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Some elliptic background

Part 1: Size bounds
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The classical potential estimates

Consider the model case

−4u = µ in Rn

We have

u(x) =

∫
G (x , y)µ(y)

where

G (x , y) ≈


|x − y |2−n se n > 2

− log |x − y | se n = 2
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Estimates via Riesz potentials

Previous formula gives

|u(x)| .
∫
Rn

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x)

while, after differentiation, we obtain

|Du(x)| .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)
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Local versions

In bounded domains one uses

Iµβ(x ,R) :=

∫ R

0

|µ|(B(x , %))

%n−β
d%

%
β ∈ (0, n]

since

Iµβ(x ,R).
∫
BR(x)

d |µ|(y)

|x − y |n−β

= Iβ(|µ|xB(x ,R))(x)

≤ Iβ(|µ|)(x)

for non-negative measures
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What happens in the nonlinear case?

For instance for nonlinear equations with linear growth

−div a(Du) = µ

that is equations well posed in W 1,2 (p-growth and p = 2)
that is

|∂a(z)| ≤ L ν|λ|2 ≤ 〈∂a(z)λ, λ〉

And degenerate ones like

−div (|Du|p−2Du) = µ

To be short, we shall concentrate on the case p ≥ 2
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Nonlinear potentials

The nonlinear Wolff potential is defined by

Wµ
β,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−βp

) 1
p−1 d%

%
β ∈ (0, n/p]

which for p = 2 reduces to the usual Riesz potential

Iµβ(x ,R) :=

∫ R

0

µ(B(x , %))

%n−β
d%

%
β ∈ (0, n]

The nonlinear Wolff potential plays in nonlinear potential
theory the same role the Riesz potential plays in the linear one
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The first nonlinear potential estimate

Theorem (Kilpeläinen & Malý, Acta Math. 94)

If u solves
−div (|Du|p−2Du) = µ

then

|u(x)| . Wµ
1,p(x ,R) +

(
−
∫
B(x ,R)

|u|p−1 dy

)1/(p−1)

holds

where

Wµ
1,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−p

)1/(p−1) d%

%

For p = 2 we are back to the Riesz potential Wµ
1,p = Iµ2 - the

above estimate is non-trivial already in this situation
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Corollary: optimal integrability

Indeed

µ ∈ Lq =⇒Wµ
β,p ∈ L

nq(p−1)
n−qpβ q ∈ (1, n)

and more in general estimates in rearrangement invariant
function spaces

This property follows by another pointwise estimate∫ ∞
0

(
|µ|(B(x , %))

%n−βp

)1/(p−1) d%

%
. Iβ

{
[Iβ(|µ|)]1/(p−1)

}
(x)

The quantity in the right-hand side is usually called
Havin-Mazya potential

More applications in this direction are proposed in Cianchi’s
paper (Ann. Pisa 2011)
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Foundations of Nonlinear Potential Theory
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A first gradient potential estimate

Theorem (Min., JEMS 2011)

When p = 2, if u solves

−div a(Du) = µ

then

|Du(x)| . Iµ1 (x ,R) +−
∫
B(x ,R)

|Du| dy

holds

For solutions in W 1,1(RN) we have

|Du(x)| .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)
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New viewpoint - Let’s twist!!!

Consider
−div v = µ

with
v = |Du|p−2Du
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Joint work with Tuomo Kuusi
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Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
−div (|Du|p−2Du) = µ

then

|Du(x)|p−1 . Iµ1 (x ,R) +

(
−
∫
B(x ,R)

|Du| dy

)p−1

holds

The theorem still holds for general equations of the type
−div a(Du) = µ Note that

Iµ1 (x ,R) . [Wµ
1/p,p(x ,R)]p−1

Giuseppe Mingione Update on nonlinear potential theory



Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
−div (|Du|p−2Du) = µ

then

|Du(x)|p−1 . Iµ1 (x ,R) +

(
−
∫
B(x ,R)

|Du| dy

)p−1

holds

The theorem still holds for general equations of the type
−div a(Du) = µ

Note that

Iµ1 (x ,R) . [Wµ
1/p,p(x ,R)]p−1

Giuseppe Mingione Update on nonlinear potential theory



Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
−div (|Du|p−2Du) = µ

then

|Du(x)|p−1 . Iµ1 (x ,R) +

(
−
∫
B(x ,R)

|Du| dy

)p−1

holds

The theorem still holds for general equations of the type
−div a(Du) = µ Note that

