Update on nonlinear potential theory

Giuseppe Mingione

May 2, 2014

Charles University

with Josek Málek at paseky (2005)

Some elliptic background

Part 1: Size bounds

The classical potential estimates

Consider the model case

$$-\triangle u = \mu$$
 in \mathbb{R}^n

The classical potential estimates

Consider the model case

$$-\triangle u = \mu$$
 in \mathbb{R}^n

We have

$$u(x) = \int G(x, y) \mu(y)$$

The classical potential estimates

Consider the model case

$$-\triangle u = \mu$$
 in \mathbb{R}^n

We have

$$u(x) = \int G(x,y)\mu(y)$$

where

$$G(x,y) \approx \begin{cases} |x-y|^{2-n} & \text{se } n > 2 \\ -\log|x-y| & \text{se } n = 2 \end{cases}$$

Estimates via Riesz potentials

Previous formula gives

$$|u(x)| \lesssim \int_{\mathbb{R}^n} \frac{d|\mu|(y)}{|x-y|^{n-2}} = I_2(|\mu|)(x)$$

Estimates via Riesz potentials

Previous formula gives

$$|u(x)| \lesssim \int_{\mathbb{R}^n} \frac{d|\mu|(y)}{|x-y|^{n-2}} = I_2(|\mu|)(x)$$

• while, after differentiation, we obtain

$$|Du(x)| \lesssim \int_{\mathbb{R}^n} \frac{d|\mu|(y)}{|x-y|^{n-1}} = I_1(|\mu|)(x)$$

Local versions

In bounded domains one uses

$$\mathbf{I}^{\mu}_{\beta}(x,R) := \int_{0}^{R} \frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta}} \frac{d\varrho}{\varrho} \qquad \beta \in (0,n]$$

since

$$\begin{aligned} \mathbf{I}^{\mu}_{\beta}(x,R) &\lesssim \int_{B_{R}(x)} \frac{d|\mu|(y)}{|x-y|^{n-\beta}} \\ &= I_{\beta}(|\mu| \llcorner B(x,R))(x) \\ &\leq I_{\beta}(|\mu|)(x) \end{aligned}$$

for non-negative measures

What happens in the nonlinear case?

For instance for nonlinear equations with linear growth

$$-\mathsf{div}\ \mathit{a}(\mathit{Du}) = \mu$$

that is equations well posed in $W^{1,2}$ (p-growth and p=2) that is

$$|\partial a(z)| \le L$$
 $\nu |\lambda|^2 \le \langle \partial a(z)\lambda, \lambda \rangle$

And degenerate ones like

$$-\mathsf{div}\;(|Du|^{p-2}Du) = \mu$$

• To be short, we shall concentrate on the case $p \ge 2$

Nonlinear potentials

• The nonlinear Wolff potential is defined by

$$\mathbf{W}^{\mu}_{\beta,p}(x,R) := \int_0^R \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta p}}\right)^{\frac{1}{p-1}} \frac{d\varrho}{\varrho} \qquad \beta \in (0,n/p]$$

which for p = 2 reduces to the usual Riesz potential

$$\mathbf{I}^{\mu}_{\beta}(x,R) := \int_{0}^{R} \frac{\mu(B(x,\varrho))}{\varrho^{n-\beta}} \frac{d\varrho}{\varrho} \qquad \beta \in (0,n]$$

 The nonlinear Wolff potential plays in nonlinear potential theory the same role the Riesz potential plays in the linear one

The first nonlinear potential estimate

Theorem (Kilpeläinen & Malý, Acta Math. 94)

If u solves

$$-\mathsf{div}\;(|Du|^{p-2}Du) = \mu$$

then

$$|u(x)| \lesssim \mathbf{W}_{1,p}^{\mu}(x,R) + \left(\int_{B(x,R)} |u|^{p-1} \, dy \right)^{1/(p-1)}$$

holds

The first nonlinear potential estimate

Theorem (Kilpeläinen & Malý, Acta Math. 94)

