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Some elliptic background

Part 1: Size bounds
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The classical potential estimates

@ Consider the model case

—ANu=p in R"
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The classical potential estimates

@ Consider the model case

—ANu=p in R"

e We have
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The classical potential estimates

@ Consider the model case

—ANu=p in R"

e We have

u(x) = / G(x, y)uly)

where
Ix —y[>" se n>2

—log|x —y| se n=2
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Estimates via Riesz potentials

@ Previous formula gives

()| < /R CICICONSNTHITe

n |x —y|n2
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Estimates via Riesz potentials

@ Previous formula gives

()| < /R CICICONSNTHITe

n |x —y|n2

@ while, after differentiation, we obtain

Duel < [ |"'“'(”=/1(|u|)(x)

ro |x —y|171
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Local versions

@ In bounded domains one uses
R 1ul(B(x,0)) do
I(x, R ::/ [1l(B(x, 0)) do Be(0,n
SooR) =[RS (0.7]
since

V:(x, R) 5/ d|ul(y)

Bgr(x) ’X - y’n—B
= Is(lul-B(x, R))(x)
< Is(|ul)(x)

for non-negative measures

Giuseppe Mingione Update on nonlinear potential theory



What happens in the nonlinear case?

e For instance for nonlinear equations with linear growth
—div a(Du) =

that is equations well posed in W12 (p-growth and p = 2)
that is

9a(z)] < L VAP < (9a(z)\ N)
@ And degenerate ones like
—div (|DulP™2Du) = p

@ To be short, we shall concentrate on the case p > 2

Giuseppe Mingione Update on nonlinear potential theory



Nonlinear potentials

@ The nonlinear Wolff potential is defined by

R 1
pl(B(x,0)) 7t do
Wi xRy i= [ (HOEONT S e .
which for p = 2 reduces to the usual Riesz potential
R
w(B(x,0)) do
I5(x, R) 1:/0 (g’("ﬂ))g B € (0,n]

@ The nonlinear Wolff potential plays in nonlinear potential
theory the same role the Riesz potential plays in the linear one
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The first nonlinear potential estimate

Theorem (Kilpeldinen & Maly, Acta Math. 94)

If u solves

—div (|DulP~2Du) = p

1/(p-1)
JulP~? dy)

then

B(x,R)

()] S W (x, R) + (f

holds
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The first nonlinear potential estimate

Theorem (Kilpeldinen & Maly, Acta Math. 94)

If u solves
—div (|DulP~2Du) = p

1/(p-1)
JulP~? dy)

then

()] S W (x, R) + (f

B(x,R)

holds

where

oy [ (LY oo
’ 0

o"~P 0
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The first nonlinear potential estimate

Theorem (Kilpeldinen & Maly, Acta Math. 94)

If u solves

—div (|DulP~2Du) = p

1/(p-1)
JulP~? dy)

then

B(x,R)

()] S W (x, R) + (f

holds
where
R 1/(p—1)
pl(B(x, 0 do
0 o"P 0

For p = 2 we are back to the Riesz potential Wy , = I - the
above estimate is non-trivial already in this situation
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Corollary: optimal integrability

@ Indeed

ng(p—1)

p€ L= Wj &L ge(1,n)

and more in general estimates in rearrangement invariant
function spaces
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Corollary: optimal integrability

@ Indeed

ng(p—1)
P

apB qeE (]_7[7)

ueLq:WépeL

and more in general estimates in rearrangement invariant
function spaces

@ This property follows by another pointwise estimate

[ (Bl M) TR e e

0
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Corollary: optimal integrability

@ Indeed

ng(p—1)
P

apB qeE (]_7[7)

ueLq:WépeL

and more in general estimates in rearrangement invariant
function spaces

@ This property follows by another pointwise estimate

< (ul(B(x, )\ do _ ip—1)
/O ( 7 7 s U0} (0
@ The quantity in the right-hand side is usually called
Havin-Mazya potential
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Corollary: optimal integrability

@ Indeed

ng(p—1)
P

apB qeE (]_7[7)

€ L = Wy ,EL
and more in general estimates in rearrangement invariant

function spaces

@ This property follows by another pointwise estimate

< (ul(B(x, )\ do _ ip—1)
/O ( 7 7 s U0} (0
@ The quantity in the right-hand side is usually called
Havin-Mazya potential

@ More applications in this direction are proposed in Cianchi's
paper (Ann. Pisa 2011)
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A first gradient potential estimate