Iµ1 (x ,R) . [Wµ
1/p,p(x ,R)]p−1

Giuseppe Mingione Update on nonlinear potential theory



Unified approach to gradient regularity

For the model case

−div (|Du|p−2Du) = µ

all the known gradient integrability result now follow

Moreover, delicate and still open borderline cases
(Lorentz and Orlicz regularity), immediately follow
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Potential characterisation of Lebesgue points

Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

Iµ1 (x ,R) <∞

for some R > 0 then x is a Lebesgue point of Du that is, the
following limit

lim
%→0
−
∫
B(x ,%)

Du(y) dy

exists
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Theorem (Kuusi & Min., Bull. Math. Sci.)

If x is a point such that

Wµ
1,p(x ,R) <∞

for some R > 0 then x is a Lebesgue point of u that is, the
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lim
%→0
−
∫
B(x ,%)
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Some elliptic background

Part 2: Oscillation bounds
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The general continuity criterion

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves
−div (|Du|p−2Du) = µ

and
lim
R→0

Iµ1 (x ,R) = 0 uniformly w.r.t. x

then
Du is continuous
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv ∈ L(n, 1) =⇒ v is continuous

We recall that

g ∈ L(n, 1)⇐⇒
∫ ∞
0
|{x : |g(x)| > λ}|1/n dλ <∞

It follows that

4u = µ ∈ L(n, 1) =⇒ Du is continuous
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv ∈ L(n, 1) =⇒ v is continuous

We recall that

g ∈ L(n, 1)⇐⇒
∫ ∞
0
|{x : |g(x)| > λ}|1/n dλ <∞

An example of L(n, 1) function is given by

1

|x | logβ(1/|x |)
β > 1

in the ball B1/2
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A nonlinear Stein theorem

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013)

If u solves the p-Laplacean equation

−div (|Du|p−2Du) = µ ∈ L(n, 1)

then
Du is continuous
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A vectorial nonlinear Stein theorem

Theorem (Kuusi & Min., Calc. Var.)

If u : Ω→ Rm solves the p-Laplacean system

−div (|Du|p−2Du) = F

and
F : Ω→ Rm with F ∈ L(n, 1)

then
Du is continuous
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The special role of L(n, 1) - local and global results

Duzaar & Min. (Ann. IHP 2010) prove ‖Du‖L∞loc <∞ when
F ∈ L(n, 1)loc for general equations −div a(Du) = F and
Uhlenbeck systems, for n ≥ 3; interior regularity is obtained

Cianchi & Maz’ya (Comm. PDE 2011) prove ‖Du‖L∞ <∞
when F ∈ L(n, 1) for −4pu = F with zero boundary values,
and up to the boundary, still in the case n ≥ 3

Kuusi & Min. (ARMA 2013) prove Du ∈ C 0 for n ≥ 2 for
general equations with coefficients −div a(x ,Du) = F

Cianchi & Maz’ya (ARMA 2014) ‖Du‖L∞ <∞ when
F ∈ L(n, 1), for the system −4pu = F with zero boundary
values, and up to the boundary, for Uhlenbeck systems, for
n ≥ 3

Kuusi & Min. (to appear in Calc. Var. & Math. Ann.) prove
Du ∈ C 0 for Uhlenbeck systems with coefficients, for n ≥ 2
and also in the parabolic case
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Fully nonlinear

Part 3: Interlude on fully nonlinear
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A fully nonlinear Stein theorem

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F (D2u) = f ∈ L(n, 1)

then
Du is continuous

Previous results of Caffarelli (Ann. Math. 1989) assert that

f ∈ Ln+ε =⇒ Du ∈ C 0,α

Notice that
Ln+ε ⊂ L(n, 1) ε > 0
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Modified potentials

Key to the proof, a new potential estimate

If1(x , r) :=

∫ r

0
−
∫
B%(x)

|f (y)| dy d%
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The relevant role of L(n, 1)

