On Hölder continuity of solutions to elliptic systems & variational integrals

Mark Steinhauer

Math. Institute of the University Koblenz-Landau Universitätsstr. 1, 56070 Koblenz, Germany

M. Bulíček & J. Frehse

Regularity theory for elliptic and parabolic systems and problems in continuum mechanics

May 03, 2014, Telč

Variational problem - Hilbert's 19th problem

DATA:

- ullet $\Omega\subset\mathbb{R}^d$ a given open bounded smooth domain
- $f:\Omega o \mathbb{R}^N$ a given smooth vector-valued function $(N\in\mathbb{N})$
- $F: \mathbb{R}^N \times \mathbb{R}^{N \times d} \to \mathbb{R}$ being a smooth function fulfilling assumptions of uniform convexity, coercivity and growth condition, i.e., for some $p \in (1, \infty)$ and all $(u, \eta) \in \mathbb{R}^N \times \mathbb{R}^{N \times d}$ and all $\kappa \in \mathbb{R}^{N \times d}$

$$-C_2 + C_1 |\eta|^p \le F(u,\eta) \le C_2(1+|\eta|^p)$$

Variational problem - Hilbert's 19th problem

DATA:

- ullet $\Omega\subset\mathbb{R}^d$ a given open bounded smooth domain
- $f:\Omega \to \mathbb{R}^N$ a given smooth vector-valued function $(N\in\mathbb{N})$
- $F: \mathbb{R}^N \times \mathbb{R}^{N \times d} \to \mathbb{R}$ being a smooth function fulfilling assumptions of uniform convexity, coercivity and growth condition, i.e., for some $p \in (1, \infty)$ and all $(u, \eta) \in \mathbb{R}^N \times \mathbb{R}^{N \times d}$ and all $\kappa \in \mathbb{R}^{N \times d}$

$$-C_2 + C_1 |\eta|^p \le F(u,\eta) \le C_2(1+|\eta|^p)$$

$$\left|C_1(1+|\eta|)^{p-2}|\kappa|^2 \leq \frac{\partial^2 F(u,\eta)}{\partial \eta_i^\nu \partial \eta_j^\mu} \kappa_i^\mu \kappa_j^\mu \leq C_1(1+|\eta|)^{p-2}|\kappa|^2$$

Variational problem - Hilbert's 19th problem

DATA:

- ullet $\Omega\subset\mathbb{R}^d$ a given open bounded smooth domain
- ullet $f:\Omega o\mathbb{R}^N$ a given smooth vector-valued function $(N\in\mathbb{N})$
- $F: \mathbb{R}^N \times \mathbb{R}^{N \times d} \to \mathbb{R}$ being a smooth function fulfilling assumptions of uniform convexity, coercivity and growth condition, i.e., for some $p \in (1, \infty)$ and all $(u, \eta) \in \mathbb{R}^N \times \mathbb{R}^{N \times d}$ and all $\kappa \in \mathbb{R}^{N \times d}$

$$-C_2+C_1|\eta|^p\leq F(u,\eta)\leq C_2(1+|\eta|^p)$$

$$|C_1(1+|\eta|)^{p-2}|\kappa|^2 \leq \frac{\partial^2 F(u,\eta)}{\partial \eta_i^{\nu} \partial \eta_j^{\mu}} \kappa_i^{\mu} \kappa_j^{\mu} \leq C_1(1+|\eta|)^{p-2}|\kappa|^2$$

GOAL: Minimize the functional

$$J(u) := \int_{\Omega} F(u(x), \nabla u(x)) - f(x) \cdot u(x) \ dx$$

over the space $W_0^{1,p}(\Omega;\mathbb{R}^N)$.

Variational problem - Hilbert's 19th problem II

Theorem

There exists a minimizer u to J. Moreover, if F does not depend on u then the minimizer is unique and it fulfills

$$(1+|\nabla u|)^{\frac{p}{2}}\in W^{1,2}_{loc}(\Omega)$$

Variational problem - Hilbert's 19th problem II

Theorem

There exists a minimizer u to J. Moreover, if F does not depend on u then the minimizer is unique and it fulfills

$$(1+|\nabla u|)^{\frac{p}{2}}\in W^{1,2}_{loc}(\Omega)$$

QUESTION: How smooth is the minimizer?