Theorem (Min., JEMS 2011)
When p = 2, if u solves

—diva(Du) = p

then

1Du(x)| < K(x, R) + ][ |Du| dy
B(x,R)

holds
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A first gradient potential estimate

Theorem (Min., JEMS 2011)
When p = 2, if u solves

—diva(Du) = p

then

1Du(x)| < K(x, R) + ][ |Du| dy
B(x,R)

holds

For solutions in W1(RM) we have

Du) 5 [ ) e

g |X — y["L
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New viewpoint - Let's twist!!!

e Consider
—divvy =p

with
v = |DulP~2Du
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Joint work with Tuomo Kuusi
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Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

—div (|DulP~2Du) = p

p—1
IDUdy>

then

IDUQXNp_liiﬁxxyR)+-(j[

X7R)

holds
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Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

—div (|DulP~2Du) = p

then
p—1
IDUdy>

IDUQXNp_liiﬁxxyR)+-(j[

x,R)

holds

The theorem still holds for general equations of the type
—diva(Du) = p
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Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
—div (|DulP~2Du) = p
then
p—1
|Du(x)|P~t S H(x,R) + <][ o | Dul dy>
holds

The theorem still holds for general equations of the type
—div a(Du) = p Note that

(x,R) S W, (x, )P
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Unified approach to gradient regularity

@ For the model case
—div (|DulP™?Du) = p

all the known gradient integrability result now follow

@ Moreover, delicate and still open borderline cases
(Lorentz and Orlicz regularity), immediately follow
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Potential characterisation of Lebesgue points

Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

I7(x,R) < >

for some R > 0 then x is a Lebesgue point of Du that is, the

following limit
lim ][ Du(y) dy
0=0./B(x,0)

exists
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Potential characterisation of Lebesgue points

Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

Wip(x, R) < o0

for some R > 0 then x is a Lebesgue point of u that is, the

following limit
lim ][ u(y) dy
270 /B(x,0)

exists
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Some elliptic background

Part 2: Oscillation bounds
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The general continuity criterion

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
—div (|Du|P~2Du) = p
and
lim 11(x, R) = 0 uniformly w.r.t. x
R—0
then
Du is continuous
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv € L(n,1) = v is continuous
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv € L(n,1) = v is continuous

We recall that

g < L(n1) <:>/ {x : |g(x)] > A\Y"dA < o0
0
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv € L(n,1) = v is continuous

We recall that
gelnl) / {x : |g(x)] > A\Y"dA < o0
0
It follows that

Au=p € L(n,1) = Du is continuous
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv € L(n,1) = v is continuous

We recall that
gel(n1) <:>/ {x : |g(x)] > A\Y"dA < oo
0

An example of L(n, 1) function is given by

1

—_— g>1
x| log”(1/Ix|)

in the ball B, »
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A nonlinear Stein theorem

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves the p-Laplacean equation

—div (|DulP™2Du) = pu € L(n,1)

then

Du is continuous
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A vectorial nonlinear Stein theorem

Theorem (Kuusi & Min., Calc. Var.)
If u:Q — R™ solves the p-Laplacean system

—div (|Du|P~2Du) = F

and
F:Q—R™ with Fel(n1)

then

Du is continuous
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The special role of L(n,1) - local and global results

o Duzaar & Min. (Ann. IHP 2010) prove |[Dul|;e < oo when
F € L(n,1)joc for general equations —diva(Du) = F and
Uhlenbeck systems, for n > 3; interior regularity is obtained

e Cianchi & Maz'ya (Comm. PDE 2011) prove ||Dul|j~ < o0
when F € L(n,1) for —Apu = F with zero boundary values,
and up to the boundary, still in the case n > 3

o Kuusi & Min. (ARMA 2013) prove Du € C° for n > 2 for
general equations with coefficients —div a(x, Du) = F

e Cianchi & Maz'ya (ARMA 2014) ||Dul| ~ < oo when
F € L(n,1), for the system —A,u = F with zero boundary
values, and up to the boundary, for Uhlenbeck systems, for
n>3

e Kuusi & Min. (to appear in Calc. Var. & Math. Ann.) prove
Du € CO for Uhlenbeck systems with coefficients, for n > 2
and also in the parabolic case
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Fully nonlinear

Part 3: Interlude on fully nonlinear
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A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F(D?u) = f € L(n,1)

then

Du is continuous
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A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F(D?u) = f € L(n,1)

then

Du is continuous

Previous results of Caffarelli (Ann. Math. 1989) assert that

fel"™ — Due CO™
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A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F(D?u) = f € L(n,1)

then

Du is continuous

Previous results of Caffarelli (Ann. Math. 1989) assert that
fel™ = Due C*

Notice that
L"ecL(nl) >0
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Modified potentials