If u solves

$$-\mathsf{div}\;(|Du|^{p-2}Du) = \mu$$

then

$$|u(x)| \lesssim \mathbf{W}_{1,p}^{\mu}(x,R) + \left(\int_{B(x,R)} |u|^{p-1} \, dy \right)^{1/(p-1)}$$

holds

where

$$\mathbf{W}_{1,p}^{\mu}(x,R) := \int_0^R \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-p}}\right)^{1/(p-1)} \frac{d\varrho}{\varrho}$$

The first nonlinear potential estimate

Theorem (Kilpeläinen & Malý, Acta Math. 94)

If u solves

$$-\mathsf{div}\;(|Du|^{p-2}Du) = \mu$$

then

$$|u(x)| \lesssim \mathbf{W}_{1,p}^{\mu}(x,R) + \left(\int_{B(x,R)} |u|^{p-1} \, dy \right)^{1/(p-1)}$$

holds

where

$$\mathbf{W}_{1,p}^{\mu}(x,R) := \int_0^R \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-p}}\right)^{1/(p-1)} \frac{d\varrho}{\varrho}$$

For p=2 we are back to the Riesz potential $\mathbf{W}_{1,p}^{\mu}=\mathbf{I}_{2}^{\mu}$ - the above estimate is non-trivial already in this situation

Indeed

$$\mu \in L^q \Longrightarrow \mathbf{W}^{\mu}_{\beta,p} \in L^{rac{nq(p-1)}{n-qp\beta}} \qquad q \in (1,n)$$

and more in general estimates in rearrangement invariant function spaces

Indeed

$$\mu \in L^q \Longrightarrow \mathbf{W}^{\mu}_{\beta,p} \in L^{\frac{nq(p-1)}{n-qp\beta}} \qquad q \in (1,n)$$

and more in general estimates in rearrangement invariant function spaces

• This property follows by another pointwise estimate

$$\int_0^\infty \left(\frac{|\mu|(\mathcal{B}(x,\varrho))}{\varrho^{n-\beta p}}\right)^{1/(p-1)} \frac{d\varrho}{\varrho} \lesssim I_\beta \left\{ [I_\beta(|\mu|)]^{1/(p-1)} \right\}(x)$$

Indeed

$$\mu \in L^q \Longrightarrow \mathbf{W}^{\mu}_{\beta,p} \in L^{\frac{nq(p-1)}{n-qp\beta}} \qquad q \in (1,n)$$

and more in general estimates in rearrangement invariant function spaces

• This property follows by another pointwise estimate

$$\int_0^\infty \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta p}}\right)^{1/(p-1)} \frac{d\varrho}{\varrho} \lesssim I_\beta \left\{ [I_\beta(|\mu|)]^{1/(p-1)} \right\} (x)$$

 The quantity in the right-hand side is usually called Havin-Mazya potential

Indeed

$$\mu \in \mathcal{L}^q \Longrightarrow \mathbf{W}^{\mu}_{\beta,p} \in L^{rac{nq(p-1)}{n-qp\beta}} \qquad q \in (1,n)$$

and more in general estimates in rearrangement invariant function spaces

• This property follows by another pointwise estimate

$$\int_0^\infty \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta p}}\right)^{1/(p-1)} \frac{d\varrho}{\varrho} \lesssim I_\beta \left\{ [I_\beta(|\mu|)]^{1/(p-1)} \right\}(x)$$

- The quantity in the right-hand side is usually called Havin-Mazya potential
- More applications in this direction are proposed in Cianchi's paper (Ann. Pisa 2011)

Foundations of Nonlinear Potential Theory

NON-LINEAR POTENTIAL THEORY

V. G. Maz'ya and V. P. Khavin

Contents

ntrodi	uction	7
Part I		73
§ 1.	The space \mathcal{L}_{n}^{l}	73
§ 2.	(p, l)-potentials of generalized functions with finite (p, l) -energy.	74
§ 3.	The maximum principle. A generalization of a theorem of Evans-	
	Vasilesko. Lemmas on sequences of potentials	7:
§ 4.	The (p, l) -capacity of a compact set. The capacity potential	76
§ 5.	The capacity potential of an analytic set. The measurability of an	
	analytic set relative to (p, l) -capacity and (p, l) -complete functions.	7
§ 6.	An estimate of the potential $\mathcal{U}_{p,l}^{\mu}$ in terms of the modulus of	
	continuity of the measure μ	78
§ 7.	Metric properties of sets of zero (p, l) -capacity	79
§ 8.	Use of Bessel potentials (the case $pl = n$). The capacity $\gamma_{p, l}$	80
§ 9.	Guide to the literature	8
Part II		84
§ 1.	Auxiliary information on the \mathcal{L}_p^l spaces	84
0.3	Communication of the state of t	0