Variational problem - Hilbert's 19th problem II

Theorem

There exists a minimizer u to J. Moreover, if F does not depend on u then the minimizer is unique and it fulfills

$$(1+|
abla u|)^{rac{
ho}{2}}\in W^{1,2}_{loc}(\Omega)$$

QUESTION: How smooth is the minimizer?

Hilbert: Set p = 2 and let F be independent of u. Is the minimizer analytic?

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)
- Morrey (1938): "YES, if d = 2 and N arbitrary"

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)
- Morrey (1938): "YES, if d = 2 and N arbitrary"
- De Giorgi (1957) Nash (1958): "YES if N = 1 and d arbitrary"

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)
- Morrey (1938): "YES, if d = 2 and N arbitrary"
- De Giorgi (1957) Nash (1958): "YES if N = 1 and d arbitrary"
- Nečas (1975): "NO, they are not necessarily C^1 if N > 1"

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)
- Morrey (1938): "YES, if d = 2 and N arbitrary"
- **De Giorgi (1957)& Nash (1958)**: "YES if N = 1 and d arbitrary"
- Nečas (1975): "NO, they are not necessarily C^1 if N > 1"
- Uhlenbeck (1977): "YES, if F is of the form"

$$F(\nabla u) = \tilde{F}(|\nabla u|)$$

- **Linear theory**: "YES, if the solution is $\mathcal{C}^{1,\alpha}$ " (E. Hopf et alii)
- Partial regularity: "YES, except zero measure set (Hausdorf dimension is less than d-2)" (Morrey, Giusti & Miranda)
- Morrey (1938): "YES, if d = 2 and N arbitrary"
- **De Giorgi (1957)& Nash (1958)**: "YES if N = 1 and d arbitrary"
- Nečas (1975): "NO, they are not necessarily C^1 if N > 1"
- **Uhlenbeck (1977)**: "YES, if F is of the form"

$$F(\nabla u) = \tilde{F}(|\nabla u|)$$

• Šverák & Yan (2002): "NO, they can be even unbounded"

Some answers for F depending on u

Consider the simplest case:

$$F(u,\eta) := A^{\alpha,\beta}(u)\eta_i^{\alpha}\eta_i^{\beta} \qquad |\partial_u A||u| \leq C$$

• Frehse (1973): Construction of a discontinuous solution to the Euler-Lagrange equation even in d = 2 (but not minimizer!)

Some answers for F depending on u

Consider the simplest case:

$$F(u,\eta) := A^{\alpha,\beta}(u)\eta_i^{\alpha}\eta_i^{\beta} \qquad |\partial_u A||u| \leq C$$

- Frehse (1973): Construction of a discontinuous solution to the Euler-Lagrange equation even in d=2 (but not minimizer!)
- Giaquinta, Modica, Giusti, Hildebrandt, Meier, Struwe: A lot of (variations of) counterexamples to regularity

Some answers for F depending on u

Consider the simplest case:

$$F(u,\eta) := A^{\alpha,\beta}(u)\eta_i^{\alpha}\eta_i^{\beta} \qquad |\partial_u A||u| \leq C$$

- Frehse (1973): Construction of a discontinuous solution to the Euler-Lagrange equation even in d=2 (but not minimizer!)
- Giaquinta, Modica, Giusti, Hildebrandt, Meier, Struwe: A lot of (variations of) counterexamples to regularity
- Giaquinta & Giusti (1982): For $A^{\alpha\beta}(u)=a(u)\delta^{\alpha\beta}$ such that

$$2a(u) + a_u \cdot u \ge \alpha_0 > 0$$
 (one-sided condition)

the minimizer is **Hölder continuous** and consequently smooth. Moreover, if (one-sided condition) does not hold then the minimizer may not be continuous.

ullet Giaquinta & Giusti (1982):For general A the theory is valid if $|A_u|\ll 1$

Questions and Statement of the problem

Under which assumptions on F is the minimizer Hölder continuous?

Questions and Statement of the problem

Under which assumptions on F is the minimizer Hölder continuous?

Under which assumptions on *F* is a bounded minimizer Hölder continuous?

