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The Stefan problem

The Stefan problem (= 1890) is a simplified model to describe the
behavior of a substance changing phase. When a change of phase
takes place, a latent heat is either absorbed or released, while the
temperature of the material changing its phase remains constant.
The classical formulation is

Oru—Au=0 in  {u>0}uU{u<0}
{VV:VU+|—|VU\ on O0({u>0}U{u<0}).

Here u™ and u™ denotes respectively the limit taken from {u > 0}
and {u < 0}, respectively, and V,, is the outward normal velocity of
the free boundary with respect to {u > 0}.



The Stefan problem

It can be shown (see for example Kim-PoZdr, CPDE '11) that in
rather general situations the problem can be reformulated as

Ot [U + ,ChHQ(U)] 5 Au in Qr =Q x (0, T),
where L, is a positive constant usually called as the latent heat. In
practice, in the weak sense for v € u+ LHp(u) we have
t

/ [ = vOip + (Vu, V)] dx dt+/ v dx
QX(tl,tQ) Q

t=t;

holds for p € C°(Q7) andae. 0<t; <t < T.



More general structures

More in general we can replace the Laplacian with
a: Q1 xR xR"” — R" having linear growth:

(a(x, t,u,€),€) > NYEP, Ja(x, t,u,€)| < N¢|

to take into account convective effects and also non-linear growth
of the parabolic part, i.e.,

O [B(u) + LyHa(B(u))] > diva(x, t,u, Vu).

B is a C! diffeomorphism of R and contains thermal properties of
the water. The jump here occurs when 5(u) = b € R. Calling
v = B(u) and assuming £, = 1, we have

O [v + Hp(v)] 2 diva(x, t,v, Vv)



Objective:

Find a quantitative modulus of continuity w(r) in the two-phase
Stefan problem such that

oscu S w(r), Qr := By(x0) % (to — r*, o) C Q1
for weak solutions to ¢ [B(u) + LaHa(B(u))] 2 diva(x, t, u, Vu) in
Qr.



What can be found in the literature:
Continuity in one-phase

One-phase Stefan problem: with b = 0, we just allow u >0
(that is, ice is at temperature 0°C). Then

oscu < w(r) with
Qr
1 ¢ 2
w(r):[ln(r)} ) if n>3 0<6<n:12;
_ oIy if = L
w(r) =270 if n=2, O<’y<§.

[Caffarelli & Friedman, Indiana Univ. Math. J., '79]

Elliptic operator: Laplacian, Proof: heavy use of the positivity of
u; maximum principle & representation formulae.



What can be found in the literature:
Continuity in two-phase

Two-phase Stefan problem: with b = 0, we don’t impose sign
restrictions (i.e., ice can reach —10°C, for instance).

Only qualitative continuity in [Caffarelli & Evans, ARMA, '83] and
[DiBenedetto, AMPA, '82].

Implicit some kind of log log continuity in the former, proved in the
case of Laplacian, while the second handles nonlinear operators &
lower order terms. CE proof: De Giorgi iteration + Green formula
to reduce the supremum of uy; DiB proof: only energy methods.



A remark on the quantitative modulus of continuity

The modulus

—0

w(r) = [In In(i)] for some o > 0,

is stated as a Remark in [DiBenedetto & Friedman, Crelle's J.,
'84]; explicit proof (at the boundary) in [DiBenedetto, JDE '86].

Remark 3. 1. The same arguments prove that we have the modulus of continuity
(3. 25) also for the weak solutions of the two-phase Stefan problem and certain extensions
of the porous medium equations [2], [3]; such a modulus was not calculated in these
papers.

From (3.22)-—(3. 24) it follows that Vu is continuous with modulus of continuity

(3.25) (!og log %)75 (A4>0, 6>0)
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Our first theorem

Theorem (Baroni, T6 & Urbano)

Let v be a weak solution to
Ot[v + Hp(v)] > diva(x, t,v,Vv) in Qr,

a(x,t,u,Vv) =~ Vv, b e R. Then

ifn>3,

r

w(r) = const - [ln (1>]_77 T n+2

0<y<i ifn=2

Open problem: Give an example of a solution in the case
a(x, t,v,Vv) = Vv for the above modulus of continuity
(especially when n > 3).