Key to the proof, a new potential estimate
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Modified potentials

Key to the proof, a new potential estimate

(x,r) /][ y)|dy do
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The relevant role of L(n, 1)

Key to the proof, a new potential estimate

1(x,r) / — |dy
=/][ \f(y)|dydg
0 JBy(x)

. 1/p
p = N (x,r).
g/o (][Bg(xﬂ“”' dy> do = i(x,r)
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Modified potentials

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F(D?u) = f € L(n,1)

1/q
\DUI"dy>

then

|Du(x)| < cWi(x,r) +c <][

Br(x)

forp>n—candqg>n
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Consequences

@ It holds, with n — ¢ < p that

sup rp_”/ |fIP dy < oo = Du € BMO
B/ (x) B:(x0)
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Consequences

@ It holds, with n — ¢ < p that

sup rp_”/ |fIP dy < oo = Du € BMO
B/ (x) B:(x0)

@ In particular

f e M"=L(n,o00) = Du e BMO
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Consequences

@ It holds, with n — ¢ < p that

sup rp_”/ |fIP dy < oo = Du € BMO
B/ (x) B:(x0)

@ In particular

fe M"=L(n,c0) = Du € BMO

@ Moreover

I
r—0

im r”_”/ |f|Pdy = 0= Du € VMO
Br(x0)
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Comparisons

Borderline case of a theorem of Caffarelli, who proved

sup r”(lo‘)”/ If|"dy < 0o = Du € C%
Br(X) f(X)
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Comparisons

Borderline case of a theorem of Caffarelli, who proved

sup r”(la)”/ If|"dy < 0o = Du € C%
Br(X) Br(X)

Corollary (Teixeira, ARMA 2014)

If u solves the uniformly elliptic fully nonlinear equation

F(D?*u) =f € M" = L(n, c0)

then u is Log-Lipschitz, that is

\mm—uwﬂé—k_ﬂngxiﬂ>
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The parabolic case

Part 4: Evolution
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Parabolics

@ The model case is here given by
u; — div (|Du|P~2Du) = p, in Qx (—T,0) c R™!
more in general we consider
ur —diva(Du) = .

@ The basic reference for existence and a priori estimates in the
setting of SOLA is the work of Boccado, Dall'Aglio, Gallotiet
and Orsina, JFA, 1997
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Degenerate equations - basic results

Theorem (Boccardo, Dall’Aglio, Gallouét & Orsina, JFA, 1997)

1
[Dul € LYQx (=T,0)), 1<qg<p-1+y—

N=n+2 is the parabolic dimension
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The heat equation

Consider the caloric Riesz potential

" |pl(Qq(x, 1)) do
I{f(x,t;r)::/0 leil R N:=n+2,
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The heat equation

Consider the caloric Riesz potential
r t)) d
1 (x, t;r) ::/ 7“4(0,6(3;’ ) —Q, N:=n+2,
0 0 %

then for solutions to
u—Nu=pu

we have

|Du(x, t)] < clf(x, t;r)+ c][ |Du| dz
Qr(x,t)
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The heat equation

Consider the caloric Riesz potential

" ul(Qo(x, 1)) do
I’f(x,t;r)::/0 #?, N:=n+2,

then for solutions to
u—Nu=pu

we have

|Du(x, t)] < clf(x, t;r)+ c][ |Du| dz
Qr(x,t)

we recall that

Qr(x,t) := B(x,r) x (t — r?,t)
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Inhomogeneous a priori estimates

Theorem (DiBenedetto & Friedman, Crelle J. 85)

sup  |Du| < c(n, p)][ (|Du| +1)P~ L dz
Q;/2(x0,t0) Qr(xo0,t0)
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The intrinsic geometry of DiBenedetto

@ The basic analysis is the following: consider intrinsic
cylinders

Q;‘(X, t) = B(x,0) x (t — NP2, t)
where it happens that
|Du| = A in Qg(x, t)
then the equation behaves as
up — AP 2Au=0

that is, scaling back in the same cylinder, as the heat equation

@ On intrinsic cylinders estimates “ellipticize”; in
particular, they become homogeneous
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DiBenedetto's intrinsic estimate

@ The homogenizing effect of intrinsic geometry

Theorem (DiBenedetto & Friedman, Crelle J. 85)