• the case p > d;

• the case p > d; $W^{1,p} \hookrightarrow \mathcal{C}^{0,\alpha}$ for some α

- the case p > d; $W^{1,p} \hookrightarrow \mathcal{C}^{0,\alpha}$ for some α
- in case F is independent of u and uniformly p-convex;

- the case p > d; $W^{1,p} \hookrightarrow \mathcal{C}^{0,\alpha}$ for some α
- in case F is independent of u and uniformly p-convex;

$$(1+|\nabla u|)^{\frac{p}{2}}\in W^{1,2}$$

- the case p > d; $W^{1,p} \hookrightarrow \mathcal{C}^{0,\alpha}$ for some α
- in case F is independent of u and uniformly p-convex;

$$(1+|\nabla u|)^{\frac{p}{2}}\in W^{1,2}\implies \nabla u\in L^{\frac{dp}{d-2}}$$

- the case p > d; $W^{1,p} \hookrightarrow \mathcal{C}^{0,\alpha}$ for some α
- in case F is independent of u and uniformly p-convex;

$$(1+|\nabla u|)^{\frac{p}{2}}\in W^{1,2} \implies \nabla u\in L^{\frac{dp}{d-2}} \implies u\in \mathcal{C}^{0,\alpha}$$

provided that p > d - 2.

Notation

- Einstein summation convention is used
- $D_j := \frac{\partial}{\partial x_j}$
- ullet $F_{\eta_j^{
 u}}(u,\eta):=rac{\partial F(u,\eta)}{\partial \eta_j^{
 u}}$
- $F_{u^{\nu}}(u,\eta) := \frac{\partial F(u,\eta)}{\partial u^{\eta}}$

 usually one derives the Euler-Lagrange equation and studies a solution of them

- usually one derives the Euler-Lagrange equation and studies a solution of them
- usually one does not take care so much of the origin of the problem

- usually one derives the Euler-Lagrange equation and studies a solution of them
- usually one does not take care so much of the origin of the problem
- BUT not all solutions must be minimizers (F depending on u or F being non-convex)

- usually one derives the Euler-Lagrange equation and studies a solution of them
- usually one does not take care so much of the origin of the problem
- BUT not all solutions must be minimizers (F depending on u or F being non-convex)
- EVEN in case that the solution is a minimizer, we may hope that much better understanding of what is going on will come from the minimization property

Consider u being the minimizer of J(u), i.e., $J(u) \leq J(v)$ for all $v \in W_0^{1,p}(\Omega; \mathbb{R}^N)$. The goal is to find a proper comparison function v giving optimal information

Consider u being the minimizer of J(u), i.e., $J(u) \leq J(v)$ for all $v \in W_0^{1,p}(\Omega; \mathbb{R}^N)$. The goal is to find a proper comparison function v giving optimal information

• Euler-Lagrange equation: set $v(x) := u(x) + t\varphi(x)$ and let $t \to 0$

$$-D_j(F_{\eta_j^{
u}}(u,
abla u))+F_{u^{
u}}(u,
abla u)=f^{
u}\qquad
u=1,\ldots,N$$
 (E-L)

Consider u being the minimizer of J(u), i.e., $J(u) \leq J(v)$ for all $v \in W_0^{1,p}(\Omega; \mathbb{R}^N)$. The goal is to find a proper comparison function v giving optimal information

• Euler-Lagrange equation: set $v(x) := u(x) + t\varphi(x)$ and let $t \to 0$

$$\left| -D_j(F_{\eta_j^{\nu}}(u, \nabla u)) + F_{u^{\nu}}(u, \nabla u) = f^{\nu} \qquad \nu = 1, \dots, N \right| \tag{E-L}$$

• Reverse Hölder inequality, Gehring lemma, Giaquinta & Giusti: set $v(x) := \theta(x)u(x) + (1 - \theta(x))\bar{u}_R$

$$\left| \int_{B_R} \frac{|\nabla u|^{p+\varepsilon}}{R^d} \le C \left(1 + \int_{B_{2R}} \frac{|\nabla u|^p}{R^d} \right)^{\frac{p+\varepsilon}{p}} \right| \implies u \in W_0^{1,p+\varepsilon}(\Omega;\mathbb{R}^N)$$

Consider u being the minimizer of J(u), i.e., $J(u) \leq J(v)$ for all $v \in W_0^{1,p}(\Omega; \mathbb{R}^N)$. The goal is to find a proper comparison function v giving optimal information

• Euler-Lagrange equation: set $v(x) := u(x) + t\varphi(x)$ and let $t \to 0$

$$\boxed{-D_j(F_{\eta^\nu_j}(u,\nabla u))+F_{u^\nu}(u,\nabla u)=f^\nu\qquad \nu=1,\ldots,N} \tag{E-L}$$

