}}\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ having linear growth:

$$\langle a(x,t,u,\xi),\xi\rangle \geq \Lambda^{-1}|\xi|^2, \qquad |a(x,t,u,\xi)| \leq \Lambda|\xi|$$

to take into account convective effects and also non-linear growth of the parabolic part, i.e.,

$$\partial_t \big[\beta(u) + \mathcal{L}_h H_a(\beta(u)) \big] \ni \text{div } a(x, t, u, \nabla u).$$

 β is a C^1 diffeomorphism of $\mathbb R$ and contains thermal properties of the water. The jump here occurs when $\beta(u)=b\in\mathbb R$. Calling $v=\beta(u)$ and assuming $\mathcal L_h=1$, we have

$$\partial_t [v + H_b(v)] \ni \operatorname{div} a(x, t, v, \nabla v)$$

Objective:

Find a quantitative modulus of continuity $\omega(r)$ in the two-phase Stefan problem such that

$$\underset{Q_r}{\operatorname{osc}} u \lesssim \omega(r), \qquad Q_r := B_r(x_0) \times (t_0 - r^2, t_0) \subset \Omega_T$$

for weak solutions to $\partial_t \big[\beta(u) + \mathcal{L}_h H_a(\beta(u)) \big] \ni \text{div } a(x, t, u, \nabla u)$ in Ω_T .

What can be found in the literature: Continuity in one-phase

One-phase Stefan problem: with b=0, we just allow $u \ge 0$ (that is, ice is at temperature 0 °C). Then

$$\operatorname*{osc}_{Q_{R}}u\lesssim\omega(r)\qquad\text{with}\qquad$$

$$\omega(r) = \left[\ln \left(\frac{1}{r} \right) \right]^{-\epsilon}, \quad \text{if } n \ge 3 \quad 0 < \epsilon < \frac{2n}{n-2};$$

$$\omega(r) = 2^{-\left[\ln \left(\frac{1}{r} \right) \right]^{\gamma}}, \quad \text{if } n = 2, \quad 0 < \gamma < \frac{1}{2}.$$

[Caffarelli & Friedman, Indiana Univ. Math. J., '79]

Elliptic operator: **Laplacian**, Proof: heavy use of the positivity of *u*; maximum principle & representation formulae.

What can be found in the literature: Continuity in two-phase

Two-phase Stefan problem: with b = 0, we don't impose sign restrictions (i.e., ice can reach -10 °C, for instance).

Only qualitative continuity in [Caffarelli & Evans, ARMA, '83] and [DiBenedetto, AMPA, '82].

Implicit some kind of log log continuity in the former, proved in the case of **Laplacian**, while the second handles nonlinear operators & lower order terms. CE proof: De Giorgi iteration + Green formula to reduce the supremum of u_+ ; DiB proof: only energy methods.

A remark on the quantitative modulus of continuity

The modulus

$$\omega(r) = \left[\ln\ln\left(\frac{1}{r}\right)\right]^{-\sigma}$$
 for some $\sigma > 0$,

is stated as a Remark in [DiBenedetto & Friedman, Crelle's J., '84]; explicit proof (at the boundary) in [DiBenedetto, JDE '86].

Remark 3. 1. The same arguments prove that we have the modulus of continuity (3. 25) also for the weak solutions of the two-phase Stefan problem and certain extensions of the porous medium equations [2], [3]; such a modulus was not calculated in these papers.

From (3. 22)—(3. 24) it follows that ∇u is continuous with modulus of continuity

(3. 25)
$$\left(\log\log\frac{A}{r}\right)^{-\sigma} \qquad (A>0, \ \sigma>0)$$

Our first theorem

Theorem (Baroni, T6 & Urbano)

Let v be a weak solution to

$$\partial_t[v + H_b(v)] \ni \text{div } a(x, t, v, \nabla v)$$
 in Ω_T ,

 $a(x, t, u, \nabla v) \approx \nabla v, b \in \mathbb{R}$. Then

$$\omega(r) = const \cdot \left[\ln \left(\frac{1}{r} \right) \right]^{-\gamma}, \qquad \begin{cases} \gamma = \frac{2}{n+2} & \text{if } n \geq 3, \\ 0 < \gamma < \frac{1}{2} & \text{if } n = 2. \end{cases}$$

Open problem: Give an example of a solution in the case $a(x, t, v, \nabla v) = \nabla v$ for the above modulus of continuity (especially when $n \ge 3$).