There exists a universal constant ¢ > 1 such that

1/(p—1)
c ][ |Du|P~ dz <A
QA (x:t)

|Du(x, t)| < A

then

Giuseppe Mingione Update on nonlinear potential theory



Intrinsic Riesz potentials

o Define the intrinsic Riesz potential such that
r A x,t)) d

o [ NG

’ 0 1Y% 0

with
Q) (x,t) = B(x,0) x (t = N>7Pg? t)

Giuseppe Mingione Update on nonlinear potential theory



Intrinsic Riesz potentials

o Define the intrinsic Riesz potential such that

Ful(Q)(x, 1) d
I’f’)\(x7 tir) = /0 # ?Q

with
Q) (x,t) = B(x,0) x (t = N>7Pg? t)

@ Note that

I (x,t;r) =W (x,t;r)  when p=2orwhen A =1
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The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant ¢ > 1 such that

1/p—1
cf \(x,t;r)+ ¢ ][ |Du|P~! dz <A
’ QX (xt)

|Du(x, t)] < A

then
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The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant ¢ > 1 such that

1/p—1
cf \(x,t;r)+ ¢ ][ |Du|P~! dz <A
’ QX (xt)

|Du(x, t)] < A

then

@ When p = 0 this reduces to the sup estimate of
DiBenedetto & Friedman (Crelles J. 84)
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o Consider the equation
u; — div (| DulP~2Du) = 4,

where § denotes the Dircac unit mass charging the origin

@ The so called Barenblatt (fundamental solution) is

2\ [ 1x VT

_n L (p— x|\ Pt

5t - <9< 2y () ) >0
0 t<0.

for & = n(p — 2) + p and a suitable constant ¢, such that

Bo(x,t)dx =1 Vit>0
Rn
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@ A direct computation shows the following upper optimal
upper bound
|DBp(x, t)| < ct~(n+1)/?

@ The intrinsic estimate above exactly reproduces this upper
bound

@ This decay estimate is indeed reproduced for all those
solutions that are initially compactly supported
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Intrinsic bounds imply explicit bounds

@ The previous bound always implies a priori estimates on
standard parabolic cylinders

Theorem (Kuusi & Min., JEMS, ARMA 2014)

|Du(x, t)| < I‘f(x, t;r) —l—][ (|Dul| + 1)”_1 dz
Qr(x,t)

holds for every standard parabolic cylinder Q,
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Bact to classical potentials

Corollary (Kuusi & Min., JEMS, ARMA 2014)

Assume that u solves

uy — div (|DulP~2Du) = p in R,

Then

‘Du(Xo,to)‘ g / d|/~L|(X’ t)

{t<to} dpar((X, t)a (X07 tO))N_l
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Bact to classical potentials

Corollary (Kuusi & Min., JEMS, ARMA 2014)

Assume that u solves

us — div (|Du|P~2Du) = p in R™1

Then

‘Du(Xo,to)‘ g / d|/~L|(X’ t)

{t<to} dpar((X, t)a (X07 tO))N_l

recall that

dpar((x, 1), (x0, t0)) = max{]x — xol, M}

Giuseppe Mingione Update on nonlinear potential theory



Gradient continuity via potentials

Theorem (Kuusi & Min., ARMA 2014)

Assume that

lim 1 (x,t;r)=0 uniformly w.r.t. (x, t)
r—0

then

Du is continuous in QT
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Gradient continuity via potentials

Theorem (Kuusi & Min., ARMA 2014)

Assume that

lim 1 (x,t;r)=0 uniformly w.r.t. (x, t)
r—0

then

Du is continuous in QT

Theorem (Kuusi & Min., ARMA 2014)

Assume that

l(Qe) S M1

holds, then thtere exists «, depending on 0, such that

Due C%  Jocally in Qt
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A nonlinear parabolic Stein theorem

Theorem (Kuusi & Min., ARMA 2014)

Assume that

uy — div (|DulP~2Du) = p € L(N, 1)

that is ~
/ [l > AN da < oo
0

then Du is continuous in QT

DiBenedetto proved that Du is continuous when p € LN+e
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A nonlinear, vectorial parabolic Stein theorem

Theorem (Kuusi & Min., Math. Ann., to appear)

Assume that u is a vector valued solutions to the parabolic

p-system
uy — div (|DulP~2Du) = p € L(N, 1)
that is ~
| Ikl > X < o0
0
then

@ Du is continuous in Q1

@ The condition relaxes in pn € L(n,1) = L(N — 2,1) in the case
W is time independent
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Thanks for the attention, with a work of Serena Nono
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