Proof: a tool - weak supersolution
We consider weak supersolution:
(%) we—diva(x,t,w,Vw) >0 in Q = Br(xo) x (to — R?, o)
with a(x, t,w, Vw) = Vw.
Theorem (Weak Harnack inequality (Trudinger, CPAM ’68))
Let w > 0 be a weak supersolution to (x), bounded in Q*. Then

t,
)[ dxdt < c inf
Q*W X _cgl_w (Ko,lo)

][ w(-, t)dx < cinfw Q
Q*n{t=+*} Q-

Figure 1.



Proof: a tool - weak supersolution - II

As corollary it follows:

Corollary (Decay of weak supersolution)

Let w > 0 be a weak supersolution to (x), bounded in Q. Then

t .
(%o,%0)
inf w > k, k>0 Q
B/2x{to—R?}
J
. k < (t—(to—R2
inf w > S (t-(t=R)
B/2x(to—R2,ty) ~c

X

Figure 2 B/?_ X { to - RZ&

11/29



Two exercises

FEzercise
If v is a solution to

(%) vi —Av =0 (v —diva(x,t,v,Vv) =0),
then w = min{v, k}, k € R is a supersolution to (x).

Proof.
Formally, test (%) with ©X{v<k} and discard the negative term.

FEzercise
If v is a solution to

O¢[v + Hp(v)] > Av (O¢[v + Hp(v)] 2 diva(x, t,v,Vv)),

then w = min{v, k} with k < b is a supersolution to (x).

O



Remark about formal computations

In this talk | will proceed formally. Rigorously one should mollify
Heaviside jump:

Hp(v) := (Hp * 6:)(v), supp H,’,’E C(b—e,b+e),
and consider the approximating solutions v.. For these we prove

oscv. Sw(R)+e¢
Qr

and then we use local uniform convergence, letting € N\, 0.



Towards the proof - reductions

Take @ = Qg and w(+) modulus of continuity. We can suppose

Reduction 1 : infv =0 — 0SCV = sup v;
Q Q Q
Reduction 2 : b € [0,supv] =[O, osc v],
Q

(if not, v is Holder continuous by the standard regularity theory);

1
Reduction 2 : be |=supv,supv]|,
29 @
(if not, consider instead ¥ :=supv — v);
Q
Reduction 3 : supv > w(R).

Q



The alternatives

We fix two alternatives (recall that the jump = b > sup v/2):

sup v

(Alt. 1) @ n{vz= 22 b s e (R 1@
OR

sup v

(Alt. 2) ‘o* N {v > H < 1 [W(R)2 Q.

We consider just the case n > 2; 1 to be fixed.



The first alternative

Consider the case where the first alternative holds true:

(Alt. 1) ’Q*ﬂ{vz SUEVH > &1 [w(R)2 | Q.

We truncate ¥ := min{v,sup v/4}, which is a supersolution (recall
that b > sup v/2). We then simply have for such positive
supersolution:

1 1
inf\A/Z][ Vdxdt> " Vdxdt
Q- ¢ * C|Q ’ Q*N{v>supv/4}
V= SUPV/4 6]_ oSC v
LR %Y

sup v>w(R) €1 oun
> = [w(R)T.
SAG)



The first alternative - part II

Using the decay of supersolutions, we moreover get

inf _ v> inf > =1 [w(R)]2+g .
Q~UQ/2 Q-UQ/2 c

In particular,

247

oscv <su v——w 2
gscv < supv — L [w(R)]
5 2+ﬂ

= - —= R .
oscv — - [w(R)*
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The second alternative

Now we analyze the occurrence of the second alternative:

@ {vz sy - S0 <o n {v= 277}
(Alt.2) < e w(R)M2 Q.