Proof: a tool - weak supersolution

We consider weak supersolution:

(*)
$$w_t - \operatorname{div} a(x, t, w, \nabla w) \ge 0$$
 in $Q = B_R(x_0) \times (t_0 - R^2, t_0)$ with $a(x, t, w, \nabla w) \approx \nabla w$.

Theorem (Weak Harnack inequality (Trudinger, CPAM '68)) Let w > 0 be a weak supersolution to (\star) , bounded in Q^* . Then

$$\int_{Q^*} w \, dx \, dt \le c \inf_{Q^-} w$$

$$\int_{Q^* \cap \{t = \tau^*\}} w(\cdot, t) \, dx \le c \inf_{Q^-} w$$

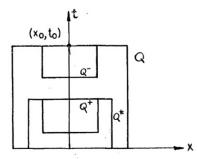


Figure 1.

Proof: a tool - weak supersolution - II

As corollary it follows:

Corollary (Decay of weak supersolution)

Let w > 0 be a weak supersolution to (\star) , bounded in Q. Then

$$\inf_{B/2 \times \{t_0 - R^2\}} w \ge k, \qquad k > 0$$

$$\inf_{B/2 \times (t_0 - R^2, t_0)} w \ge \frac{k}{c} e^{-\frac{c}{R^2}(t - (t_0 - R^2))}$$

$$\lim_{B/2 \times (t_0 - R^2, t_0)} w \ge \frac{k}{c} e^{-\frac{c}{R^2}(t - (t_0 - R^2))}$$
Figure 2. $B/2 \times \{t_0 - R^2\}$

Two exercises

Exercise

If v is a solution to

$$(\star) v_t - \triangle v = 0 (v_t - \operatorname{div} a(x, t, v, \nabla v) = 0),$$

then $w = \min\{v, k\}$, $k \in \mathbb{R}$ is a supersolution to (\star) .

Proof.

Formally, test (\star) with $\varphi\chi_{\{v< k\}}$ and discard the negative term. \square

Exercise

If v is a solution to

$$\partial_t[v + H_b(v)] \ni \triangle v \qquad (\partial_t[v + H_b(v)] \ni \operatorname{div} a(x, t, v, \nabla v)),$$

then $w = \min\{v, k\}$ with k < b is a supersolution to (\star) .

Remark about formal computations

In this talk **I will proceed formally**. Rigorously one should mollify Heaviside jump:

$$H_{b,\varepsilon}(v) := (H_b * \theta_{\varepsilon})(v), \qquad \operatorname{supp} H'_{b,\varepsilon} \subset (b - \varepsilon, b + \varepsilon),$$

and consider the approximating solutions v_{ε} . For these we prove

$$\operatorname*{osc}_{Q_R} v_{arepsilon} \lesssim \omega(R) + arepsilon$$

and then we use local uniform convergence, letting $\varepsilon \searrow 0$.

Towards the proof - reductions

Take $Q \equiv Q_R$ and $\omega(\cdot)$ modulus of continuity. We can suppose

Reduction 1:
$$\inf_{Q} v = 0 \implies \sup_{Q} v = \sup_{Q} v;$$

$$Reduction \ 2: \qquad b \in [0, \sup_{Q} v] = [0, \operatorname{osc}_{Q} v],$$

(if not, v is Hölder continuous by the standard regularity theory);

Reduction 2':
$$b \in \left[\frac{1}{2} \sup_{Q} v, \sup_{Q} v\right],$$

(if not, consider instead
$$\tilde{v} := \sup_{O} v - v$$
);

Reduction 3:
$$\sup_{Q} v > \omega(R)$$
.