• Reverse Hölder inequality, Gehring lemma, Giaquinta & Giusti: set $v(x) := \theta(x)u(x) + (1 - \theta(x))\bar{u}_R$

$$\left| \int_{B_R} \frac{|\nabla u|^{p+\varepsilon}}{R^d} \le C \left(1 + \int_{B_{2R}} \frac{|\nabla u|^p}{R^d} \right)^{\frac{p+\varepsilon}{p}} \right| \implies u \in W_0^{1,p+\varepsilon}(\Omega;\mathbb{R}^N)$$

• Noether's (1918) equation: set $v(x) := u(x + t\psi(x))$ and let $t \to 0$

$$\boxed{-D_i\left(F_{\eta_i^{\nu}}(u,\nabla u)D_ku^{\nu}\right)+D_kF(u,\nabla u)=f^{\nu}D_ku^{\nu}\qquad k=1,\ldots,d} \tag{N-E}$$

Use of Noether's equation - testing by ∇u - Pohozaev like problem

Assume that $u \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ is a bounded solution to

$$-\triangle u^{\nu} = |u|^{p-2}u^{\nu} \qquad \nu = 1, \dots, N. \tag{P}$$

Use of Noether's equation - testing by ∇u - Pohozaev like problem

Assume that $u \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ is a bounded solution to

$$-\triangle u^{\nu} = |u|^{p-2}u^{\nu} \qquad \nu = 1, \dots, N. \tag{P}$$

Q: Is it possible that (P) admits a nontrivial solution?

Use of Noether's equation - testing by ∇u - Pohozaev like problem

Assume that $u \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ is a bounded solution to

$$-\triangle u^{\nu} = |u|^{p-2}u^{\nu} \qquad \nu = 1, \dots, N.$$
 (P)

Q: Is it possible that (P) admits a nontrivial solution?

A: If Ω is a star-shaped, regular domain and $p > \frac{2d}{d-2}$, then $u \equiv 0$.

Proof.

Multiply (P) by u^{ν} and integrate

$$\|\nabla u\|_2^2 = \|u\|_p^p \tag{1}$$

Proof.

Multiply (P) by u^{ν} and integrate

$$\|\nabla u\|_2^2 = \|u\|_p^p \tag{1}$$

Multiply by $-D_k u^{\nu}$ to get $D_j(D_j u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = -\frac{1}{p} D_k |u|^p$, then multiply by x_k and integrate, use integration by parts

$$\int_{\partial\Omega}D_ju^\nu D_ku^\nu x_kn_j-\frac{1}{2}|\nabla u|^2x_kn_k+\int_{\Omega}\frac{1}{2}|\nabla u|^2D_kx_k-D_ju^\nu D_ku^\nu D_jx_k=\frac{1}{p}\int_{\Omega}|u|^pD_kx_k$$

Proof.

Multiply (P) by u^{ν} and integrate

$$\|\nabla u\|_2^2 = \|u\|_p^p \tag{1}$$

Multiply by $-D_k u^{\nu}$ to get $D_j(D_j u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = -\frac{1}{p} D_k |u|^p$, then multiply by x_k and integrate, use integration by parts

$$\int_{\partial\Omega} D_{j} u^{\nu} D_{k} u^{\nu} x_{k} n_{j} - \frac{1}{2} |\nabla u|^{2} x_{k} n_{k} + \int_{\Omega} \frac{1}{2} |\nabla u|^{2} D_{k} x_{k} - D_{j} u^{\nu} D_{k} u^{\nu} D_{j} x_{k} = \frac{1}{p} \int_{\Omega} |u|^{p} D_{k} x_{k}$$

$$\frac{1}{2} \int_{\partial \Omega} |\nabla u|^2 x \cdot n + \frac{d-2}{2} \|\nabla u\|_2^2 = \frac{d}{p} \|u\|_p^p \stackrel{\text{(1)}}{=} \frac{d}{p} \|\nabla u\|_2^2$$

Proof.

