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The Stefan problem

The Stefan problem (≈ 1890) is a simplified model to describe the
behavior of a substance changing phase. When a change of phase
takes place, a latent heat is either absorbed or released, while the
temperature of the material changing its phase remains constant.
The classical formulation is{

∂tu −4u = 0 in {u > 0} ∪ {u < 0}
Vν = |∇u+| − |∇u−| on ∂({u > 0} ∪ {u < 0}).

Here u+ and u− denotes respectively the limit taken from {u > 0}
and {u < 0}, respectively, and Vν is the outward normal velocity of
the free boundary with respect to {u > 0}.
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The Stefan problem

It can be shown (see for example Kim-Požár, CPDE ’11) that in
rather general situations the problem can be reformulated as

∂t
[
u + LhH0(u)

]
3 4u in ΩT = Ω× (0,T ),

where Lh is a positive constant usually called as the latent heat. In
practice, in the weak sense for v ∈ u + LhH0(u) we have∫

Ω×(t1,t2)

[
− v∂tϕ+ 〈∇u,∇ϕ〉

]
dx dt +

∫
Ω
vϕ dx

∣∣∣∣t2

t=t1

= 0

holds for ϕ ∈ C∞c (ΩT ) and a.e. 0 < t1 < t2 < T .
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More general structures

More in general we can replace the Laplacian with
a : ΩT × R× Rn → Rn having linear growth:

〈a(x , t, u, ξ), ξ〉 ≥ Λ−1|ξ|2, |a(x , t, u, ξ)| ≤ Λ|ξ|

to take into account convective effects and also non-linear growth
of the parabolic part, i.e.,

∂t
[
β(u) + LhHa(β(u))

]
3 div a(x , t, u,∇u).

β is a C 1 diffeomorphism of R and contains thermal properties of
the water. The jump here occurs when β(u) = b ∈ R. Calling
v = β(u) and assuming Lh = 1, we have

∂t
[
v + Hb(v)

]
3 div a(x , t, v ,∇v)
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Objective:

Find a quantitative modulus of continuity ω(r) in the two-phase
Stefan problem such that

osc
Qr

u . ω(r) , Qr := Br (x0)× (t0 − r2, t0) ⊂ ΩT

for weak solutions to ∂t
[
β(u) +LhHa(β(u))

]
3 div a(x , t, u,∇u) in

ΩT .
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What can be found in the literature:
Continuity in one-phase

One-phase Stefan problem: with b = 0, we just allow u ≥ 0
(that is, ice is at temperature 0 ◦C). Then

osc
QR

u . ω(r) with

ω(r) =

[
ln
(1

r

)]−ε
, if n ≥ 3 0 < ε <

2n

n − 2
;

ω(r) = 2−[ln( 1
r

)]γ , if n = 2 , 0 < γ <
1

2
.

[Caffarelli & Friedman, Indiana Univ. Math. J., ’79]

Elliptic operator: Laplacian, Proof: heavy use of the positivity of
u; maximum principle & representation formulae.
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What can be found in the literature:
Continuity in two-phase

Two-phase Stefan problem: with b = 0, we don’t impose sign
restrictions (i.e., ice can reach −10 ◦C, for instance).

Only qualitative continuity in [Caffarelli & Evans, ARMA, ’83] and
[DiBenedetto, AMPA, ’82].

Implicit some kind of log log continuity in the former, proved in the
case of Laplacian, while the second handles nonlinear operators &
lower order terms. CE proof: De Giorgi iteration + Green formula
to reduce the supremum of u+; DiB proof: only energy methods.
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A remark on the quantitative modulus of continuity

The modulus

ω(r) =

[
ln ln

(1

r

)]−σ
for some σ > 0,

is stated as a Remark in [DiBenedetto & Friedman, Crelle’s J.,
’84]; explicit proof (at the boundary) in [DiBenedetto, JDE ’86].
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Our first theorem

Theorem (Baroni, T6 & Urbano)

Let v be a weak solution to

∂t [v + Hb(v)] 3 div a(x , t, v ,∇v) in ΩT ,

a(x , t, u,∇v) ≈ ∇v, b ∈ R. Then

ω(r) = const ·
[

ln
(1

r

)]−γ
,


γ =

2

n + 2
if n ≥ 3,

0 < γ < 1
2 if n = 2.

Open problem: Give an example of a solution in the case
a(x , t, v ,∇v) = ∇v for the above modulus of continuity
(especially when n ≥ 3).
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Proof: a tool - weak supersolution
We consider weak supersolution:

(?) wt−div a(x , t,w ,∇w) ≥ 0 in Q = BR(x0)× (t0 − R2, t0)

with a(x , t,w ,∇w) ≈ ∇w .