The alternatives

We fix two alternatives (recall that the jump = $b \ge \sup v/2$):

(Alt. 1)
$$\left| Q^* \cap \left\{ v \ge \frac{\sup v}{4} \right\} \right| > \varepsilon_1 \left[\omega(R) \right]^{1 + \frac{n}{2}} |Q^*|$$
OR

(Alt. 2)
$$\left| Q^* \cap \left\{ v \ge \frac{\sup v}{4} \right\} \right| \le \varepsilon_1 \left[\omega(R) \right]^{1 + \frac{n}{2}} |Q^*|.$$

We consider just the case n > 2; ε_1 to be fixed.

The first alternative

Consider the case where the first alternative holds true:

$$\left|Q^* \cap \left\{v \geq \frac{\sup v}{4}\right\}\right| > \varepsilon_1 \left[\omega(R)\right]^{1+\frac{n}{2}} |Q^*|.$$

We truncate $\hat{v} := \min\{v, \sup v/4\}$, which is a supersolution (recall that $b \ge \sup v/2$). We then simply have for such positive supersolution:

$$\inf_{Q^{-}} \hat{v} \geq \frac{1}{c} \oint_{Q^{*}} \hat{v} \, dx \, dt \geq \frac{1}{c|Q^{*}|} \int_{Q^{*} \cap \{v \geq \sup v/4\}} \hat{v} \, dx \, dt$$

$$\stackrel{\hat{v} = \sup v/4}{\geq} \frac{\varepsilon_{1}}{c} \left[\omega(R)\right]^{1+\frac{n}{2}} \frac{\operatorname{osc} v}{4}$$

$$\stackrel{\sup v > \omega(R)}{\geq} \frac{\varepsilon_{1}}{4c} \left[\omega(R)\right]^{2+\frac{n}{2}}.$$

The first alternative - part II

Using the decay of supersolutions, we moreover get

$$\inf_{Q^-\cup Q/2} v \ge \inf_{Q^-\cup Q/2} \hat{v} \ge \frac{\varepsilon_1}{c} \left[\omega(R)\right]^{2+\frac{n}{2}}.$$

In particular,

$$\operatorname{osc}_{Q/2} v \leq \sup_{Q} v - \frac{\varepsilon_{1}}{c} \left[\omega(R) \right]^{2 + \frac{n}{2}} \\
= \operatorname{osc}_{Q} v - \frac{\varepsilon_{1}}{c} \left[\omega(R) \right]^{2 + \frac{n}{2}}.$$

The second alternative

Now we analyze the occurrence of the second alternative:

$$\left| Q^* \cap \left\{ v \ge \sup v - \frac{\omega(R)}{4} \right\} \right| \le \left| Q^* \cap \left\{ v \ge \frac{\sup v}{4} \right\} \right|$$
(Alt. 2)
$$\le \varepsilon_1 \left[\omega(R) \right]^{1 + \frac{n}{2}} |Q^*|.$$

This is the starting point of a De Giorgi-type iteration that proves that

$$\sup_{Q^*/2} v \le \sup_{Q} v - \frac{\omega(R)}{8},$$

provided ε_1 is chosen appropriately.

The second alternative - The Caccioppoli

$$\begin{split} \sup_{\tau} \int_{B} \left[(v - k)_{+}^{2} \phi^{2} \right] (\cdot, \tau) \, dx + \int_{Q} |\nabla (v - k)_{+}|^{2} \phi^{2} \, dx \, dt \\ & \leq c \, \int_{Q} (v - k)_{+}^{2} \left[|\nabla \phi|^{2} + (\partial_{t} \phi^{2})_{+} \right] \, dx \, dt \\ & + c \, \int_{Q} (b - k)_{+} \chi_{\{v \geq k\}} (\partial_{t} \phi^{2})_{+} \, dx \, dt =: RHS. \end{split}$$