Multiply (P) by u^{ν} and integrate

$$\|\nabla u\|_2^2 = \|u\|_p^p \tag{1}$$

Multiply by $-D_k u^{\nu}$ to get $D_j(D_j u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = -\frac{1}{p} D_k |u|^p$, then multiply by x_k and integrate, use integration by parts

$$\int_{\partial\Omega}D_ju^\nu D_ku^\nu x_kn_j-\frac{1}{2}|\nabla u|^2x_kn_k+\int_{\Omega}\frac{1}{2}|\nabla u|^2D_kx_k-D_ju^\nu D_ku^\nu D_jx_k=\frac{1}{\rho}\int_{\Omega}|u|^\rho D_kx_k$$

$$\frac{1}{2} \int_{\partial \Omega} |\nabla u|^2 x \cdot n + \frac{d-2}{2} \|\nabla u\|_2^2 = \frac{d}{p} \|u\|_p^p \stackrel{\text{(1)}}{=} \frac{d}{p} \|\nabla u\|_2^2$$

Thus if

$$\frac{d-2}{2} > \frac{d}{p} \Leftrightarrow p > \frac{2d}{d-2}$$

and the boundary integral is nonnegative then $u \equiv 0$.

Assume the simplest case, i.e., $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and |u(x)| = 1 for almost all $x \in \Omega$ fulfils

$$-\triangle u^{\nu} = u^{\nu} |\nabla u|^2 \qquad \nu = 1, \dots, N.$$

Assume the simplest case, i.e., $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and |u(x)| = 1 for almost all $x \in \Omega$ fulfils

$$-\triangle u^{\nu} = u^{\nu} |\nabla u|^2 \qquad \nu = 1, \dots, N.$$

Q:How smooth is a solution?

Assume the simplest case, i.e., $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and |u(x)| = 1 for almost all $x \in \Omega$ fulfils

$$-\triangle u^{\nu} = u^{\nu} |\nabla u|^2 \qquad \nu = 1, \dots, N.$$

Q:How smooth is a solution?

A:It is smooth up to a set of zero (d-3)-Hausdorf measure, ... $\frac{x}{|x|}$ is always counterexample to everywhere regularity.

Assume the simplest case, i.e., $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and |u(x)| = 1 for almost all $x \in \Omega$ fulfils

$$-\triangle u^{\nu} = u^{\nu} |\nabla u|^2 \qquad \nu = 1, \dots, N.$$

Q:How smooth is a solution?

A:It is smooth up to a set of zero (d-3)-Hausdorf measure, $\dots \frac{x}{|x|}$ is always counterexample to everywhere regularity.

Monotonicity formula: Noether appears (fully stationary point).

Assume the simplest case, i.e., $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and |u(x)| = 1 for almost all $x \in \Omega$ fulfils

$$-\triangle u^{\nu} = u^{\nu} |\nabla u|^2 \qquad \nu = 1, \dots, N.$$

Q:How smooth is a solution?

A:It is smooth up to a set of zero (d-3)-Hausdorf measure, $\dots \frac{x}{|x|}$ is always counterexample to everywhere regularity.

Monotonicity formula: Noether appears (fully stationary point). Multiply by $-D_k u^{\nu}$ to get

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = -D_k u^{\nu} u^{\nu} |\nabla u|^2 = -\frac{1}{2} D_k |u|^2 |\nabla u|^2 = 0.$$

Starting Noether identity:

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = 0.$$

Starting Noether identity:

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = 0.$$

Multiply by x_k and integrate over $B_R := \{x; |x| \le R\}$.

Starting Noether identity:

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = 0.$$

Multiply by x_k and integrate over $B_R := \{x; |x| \le R\}$.

$$\int_{\partial B_R} D_i u^\nu D_k u^\nu x_k n_i - \int_{B_R} \left| \nabla u \right|^2 - \frac{1}{2} \int_{\partial B_R} \left| \nabla u \right|^2 x_k n_k + \frac{d}{2} \int_{B_R} \left| \nabla u \right|^2 = 0.$$

Starting Noether identity:

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = 0.$$

Multiply by x_k and integrate over $B_R := \{x; |x| \le R\}$.

$$\int_{\partial B_R} D_i u^\nu D_k u^\nu x_k n_i - \int_{B_R} \left| \nabla u \right|^2 - \frac{1}{2} \int_{\partial B_R} \left| \nabla u \right|^2 x_k n_k + \frac{d}{2} \int_{B_R} \left| \nabla u \right|^2 = 0.$$

$$\boxed{2\int_{\partial B_R}\frac{|\nabla u\cdot x|^2}{|x|}-R\int_{\partial B_R}|\nabla u|^2+(d-2)\int_{B_R}|\nabla u|^2=0}.$$

Starting Noether identity:

$$D_i(D_i u^{\nu} D_k u^{\nu}) - \frac{1}{2} D_k |\nabla u|^2 = 0.$$

Multiply by x_k and integrate over $B_R := \{x; |x| \le R\}$.