Theorem (Weak Harnack inequality (Trudinger, CPAM ’68))

Let w > 0 be a weak supersolution to (?), bounded in Q∗. Then
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Proof: a tool - weak supersolution - II

As corollary it follows:

Corollary (Decay of weak supersolution)

Let w > 0 be a weak supersolution to (?), bounded in Q. Then
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Two exercises

Exercise
If v is a solution to

(?) vt −4v = 0
(
vt − div a(x , t, v ,∇v) = 0

)
,

then w = min{v , k}, k ∈ R is a supersolution to (?).

Proof.

Formally, test (?) with ϕχ{v<k} and discard the negative term.

Exercise
If v is a solution to

∂t [v + Hb(v)] 3 4v
(
∂t [v + Hb(v)] 3 div a(x , t, v ,∇v)

)
,

then w = min{v , k} with k < b is a supersolution to (?).
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Remark about formal computations

In this talk I will proceed formally. Rigorously one should mollify
Heaviside jump:

Hb,ε(v) := (Hb ∗ θε)(v), suppH ′b,ε ⊂ (b − ε, b + ε),

and consider the approximating solutions vε. For these we prove

osc
QR

vε . ω(R) + ε

and then we use local uniform convergence, letting ε↘ 0.
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Towards the proof - reductions

Take Q ≡ QR and ω(·) modulus of continuity. We can suppose

Reduction 1 : inf
Q

v = 0 =⇒ osc
Q

v = sup
Q

v ;

Reduction 2 : b ∈ [0, sup
Q

v ] = [0, osc
Q

v ],

(if not, v is Hölder continuous by the standard regularity theory);

Reduction 2′ : b ∈
[1

2
sup
Q

v , sup
Q

v
]
,

(if not, consider instead ṽ := sup
Q

v − v);

Reduction 3 : sup
Q

v > ω(R).

14 / 29



The alternatives

We fix two alternatives (recall that the jump = b ≥ sup v/2):

(Alt. 1)
∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣ > ε1 [ω(R)]1+ n
2 |Q∗|

OR

(Alt. 2)
∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣ ≤ ε1 [ω(R)]1+ n
2 |Q∗|.

We consider just the case n > 2; ε1 to be fixed.
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The first alternative

Consider the case where the first alternative holds true:

(Alt. 1)
∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣ > ε1 [ω(R)]1+ n
2 |Q∗|.

We truncate v̂ := min{v , sup v/4}, which is a supersolution (recall
that b ≥ sup v/2). We then simply have for such positive
supersolution:

inf
Q−

v̂ ≥ 1

c

∫
Q∗

v̂ dx dt ≥ 1

c |Q∗|

∫
Q∗∩{v≥sup v/4}

v̂ dx dt

v̂=sup v/4

≥ ε1

c
[ω(R)]1+ n

2
osc v

4
sup v>ω(R)

≥ ε1

4c
[ω(R)]2+ n

2 .
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The first alternative - part II

Using the decay of supersolutions, we moreover get

inf
Q−∪Q/2

v ≥ inf
Q−∪Q/2

v̂ ≥ ε1

c
[ω(R)]2+ n

2 .

In particular,

osc
Q/2

v ≤ sup
Q

v − ε1

c
[ω(R)]2+ n

2

= osc
Q

v − ε1

c
[ω(R)]2+ n

2 .
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The second alternative

Now we analyze the occurrence of the second alternative:∣∣∣Q∗ ∩ {v ≥ sup v − ω(R)

4

}∣∣∣ ≤ ∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣
≤ ε1 [ω(R)]1+ n

2 |Q∗|.(Alt. 2)

This is the starting point of a De Giorgi-type iteration that proves
that

sup
Q∗/2

v ≤ sup
Q

v − ω(R)

8
,

provided ε1 is chosen appropriately.
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The second alternative - The Caccioppoli

sup
τ

∫
B

[
(v − k)2

+φ
2
]
(·, τ) dx +

∫
Q
|∇(v − k)+|2φ2 dx dt

≤ c

∫
Q

(v − k)2
+

[
|∇φ|2 + (∂tφ

2)+

]
dx dt

+ c

∫
Q

(b − k)+χ{v≥k}(∂tφ
2)+ dx dt =: RHS .