Parabolic Sobolev inequality:

$$LHS := \int_{Q} \left[(v - k)_{+}^{2} \phi^{2} \right]^{1 + \frac{2}{n}} dx dt$$

$$\leq cR^{2} \left[\sup_{\tau} \int_{B} \left[(v - k)_{+}^{2} \phi^{2} \right] (\cdot, \tau) dx \right]^{\frac{2}{n}} \int_{Q} \left| \nabla [(v - k)_{+} \phi] \right|^{2} dx dt.$$

The second alternative - Concluded

A logarithmic Lemma now transforms the pointwise information into an information in measure, but in the future:

$$\frac{\left|Q/2\cap\left\{v\geq\sup v-\varsigma(\nu)[\omega(R)]^{2+\frac{n}{2}}\right\}\right|}{|Q/2|}\leq\nu,$$

Now we can perform another De Giorgi iteration, with test function independent of time - and this makes the inhomogeneity of the Caccioppoli disappear - and this yields

$$\operatorname*{osc}_{Q/4}v\leq\operatorname*{osc}v-\frac{\varsigma(\nu)}{2}\left[\omega(R)\right]^{2+\frac{n}{2}},$$

just if we take ν (and hence ς) small enough, **independently of** $\omega(\mathbf{R})$.

Conclusion

All in all, we proved

$$\operatorname{osc}_{Q/4} v \le \operatorname{osc}_{Q} v \le \omega(R)$$
OR
$$\operatorname{osc}_{Q/4} v \le \operatorname{osc}_{Q} v - \theta \left[\omega(R)\right]^{2 + \frac{n}{2}},$$

with θ a small constant depending on the data. Using induction, for $R_j:=4^{-j}R$ and $Q_j:=Q_{R_j}$, one estimates (assuming $\operatorname{osc}_{Q_i}v\leq\omega(R_i)$ for $i\in\{0,\ldots,j\}$)

$$\operatorname*{osc}_{Q_{j+1}} v \leq \prod_{i=0}^{j} \left(1 - \theta[\omega(R_i)]^{1 + \frac{n}{2}}\right) \omega(R).$$

Conclusion - part II

$$\begin{split} \prod_{i=0}^{j} \left(1 - \theta[\omega(R_i)]^{1 + \frac{n}{2}}\right) &= \exp\Bigl(\sum_{i=0}^{j} \ln\Bigl(1 - \theta[\omega(R_i)]^{1 + \frac{n}{2}}\Bigr)\Bigr) \\ &\leq \exp\Bigl(-\theta \sum_{i=0}^{j} [\omega(R_i)]^{1 + \frac{n}{2}}\Bigr) \\ &\leq \exp\Bigl(-\frac{\theta}{\ln 4} \int_{R_{j+1}}^{R} [\omega(\rho)]^{1 + \frac{n}{2}} \frac{d\rho}{\rho}\Bigr) \\ &\stackrel{???}{=} \exp\Bigl(-\ln\Bigl[\frac{\omega(R)}{\omega(R_{j+1})}\Bigr]\Bigr) = \frac{\omega(R_{j+1})}{\omega(R)} \,. \end{split}$$

The second alternative

Thus the question reduces to ask when

$$\frac{\theta}{\ln 4} \int_{R_{j+1}}^R [\omega(\rho)]^{1+\frac{n}{2}} \frac{d\rho}{\rho} \stackrel{???}{=} -\ln \left(\frac{\omega(R)}{\omega(R_{j+1})} \right)$$

holds?

Claim

$$\omega(r) = \left[\frac{\theta}{\ln 4} \left(\frac{n+2}{2}\right) \ln \left(\frac{1}{r}\right)\right]^{-\frac{1}{1+\frac{n}{2}}}$$

gives the needed equality; hence the induction works!

Proof.

Just a simple computation.