This is the starting point of a De Giorgi-type iteration that proves

that
w(R)
sup v <supv — ——,

provided €7 is chosen appropriately.



The second alternative - The Caccioppoli

sup/B (v — k)3 % (o 7)dx + /Q V(v — k)1|?¢? dx dt
<c [ (v WR[VOR + (@:0?).] ot
+c /Q(b — k)1 X{v>k) (0:6%)4 dx dt =: RHS.
Parabolic Sobolev inequality:

LHS ::/ (v — k)2 627 dxdt
Q

Sch[sgp/B[(v—k)i¢2](~,7-)dxf/(?’V[(v—k)+¢]‘2dxdt.



The second alternative - Concluded

A logarithmic Lemma now transforms the pointwise information
into an information in measure, but in the future:

‘Q/Q N {v > supv — C(I/)[w(R)]erg}’ -
1Q/2] -
Now we can perform another De Giorgi iteration, with test

function independent of time - and this makes the inhomogeneity
of the Caccioppoli disappear - and this yields

gs/i v <oscv — g(;) [w(R)* 2,

just if we take v (and hence <) small enough, independently of
w(R).



Conclusion
All in all, we proved

oscv < oscv < w(R)
Q/4 Q

OR

oscv < oscv — 0 [w(,‘:\’)]2+g ,

Q/4 Q
with @ a small constant depending on the data.
Using induction, for R; :== 4R and Q; := Qg;, one estimates
(assuming oscq, v < w(R;) for i € {0,...,j})

osc v < ﬁ (1 - H[w(R,-)]Hg) w(R).
i=0

Qi1



Conclusion - part I

J

H(l—e[w( ]1+2):exp(i|n(1 Olw(R ]1+2>)

Rit1 P

4
el L?’é?l)D -



The second alternative

Thus the question reduces to ask when

o (22 i ()

LE p w(Rj41)

holds?
Claim

o= [z (") m O]

gives the needed equality; hence the induction works!

Proof.
Just a simple computation.



The degenerate Stefan problem

We take here
Oelv + Hp(v)] 3 div [|[Vv|P72V V], p>2;

not very much is known then. Several things are still valid, but the
Caccioppoli estimate is problematic in two ways:

SLTJp/B[(v—k)%rép](-,T)dx—i-/QW(v—k)+]p<;5pdxdt

<c [ (v = KRIVOP + (v~ KR (0107).] o
Q

+ /Q(a — K)+X{v>k} (0:0P)+ dx dt.



The degenerate Stefan problem - solution

We use the approach in [T6, Mingione & Nystrom, JMPA '13]:
one considers cylinders of the type

Qp“Y (%0, to) = Br(x0) % (to — A2 Plw(R)[>PRP, to)

where

AR 0sC V.
Aw(-
w(R) Q0
It turns out that these cylinders reveal to be the appropriate ones

to treat, in the sharp way, C¥(") property for the parabolic obstacle
problem. Indeed

Obstacle € C*() = solution € C*(), 0sc v < Aw(R).
Qt



The degenerate Stefan problem - solution - part 11

Formally,
S LR g ar)
Hence the p-Laplace operator rewrites as
R -2
ve — div [|[Vv[P2Vv] &~ v — [W(R)/\}p Av =0

and this “rescale to the heat equation” in @y if considered in
Br(xo) x (to — )\2—P[W(R)]2—PRP7 to);

this allows to perform blow-up arguments. Note the two borderline
cases.



The degenerate Stefan problem - solution - part 111

Hence, to handle this problem, we have to consider two time scales
(once fixed w):

to — [w(R)| G PRI Re, to— T(w(R)RP,  to,

but the same alternatives as before (with p in place of 2):

sup v

00 {2 20> b 00
OR

b <Ll (RIE Q.

sup v

@ n{vz=



The degenerate Stefan problem - our second theorem

The result here is the following

Theorem (Baroni, T6 & Urbano)
Let v be a weak solution to

Oelv + Ha(v)] 2 div [|[Vv[P2Vv]  inQp, 2<p<n.

Then, with
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Thank you for your attention!