A first gradient potential estimate

Theorem (Min., JEMS 2011)

When p = 2, if u solves

$$-\mathsf{div}\,a(\mathit{Du}) = \mu$$

then

$$|Du(x)|\lesssim \mathbf{I}_1^{\mu}(x,R)+\int_{B(x,R)}|Du|\,dy$$

holds

A first gradient potential estimate

Theorem (Min., JEMS 2011)

When p = 2, if u solves

$$-\mathsf{div}\,a(Du) = \mu$$

then

$$|Du(x)| \lesssim \mathbf{I}_1^{\mu}(x,R) + \int_{B(x,R)} |Du| \, dy$$

holds

For solutions in $W^{1,1}(\mathbb{R}^N)$ we have

$$|Du(x)| \lesssim \int_{\mathbb{R}^n} \frac{d|\mu|(y)}{|x-y|^{n-1}} = I_1(|\mu|)(x)$$

New viewpoint - Let's twist!!!

Consider

$$-\mathsf{div}\,\mathsf{v}=\mu$$

with

$$v = |Du|^{p-2}Du$$

Joint work with Tuomo Kuusi

Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = \mu$$

then

$$|Du(x)|^{p-1} \lesssim \mathbf{I}_1^{\mu}(x,R) + \left(\oint_{B(x,R)} |Du| \, dy \right)^{p-1}$$

holds

Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = \mu$$

then

$$|Du(x)|^{p-1} \lesssim \mathbf{I}_1^{\mu}(x,R) + \left(\oint_{B(x,R)} |Du| \, dy \right)^{p-1}$$

holds

The theorem still holds for general equations of the type $-\text{div }a(Du)=\mu$

Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = \mu$$

then

$$|Du(x)|^{p-1}\lesssim \mathbf{I}_1^{\mu}(x,R)+\left(\int_{B(x,R)}|Du|\,dy\right)^{p-1}$$

holds

The theorem still holds for general equations of the type $-\text{div } a(Du) = \mu$ Note that

$$\mathbf{I}_{1}^{\mu}(x,R) \lesssim [\mathbf{W}_{1/p,p}^{\mu}(x,R)]^{p-1}$$

Unified approach to gradient regularity

For the model case

$$-\mathsf{div}\;(|Du|^{p-2}Du) = \mu$$

all the known gradient integrability result now follow

 Moreover, delicate and still open borderline cases (Lorentz and Orlicz regularity), immediately follow

Potential characterisation of Lebesgue points

Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

$$\mathbf{I}_1^{\mu}(x,R)<\infty$$

for some R>0 then x is a Lebesgue point of Du that is, the following limit

$$\lim_{\varrho \to 0} \oint_{B(x,\varrho)} Du(y) \, dy$$

exists

Potential characterisation of Lebesgue points

Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

$$\mathbf{W}_{1,p}^{\mu}(x,R)<\infty$$

for some R>0 then x is a Lebesgue point of u that is, the following limit

$$\lim_{\varrho \to 0} \int_{B(x,\varrho)} u(y) \, dy$$

exists

Some elliptic background

Part 2: Oscillation bounds

The general continuity criterion

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = \mu$$

and

$$\lim_{R\to 0} \mathbf{I}_1^{\mu}(x,R) = 0 \text{ uniformly w.r.t. } x$$

then

Du is continuous

Theorem (Stein, Ann. Math. 1981)

$$Dv \in L(n,1) \Longrightarrow v$$
 is continuous

Theorem (Stein, Ann. Math. 1981)

$$Dv \in L(n,1) \Longrightarrow v$$
 is continuous

We recall that

$$g \in L(n,1) \iff \int_0^\infty |\{x : |g(x)| > \lambda\}|^{1/n} d\lambda < \infty$$