The degenerate Stefan problem

We take here

$$\partial_t[v + H_b(v)] \ni \operatorname{div} [|\nabla v|^{p-2} \nabla v], \qquad p > 2;$$

not very much is known then. Several things are still valid, but the Caccioppoli estimate is problematic in two ways:

$$\sup_{\tau} \int_{B} \left[(v - k)_{+}^{2} \phi^{p} \right] (\cdot, \tau) \, dx + \int_{Q} |\nabla (v - k)_{+}|^{p} \phi^{p} \, dx \, dt
\leq c \int_{Q} \left[(v - k)_{+}^{p} |\nabla \phi|^{p} + (v - k)_{+}^{2} (\partial_{t} \phi^{p})_{+} \right] \, dx \, dt
+ \int_{Q} (a - k)_{+} \chi_{\{v \geq k\}} (\partial_{t} \phi^{p})_{+} \, dx \, dt.$$

The degenerate Stefan problem - solution

We use the approach in [T6, Mingione & Nyström, JMPA '13]: one considers cylinders of the type

$$Q_R^{\lambda\omega(\cdot)}(x_0,t_0)=B_R(x_0)\times(t_0-\lambda^{2-p}[\omega(R)]^{2-p}R^p,t_0)$$

where

$$\lambda pprox rac{1}{\omega(R)} \operatorname*{osc}_{Q_R^{\lambda\omega(\cdot)}} v.$$

It turns out that these cylinders reveal to be the appropriate ones to treat, in the sharp way, $C^{\omega(\cdot)}$ property for the parabolic obstacle problem. Indeed

$$\mathsf{Obstacle} \in \mathit{C}^{\omega(\cdot)} \quad \Longrightarrow \quad \mathsf{solution} \in \mathit{C}^{\omega(\cdot)}, \quad \underset{Q_R^{\lambda\omega(\cdot)}}{\mathsf{osc}} \mathit{v} \lesssim \lambda\omega(R).$$

The degenerate Stefan problem - solution - part II

Formally,

$$\lambda \approx \frac{1}{\omega(R)} \operatorname*{osc}_{Q_R^{\lambda\omega(\cdot)}} v \approx \frac{R}{\omega(R)} |\nabla v|.$$

Hence the p-Laplace operator rewrites as

$$v_t - \operatorname{div}\left[|\nabla v|^{p-2}\nabla v\right] \approx v_t - \left[\frac{\omega(R)\lambda}{R}\right]^{p-2}\triangle v = 0$$

and this "rescale to the heat equation" in Q_1 if considered in

$$B_R(x_0) \times (t_0 - \lambda^{2-p} [\omega(R)]^{2-p} R^p, t_0);$$

this allows to perform blow-up arguments. Note the two borderline cases.

The degenerate Stefan problem - solution - part III

Hence, to handle this problem, we have to consider two time scales (once fixed ω):

$$t_0 - [\omega(R)]^{(2-p)(2+\frac{n}{p})}R^p, \qquad t_0 - \widetilde{T}(\omega(R))R^p, \qquad t_0$$

but the same alternatives as before (with p in place of 2):

$$\left| Q^* \cap \left\{ v \ge \frac{\sup v}{4} \right\} \right| > \varepsilon_1 \left[\omega(R) \right]^{1 + \frac{n}{p}} |Q^*|$$

$$\mathsf{OR}$$

$$\left| Q^* \cap \left\{ v \ge \frac{\sup v}{4} \right\} \right| \le \varepsilon_1 \left[\omega(R) \right]^{1 + \frac{n}{p}} |Q^*|.$$

The degenerate Stefan problem - our second theorem

The result here is the following

Theorem (Baroni, T6 & Urbano)

Let v be a weak solution to

$$\partial_t [v + H_a(v)] \ni \operatorname{div} \left[|\nabla v|^{p-2} \nabla v \right] \qquad \text{in } \Omega_T, \quad 2$$

Then, with

$$Q_R^{\omega(\cdot)}(z_0) := B_R(x_0) \times (t_0 - [\omega(R)]^{(2-p)(2+\frac{n}{p})} R^p, t_0),$$

we have

$$\operatorname*{osc}_{Q_{r}^{\omega(\cdot)}(z_{0})}v\leq\omega(r)\approx\left[\ln\left(\frac{1}{r}\right)\right]^{-\frac{p}{n+p}}.$$

Thank you for your attention!