Parabolic Sobolev inequality:

LHS :=

∫
Q

[
(v − k)2

+φ
2
]1+ 2

n dx dt

≤ cR2
[
sup
τ

∫
B

[
(v − k)2

+φ
2
]
(·, τ) dx

] 2
n

∫
Q

∣∣∇[(v − k)+φ]
∣∣2 dx dt.
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The second alternative - Concluded

A logarithmic Lemma now transforms the pointwise information
into an information in measure, but in the future:∣∣Q/2 ∩

{
v ≥ sup v − ς(ν)[ω(R)]2+ n

2

}∣∣
|Q/2|

≤ ν,

Now we can perform another De Giorgi iteration, with test
function independent of time - and this makes the inhomogeneity
of the Caccioppoli disappear - and this yields

osc
Q/4

v ≤ osc v − ς(ν)

2
[ω(R)]2+ n

2 ,

just if we take ν (and hence ς) small enough, independently of
ω(R).
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Conclusion

All in all, we proved

osc
Q/4

v ≤ osc
Q

v ≤ ω(R)

OR

osc
Q/4

v ≤ osc
Q

v − θ [ω(R)]2+ n
2 ,

with θ a small constant depending on the data.
Using induction, for Rj := 4−jR and Qj := QRj

, one estimates
(assuming oscQi

v ≤ ω(Ri ) for i ∈ {0, . . . , j})

osc
Qj+1

v ≤
j∏

i=0

(
1− θ[ω(Ri )]1+ n

2

)
ω(R).
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Conclusion - part II

j∏
i=0

(
1− θ[ω(Ri )]1+ n

2

)
= exp

( j∑
i=0

ln
(

1− θ[ω(Ri )]1+ n
2

))

≤ exp
(
−θ

j∑
i=0

[ω(Ri )]1+ n
2

)
≤ exp

(
− θ

ln 4

∫ R

Rj+1

[ω(ρ)]1+ n
2
dρ

ρ

)
???
= exp

(
− ln

[ ω(R)

ω(Rj+1)

])
=
ω(Rj+1)

ω(R)
.
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The second alternative

Thus the question reduces to ask when

θ

ln 4

∫ R

Rj+1

[ω(ρ)]1+ n
2
dρ

ρ

???
= − ln

(
ω(R)

ω(Rj+1)

)
holds?
Claim

ω(r) =
[ θ

ln 4

(n + 2

2

)
ln
(1

r

)]− 1
1+ n

2

gives the needed equality; hence the induction works!

Proof.

Just a simple computation.
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The degenerate Stefan problem

We take here

∂t [v + Hb(v)] 3 div
[
|∇v |p−2∇v

]
, p > 2;

not very much is known then. Several things are still valid, but the
Caccioppoli estimate is problematic in two ways:

sup
τ

∫
B

[
(v − k)2

+φ
p
]
(·, τ) dx +

∫
Q
|∇(v − k)+|pφp dx dt

≤ c

∫
Q

[
(v − k)p+|∇φ|p + (v − k)2

+(∂tφ
p)+

]
dx dt

+

∫
Q

(a− k)+χ{v≥k}(∂tφ
p)+ dx dt.
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The degenerate Stefan problem - solution

We use the approach in [T6, Mingione & Nyström, JMPA ’13]:
one considers cylinders of the type

Q
λω(·)
R (x0, t0) = BR(x0)× (t0 − λ2−p[ω(R)]2−pRp, t0)

where

λ ≈ 1

ω(R)
osc

Q
λω(·)
R

v .

It turns out that these cylinders reveal to be the appropriate ones
to treat, in the sharp way, Cω(·) property for the parabolic obstacle
problem. Indeed

Obstacle ∈ Cω(·) =⇒ solution ∈ Cω(·), osc
Q
λω(·)
R

v . λω(R).
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The degenerate Stefan problem - solution - part II

Formally,

λ ≈ 1

ω(R)
osc

Q
λω(·)
R

v ≈ R

ω(R)
|∇v |.

Hence the p-Laplace operator rewrites as

vt − div
[
|∇v |p−2∇v

]
≈ vt −

[ω(R)λ

R

]p−2
4v = 0

and this “rescale to the heat equation” in Q1 if considered in

BR(x0)× (t0 − λ2−p[ω(R)]2−pRp, t0);

this allows to perform blow-up arguments. Note the two borderline
cases.
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The degenerate Stefan problem - solution - part III

Hence, to handle this problem, we have to consider two time scales
(once fixed ω):

t0 − [ω(R)](2−p)(2+ n
p

)Rp, t0 − T̃
(
ω(R)

)
Rp, t0,

but the same alternatives as before (with p in place of 2):∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣ > ε1 [ω(R)]1+ n
p |Q∗|

OR∣∣∣Q∗ ∩ {v ≥ sup v

4

}∣∣∣ ≤ ε1 [ω(R)]1+ n
p |Q∗|.
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The degenerate Stefan problem - our second theorem

The result here is the following

Theorem (Baroni, T6 & Urbano)

Let v be a weak solution to

∂t [v + Ha(v)] 3 div
[
|∇v |p−2∇v

]
in ΩT , 2 < p < n.

Then, with

Q
ω(·)
R (z0) := BR(x0)× (t0 − [ω(R)](2−p)(2+ n

p
)Rp, t0),

we have

osc
Q
ω(·)
r (z0)

v ≤ ω(r) ≈
[

ln
(1

r

)]− p
n+p

.
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Thank you for your attention!
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