Theorem (Stein, Ann. Math. 1981)

$$Dv \in L(n,1) \Longrightarrow v$$
 is continuous

We recall that

$$g \in L(n,1) \Longleftrightarrow \int_0^\infty |\{x : |g(x)| > \lambda\}|^{1/n} d\lambda < \infty$$

It follows that

$$\triangle u = \mu \in L(n,1) \Longrightarrow Du$$
 is continuous

Theorem (Stein, Ann. Math. 1981)

$$Dv \in L(n,1) \Longrightarrow v$$
 is continuous

We recall that

$$g \in L(n,1) \Longleftrightarrow \int_0^\infty |\{x : |g(x)| > \lambda\}|^{1/n} d\lambda < \infty$$

An example of L(n, 1) function is given by

$$\frac{1}{|x|\log^{\beta}(1/|x|)} \qquad \beta > 1$$

in the ball $B_{1/2}$

A nonlinear Stein theorem

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves the p-Laplacean equation

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = \mu \in L(n,1)$$

then

Du is continuous

A vectorial nonlinear Stein theorem

Theorem (Kuusi & Min., Calc. Var.)

If $u:\Omega \to \mathbb{R}^m$ solves the p-Laplacean system

$$-\mathsf{div}\left(|Du|^{p-2}Du\right) = F$$

and

$$F: \Omega \to \mathbb{R}^m$$
 with $F \in L(n,1)$

then

Du is continuous

The special role of L(n, 1) - local and global results

- Duzaar & Min. (Ann. IHP 2010) prove $\|Du\|_{L^\infty_{loc}} < \infty$ when $F \in L(n,1)_{loc}$ for general equations $-{\rm div}\,a(Du) = F$ and Uhlenbeck systems, for $n \geq 3$; interior regularity is obtained
- Cianchi & Maz'ya (Comm. PDE 2011) prove $\|Du\|_{L^{\infty}} < \infty$ when $F \in L(n,1)$ for $-\triangle_p u = F$ with zero boundary values, and up to the boundary, still in the case $n \geq 3$
- Kuusi & Min. (ARMA 2013) prove $Du \in C^0$ for $n \ge 2$ for general equations with coefficients -div a(x, Du) = F
- Cianchi & Maz'ya (ARMA 2014) $\|Du\|_{L^\infty} < \infty$ when $F \in L(n,1)$, for the system $-\triangle_p u = F$ with zero boundary values, and up to the boundary, for Uhlenbeck systems, for n > 3
- Kuusi & Min. (to appear in Calc. Var. & Math. Ann.) prove $Du \in C^0$ for Uhlenbeck systems with coefficients, for $n \ge 2$ and also in the parabolic case

Fully nonlinear

Part 3: Interlude on fully nonlinear

A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

$$F(D^2u)=f\in L(n,1)$$

then

Du is continuous

A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

$$F(D^2u)=f\in L(n,1)$$

then

Du is continuous

Previous results of Caffarelli (Ann. Math. 1989) assert that

$$f \in L^{n+\varepsilon} \Longrightarrow Du \in C^{0,\alpha}$$

A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

$$F(D^2u)=f\in L(n,1)$$

then

Du is continuous

Previous results of Caffarelli (Ann. Math. 1989) assert that

$$f \in L^{n+\varepsilon} \Longrightarrow Du \in C^{0,\alpha}$$

Notice that

$$L^{n+\varepsilon} \subset L(n,1)$$
 $\varepsilon > 0$

Modified potentials

Key to the proof, a new potential estimate

Modified potentials

Key to the proof, a new potential estimate

$$\mathbf{I}_1^f(x,r) := \int_0^r \int_{B_\varrho(x)} |f(y)| \, dy \, d\varrho$$

The relevant role of L(n, 1)

Key to the proof, a new potential estimate

$$\begin{split} \mathbf{I}_{1}^{f}(x,r) &:= \int_{0}^{r} \frac{1}{\varrho^{n-1}} \int_{B_{\varrho}(x)} |f(y)| \, dy \, \frac{d\varrho}{\varrho} \\ &= \int_{0}^{r} \oint_{B_{\varrho}(x)} |f(y)| \, dy \, d\varrho \\ &\leq \int_{0}^{r} \left(\oint_{B_{\varrho}(x)} |f(y)|^{p} \, dy \right)^{1/p} \, d\varrho =: \mathbf{II}_{1}^{f}(x,r) \, . \end{split}$$