Key to the proof, a new potential estimate

If1(x , r) :=

∫ r

0

1

%n−1

∫
B%(x)

|f (y)| dy d%

%

=

∫ r

0
−
∫
B%(x)

|f (y)| dy d%

≤
∫ r

0

(
−
∫
B%(x)

|f (y)|p dy

)1/p

d% =: IIf1(x , r) .
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Modified potentials

Theorem (Daskalopoulos & Kuusi & Min., Comm. PDE 2014)

If u solves the uniformly elliptic fully nonlinear equation

F (D2u) = f ∈ L(n, 1)

then

|Du(x)| ≤ c IIf1(x , r) + c

(
−
∫
Br (x)

|Du|q dy

)1/q

for p ≥ n − ε and q > n
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Consequences

It holds, with n − ε < p that

sup
Br (x)

rp−n
∫
Br (x0)

|f |p dy <∞ =⇒ Du ∈ BMO

In particular

f ∈Mn ≡ L(n,∞) =⇒ Du ∈ BMO

Moreover

lim
r→0

rp−n
∫
Br (x0)

|f |p dy = 0 =⇒ Du ∈ VMO
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Comparisons

Borderline case of a theorem of Caffarelli, who proved

sup
Br (x)

rn(1−α)−n
∫
Br (x)

|f |n dy <∞ =⇒ Du ∈ C 0,α

Corollary (Teixeira, ARMA 2014)

If u solves the uniformly elliptic fully nonlinear equation

F (D2u) = f ∈ Mn ≡ L(n,∞)

then u is Log-Lipschitz, that is

|u(x)− u(y)| ≤ −|x − y | log

(
1

|x − y |

)
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The parabolic case

Part 4: Evolution
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Parabolics

The model case is here given by

ut − div (|Du|p−2Du) = µ , in Ω× (−T , 0) ⊂ Rn+1

more in general we consider

ut − div a(Du) = µ .

The basic reference for existence and a priori estimates in the
setting of SOLA is the work of Boccado, Dall’Aglio, Galloüet
and Orsina, JFA, 1997
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Degenerate equations - basic results

Theorem (Boccardo, Dall’Aglio, Gallouët & Orsina, JFA, 1997)

|Du| ∈ Lq(Ω× (−T , 0)), 1 ≤ q < p − 1 +
1

N − 1

N = n + 2 is the parabolic dimension
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The heat equation

Consider the caloric Riesz potential

Iµ1 (x , t; r) :=

∫ r

0

|µ|(Q%(x , t))

%N−1
d%

%
, N := n + 2 ,

then for solutions to
ut −4u = µ

we have

|Du(x , t)| ≤ cIµ1 (x , t; r) + c −
∫
Qr (x ,t)

|Du| dz

we recall that

Qr (x , t) := B(x , r)× (t − r2, t)
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Inhomogeneous a priori estimates

Theorem (DiBenedetto & Friedman, Crelle J. 85)

sup
Qr/2(x0,t0)

|Du| ≤ c(n, p)−
∫
Qr (x0,t0)

(|Du|+ 1)p−1 dz
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The intrinsic geometry of DiBenedetto

The basic analysis is the following: consider intrinsic
cylinders

Qλ
% (x , t) = B(x , %)× (t − λ2−p%2, t)

where it happens that

|Du| ≈ λ in Qλ
% (x , t)

then the equation behaves as

ut − λp−24u = 0

that is, scaling back in the same cylinder, as the heat equation

On intrinsic cylinders estimates “ellipticize”; in
particular, they become homogeneous
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DiBenedetto’s intrinsic estimate

The homogenizing effect of intrinsic geometry

Theorem (DiBenedetto & Friedman, Crelle J. 85)

There exists a universal constant c ≥ 1 such that

c

(
−
∫
Qλr (x ,t)

|Du|p−1 dz

)1/(p−1)

≤ λ

then
|Du(x , t)| ≤ λ
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Intrinsic Riesz potentials

Define the intrinsic Riesz potential such that

Iµ1,λ(x , t; r) :=

∫ r

0

|µ|(Qλ
% (x , t))