Modified potentials

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

$$F(D^2u)=f\in L(n,1)$$

then

$$|Du(x)| \le c \operatorname{II}_1^f(x,r) + c \left(\oint_{B_r(x)} |Du|^q dy \right)^{1/q}$$

for $p \ge n - \varepsilon$ and q > n

Consequences

• It holds, with $n - \varepsilon < p$ that

$$\sup_{B_r(x)} r^{p-n} \int_{B_r(x_0)} |f|^p \, dy < \infty \Longrightarrow Du \in \mathsf{BMO}$$

Consequences

• It holds, with $n - \varepsilon < p$ that

$$\sup_{B_r(x)} r^{p-n} \int_{B_r(x_0)} |f|^p \, dy < \infty \Longrightarrow Du \in \mathsf{BMO}$$

In particular

$$f \in \mathcal{M}^n \equiv L(n, \infty) \Longrightarrow Du \in \mathsf{BMO}$$

Consequences

• It holds, with $n - \varepsilon < p$ that

$$\sup_{B_r(x)} r^{p-n} \int_{B_r(x_0)} |f|^p \, dy < \infty \Longrightarrow Du \in \mathsf{BMO}$$

In particular

$$f \in \mathcal{M}^n \equiv L(n, \infty) \Longrightarrow Du \in \mathsf{BMO}$$

Moreover

$$\lim_{r\to 0} r^{p-n} \int_{B_r(x_0)} |f|^p dy = 0 \Longrightarrow Du \in VMO$$

Comparisons

Borderline case of a theorem of Caffarelli, who proved

$$\sup_{B_r(x)} r^{n(1-\alpha)-n} \int_{B_r(x)} |f|^n \, dy < \infty \Longrightarrow Du \in C^{0,\alpha}$$

Comparisons

Borderline case of a theorem of Caffarelli, who proved

$$\sup_{B_r(x)} r^{n(1-\alpha)-n} \int_{B_r(x)} |f|^n \, dy < \infty \Longrightarrow Du \in C^{0,\alpha}$$

Corollary (Teixeira, ARMA 2014)

If u solves the uniformly elliptic fully nonlinear equation

$$F(D^2u)=f\in M^n\equiv L(n,\infty)$$

then u is Log-Lipschitz, that is

$$|u(x) - u(y)| \le -|x - y|\log\left(\frac{1}{|x - y|}\right)$$

The parabolic case

Part 4: Evolution

Parabolics

The model case is here given by

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \mu$$
, in $\Omega \times (-T, 0) \subset \mathbb{R}^{n+1}$

more in general we consider

$$u_t - \operatorname{div} a(Du) = \mu$$
.

 The basic reference for existence and a priori estimates in the setting of SOLA is the work of Boccado, Dall'Aglio, Galloüet and Orsina, JFA, 1997

Degenerate equations - basic results

Theorem (Boccardo, Dall'Aglio, Gallouët & Orsina, JFA, 1997)

$$|Du| \in L^q(\Omega \times (-T,0)), \quad 1 \le q < p-1 + \frac{1}{N-1}$$

$$N = n + 2$$
 is the parabolic dimension

The heat equation

Consider the caloric Riesz potential

$$\mathbf{I}_1^{\mu}(x,t;r):=\int_0^r rac{|\mu|(Q_{\varrho}(x,t))}{arrho^{N-1}} rac{darrho}{arrho}\,,\quad N:=n+2\,,$$

The heat equation

Consider the caloric Riesz potential

$$\mathbf{I}_1^{\mu}(x,t;r) := \int_0^r \frac{|\mu|(Q_{\varrho}(x,t))}{\varrho^{N-1}} \frac{d\varrho}{\varrho}, \quad N := n+2,$$

then for solutions to

$$u_t - \triangle u = \mu$$

we have

$$|Du(x,t)| \le c \mathbf{I}_1^{\mu}(x,t;r) + c \oint_{Q_r(x,t)} |Du| \, dz$$

The heat equation

Consider the caloric Riesz potential

$$\mathbf{I}_1^{\mu}(x,t;r) := \int_0^r \frac{|\mu|(Q_{\varrho}(x,t))}{\varrho^{N-1}} \frac{d\varrho}{\varrho}, \quad N := n+2,$$

then for solutions to

$$u_t - \triangle u = \mu$$

we have

$$|Du(x,t)| \le c \mathbf{I}_1^{\mu}(x,t;r) + c \oint_{Q_r(x,t)} |Du| \, dz$$

we recall that

$$Q_r(x,t) := B(x,r) \times (t-r^2,t)$$

Inhomogeneous a priori estimates

Theorem (DiBenedetto & Friedman, Crelle J. 85)

$$\sup_{Q_{r/2}(x_0,t_0)} |Du| \leq c(n,p) \oint_{Q_r(x_0,t_0)} (|Du|+1)^{p-1} dz$$

The intrinsic geometry of DiBenedetto

The basic analysis is the following: consider intrinsic cylinders

$$Q_{\varrho}^{\lambda}(x,t) = B(x,\varrho) \times (t - \lambda^{2-p}\varrho^2,t)$$

where it happens that

$$|Du| pprox \lambda$$
 in $Q_{\varrho}^{\lambda}(x,t)$

then the equation behaves as

$$u_t - \lambda^{p-2} \triangle u = 0$$

that is, scaling back in the same cylinder, as the heat equation

 On intrinsic cylinders estimates "ellipticize"; in particular, they become homogeneous

DiBenedetto's intrinsic estimate

• The homogenizing effect of intrinsic geometry

Theorem (DiBenedetto & Friedman, Crelle J. 85)

There exists a universal constant $c \ge 1$ such that

$$c\left(\int_{Q_r^{\lambda}(x,t)}|Du|^{p-1}\,dz\right)^{1/(p-1)}\leq \lambda$$

then

$$|Du(x,t)| \leq \lambda$$

Intrinsic Riesz potentials

Define the intrinsic Riesz potential such that

$$\mathbf{I}_{1,\lambda}^{\mu}(x,t;r) := \int_0^r rac{|\mu|(Q_{arrho}^{\lambda}(x,t))}{arrho^{N-1}} rac{darrho}{arrho}$$

with

$$Q_{\varrho}^{\lambda}(x,t) = B(x,\varrho) \times (t - \lambda^{2-p}\varrho^2,t)$$

Intrinsic Riesz potentials

Define the intrinsic Riesz potential such that

$$\mathbf{I}_{1,\lambda}^{\mu}(x,t;r) := \int_0^r \frac{|\mu|(Q_{\varrho}^{\lambda}(x,t))}{\varrho^{N-1}} \frac{d\varrho}{\varrho}$$

with

$$Q_{\varrho}^{\lambda}(x,t) = B(x,\varrho) \times (t - \lambda^{2-p}\varrho^2,t)$$

Note that

$$\mathbf{I}_{1,\lambda}^{\mu}(x,t;r)=\mathbf{I}_{1}^{\mu}(x,t;r)$$
 when $p=2$ or when $\lambda=1$

The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant $c \ge 1$ such that

$$c\mathbf{I}_{1,\lambda}^{\mu}(x,t;r)+c\left(\int_{Q_r^{\lambda}(x,t)}|Du|^{p-1}dz\right)^{1/p-1}\leq \lambda$$

then

$$|Du(x,t)| \leq \lambda$$

The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant $c \ge 1$ such that

$$c\mathbf{I}_{1,\lambda}^{\mu}(x,t;r)+c\left(\int_{Q_r^{\lambda}(x,t)}|Du|^{p-1}dz\right)^{1/p-1}\leq \lambda$$

then

$$|Du(x,t)| \leq \lambda$$

• When $\mu \equiv 0$ this reduces to the sup estimate of DiBenedetto & Friedman (Crelles J. 84)