%N−1
d%

%

with
Qλ
% (x , t) = B(x , %)× (t − λ2−p%2, t)

Note that

Iµ1,λ(x , t; r) = Iµ1 (x , t; r) when p = 2 or when λ = 1
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The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant c ≥ 1 such that

cIµ1,λ(x , t; r) + c

(
−
∫
Qλr (x ,t)

|Du|p−1 dz

)1/p−1

≤ λ

then
|Du(x , t)| ≤ λ

When µ ≡ 0 this reduces to the sup estimate of
DiBenedetto & Friedman (Crelles J. 84)

Giuseppe Mingione Update on nonlinear potential theory



The parabolic Riesz gradient bound

Theorem (Kuusi & Min., JEMS, ARMA 2014)

There exists a universal constant c ≥ 1 such that

cIµ1,λ(x , t; r) + c

(
−
∫
Qλr (x ,t)

|Du|p−1 dz

)1/p−1

≤ λ

then
|Du(x , t)| ≤ λ

When µ ≡ 0 this reduces to the sup estimate of
DiBenedetto & Friedman (Crelles J. 84)
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Sharpness

Consider the equation

ut − div (|Du|p−2Du) = δ,

where δ denotes the Dircac unit mass charging the origin

The so called Barenblatt (fundamental solution) is

Bp(x , t) =

t−
n
θ

(
cb − θ

1
1−p

(
p − 2

p

) (
|x |
t1/θ

) p
p−1

) p−1
p−2

+

t > 0

0 t ≤ 0 .

for θ = n(p − 2) + p and a suitable constant cb such that∫
Rn

Bp(x , t) dx = 1 ∀ t > 0
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Sharpness

A direct computation shows the following upper optimal
upper bound

|DBp(x , t)| ≤ ct−(n+1)/θ

The intrinsic estimate above exactly reproduces this upper
bound

This decay estimate is indeed reproduced for all those
solutions that are initially compactly supported
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Intrinsic bounds imply explicit bounds

The previous bound always implies a priori estimates on
standard parabolic cylinders

Theorem (Kuusi & Min., JEMS, ARMA 2014)

|Du(x , t)| . Iµ1 (x , t; r) +−
∫
Qr (x ,t)

(|Du|+ 1)p−1 dz

holds for every standard parabolic cylinder Qr
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Bact to classical potentials

Corollary (Kuusi & Min., JEMS, ARMA 2014)

Assume that u solves

ut − div (|Du|p−2Du) = µ in Rn+1 .

Then

|Du(x0, t0)| .
∫
{t<t0}

d |µ|(x , t)

dpar((x , t), (x0, t0))N−1

recall that

dpar((x , t), (x0, t0)) := max
{
|x − x0|,

√
|t − t0|

}
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Gradient continuity via potentials

Theorem (Kuusi & Min., ARMA 2014)

Assume that

lim
r→0

Iµ1 (x , t; r) = 0 uniformly w.r.t. (x , t)

then
Du is continuous in QT

Theorem (Kuusi & Min., ARMA 2014)

Assume that
|µ|(Q%) . %N−1+δ

holds, then thtere exists α, depending on δ, such that

Du ∈ C 0,α locally in QT
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A nonlinear parabolic Stein theorem

Theorem (Kuusi & Min., ARMA 2014)

Assume that

ut − div (|Du|p−2Du) = µ ∈ L(N, 1)

that is ∫ ∞
0
|{|µ| > λ}|1/N dλ <∞

then Du is continuous in QT

DiBenedetto proved that Du is continuous when µ ∈ LN+ε
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A nonlinear, vectorial parabolic Stein theorem

Theorem (Kuusi & Min., Math. Ann., to appear)

Assume that u is a vector valued solutions to the parabolic
p-system

ut − div (|Du|p−2Du) = µ ∈ L(N, 1)

that is ∫ ∞
0
|{|µ| > λ}|1/N dλ <∞

then

Du is continuous in QT

The condition relaxes in µ ∈ L(n, 1) = L(N − 2, 1) in the case
µ is time independent
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Thanks for the attention, with a work of Serena Nono
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