Sharpness

Consider the equation

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \delta,$$

where δ denotes the Dircac unit mass charging the origin

The so called Barenblatt (fundamental solution) is

$$\mathcal{B}_{p}(x,t) = \begin{cases} t^{-\frac{n}{\theta}} \left(c_{b} - \theta^{\frac{1}{1-p}} \left(\frac{p-2}{p} \right) \left(\frac{|x|}{t^{1/\theta}} \right)^{\frac{p}{p-1}} \right)^{\frac{p-1}{p-2}}_{+} & t > 0 \\ 0 & t \leq 0 \end{cases}.$$

for $\theta = n(p-2) + p$ and a suitable constant c_b such that

$$\int_{\mathbb{R}^n} \mathcal{B}_{\rho}(x,t) \, dx = 1 \qquad \forall \ t > 0$$

Sharpness

A direct computation shows the following upper optimal upper bound

$$|D\mathcal{B}_p(x,t)| \le ct^{-(n+1)/\theta}$$

- The intrinsic estimate above exactly reproduces this upper bound
- This decay estimate is indeed reproduced for all those solutions that are initially compactly supported

Intrinsic bounds imply explicit bounds

 The previous bound always implies a priori estimates on standard parabolic cylinders

Theorem (Kuusi & Min., JEMS, ARMA 2014)

$$|Du(x,t)| \lesssim \mathbf{I}_1^{\mu}(x,t;r) + \int_{Q_r(x,t)} (|Du|+1)^{p-1} dz$$

holds for every standard parabolic cylinder Q_r

Bact to classical potentials

Corollary (Kuusi & Min., JEMS, ARMA 2014)

Assume that u solves

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \mu$$
 in \mathbb{R}^{n+1} .

Then

$$|Du(x_0, t_0)| \lesssim \int_{\{t < t_0\}} rac{d|\mu|(x, t)}{d_{\sf par}((x, t), (x_0, t_0))^{N-1}}$$

Bact to classical potentials

Corollary (Kuusi & Min., JEMS, ARMA 2014)

Assume that u solves

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \mu$$
 in \mathbb{R}^{n+1} .

Then

$$|Du(x_0, t_0)| \lesssim \int_{\{t < t_0\}} rac{d|\mu|(x, t)}{d_{\sf par}((x, t), (x_0, t_0))^{N-1}}$$

recall that

$$d_{\mathsf{par}}((x,t),(x_0,t_0)) := \max\left\{|x-x_0|,\sqrt{|t-t_0|}\right\}$$

Gradient continuity via potentials

Theorem (Kuusi & Min., ARMA 2014)

Assume that

$$\lim_{r\to 0} \mathbf{I}_1^{\mu}(x,t;r) = 0 \qquad \text{uniformly w.r.t. } (x,t)$$

then

Du is continuous in Q_T

Gradient continuity via potentials

Theorem (Kuusi & Min., ARMA 2014)

Assume that

$$\lim_{r\to 0} \mathbf{I}_1^{\mu}(x,t;r) = 0 \qquad \text{uniformly w.r.t. } (x,t)$$

then

Du is continuous in Q_T

Theorem (Kuusi & Min., ARMA 2014)

Assume that

$$|\mu|(Q_{\varrho}) \lesssim \varrho^{N-1+\delta}$$

holds, then there exists α , depending on δ , such that

$$Du \in C^{0,\alpha}$$
 locally in Q_T

A nonlinear parabolic Stein theorem

Theorem (Kuusi & Min., ARMA 2014)

Assume that

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \mu \in L(N,1)$$

that is

$$\int_0^\infty |\{|\mu| > \lambda\}|^{1/N} \, d\lambda < \infty$$

then Du is continuous in Q_T

DiBenedetto proved that Du is continuous when $\mu \in L^{N+\varepsilon}$

A nonlinear, vectorial parabolic Stein theorem

Theorem (Kuusi & Min., Math. Ann., to appear)

Assume that u is a vector valued solutions to the parabolic p-system

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = \mu \in L(N,1)$$

that is

$$\int_0^\infty |\{|\mu| > \lambda\}|^{1/N} \, d\lambda < \infty$$

then

- Du is continuous in Q_T
- The condition relaxes in $\mu \in L(n,1) = L(N-2,1)$ in the case μ is time independent

Thanks for the attention, with a work of Serena Nono