$$\int_{\partial B_R} D_i u^\nu D_k u^\nu x_k n_i - \int_{B_R} \left| \nabla u \right|^2 - \frac{1}{2} \int_{\partial B_R} \left| \nabla u \right|^2 x_k n_k + \frac{d}{2} \int_{B_R} \left| \nabla u \right|^2 = 0.$$

$$2\int_{\partial B_R} \frac{|\nabla u \cdot x|^2}{|x|} - R \int_{\partial B_R} |\nabla u|^2 + (d-2) \int_{B_R} |\nabla u|^2 = 0.$$

The final (in)equality - monotonicity formula

$$\boxed{0 \leq 2 \int_{\partial B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} = \frac{d}{dR} \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}}.$$

Use of monotonicity formula

The formula

$$\boxed{0 \leq 2 \int_{\partial B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} = \frac{d}{dR} \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}}.$$

ullet neglect the positive term and integrate over $R \in (R_1.R_2)$

$$\int_{B_{R_1}} \frac{\left|\nabla u\right|^2}{R_1^{d-2}} \le \int_{B_{R_2}} \frac{\left|\nabla u\right|^2}{R_2^{d-2}} \implies u \in BMO$$

Use of monotonicity formula

The formula

$$0 \le 2 \int_{\partial B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} = \frac{d}{dR} \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \, .$$

• neglect the positive term and integrate over $R \in (R_1.R_2)$

$$\int_{B_{R_1}} \frac{\left|\nabla u\right|^2}{R_1^{d-2}} \le \int_{B_{R_2}} \frac{\left|\nabla u\right|^2}{R_2^{d-2}} \implies u \in BMO$$

the same procedure should give BMO for general minimizers provided that the term $F_{\eta_i^{\nu}}D_ku^{\eta}x_ix_k$ has a sign \implies minimizers are always in BMO provided that F satisfies "splitting condition"

Use of monotonicity formula

The formula

$$\boxed{0 \leq 2 \int_{\partial B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} = \frac{d}{dR} \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}}.$$

• neglect the positive term and integrate over $R \in (R_1.R_2)$

$$\int_{B_{R_1}} \frac{\left|\nabla u\right|^2}{R_1^{d-2}} \le \int_{B_{R_2}} \frac{\left|\nabla u\right|^2}{R_2^{d-2}} \implies u \in BMO$$

the same procedure should give BMO for general minimizers provided that the term $F_{\eta_i^{\nu}} D_k u^{\eta} x_i x_k$ has a sign \implies minimizers are always in BMO provided that Fsatisfies "splitting condition"

DO NOT neglect the positive term and integrate over $R \in (0, r)$

$$2\int_{\mathcal{B}_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{\mathcal{B}_r} \frac{|\nabla u|^2}{r^{d-2}}$$

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

• Start to cheat: "assume" that

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

• Start to cheat: "assume" that $2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \ge \varepsilon \int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

- Start to cheat: "assume" that $2\int_{B_r} \frac{|\nabla u \cdot \mathbf{x}|^2}{|\mathbf{x}|^d} \geq \varepsilon \int_{B_r} \frac{|\nabla u|^2}{|\mathbf{x}|^{d-2}}$
- Think that $\varepsilon = \frac{1}{2}$, then

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

- Start to cheat: "assume" that $2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \ge \varepsilon \int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$
- Think that $\varepsilon = \frac{1}{2}$, then

$$\int_{B_{2r}} \frac{|\nabla u|^2}{|x|^{d-2}} \le 2 \int_{B_{2r}} \frac{|\nabla u|^2}{(2r)^{d-2}} = 2^{3-d} \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}} + 2 \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{(2r)^{d-2}}$$

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

- Start to cheat: "assume" that $2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \ge \varepsilon \int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$
- Think that $\varepsilon = \frac{1}{2}$, then

$$\int_{B_{2r}} \frac{|\nabla u|^2}{|x|^{d-2}} \le 2 \int_{B_{2r}} \frac{|\nabla u|^2}{(2r)^{d-2}} = 2^{3-d} \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}} + 2 \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{(2r)^{d-2}}$$

• $d \ge 4$ gives

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

- Start to cheat: "assume" that $2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \ge \varepsilon \int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$
- Think that $\varepsilon = \frac{1}{2}$, then

$$\int_{B_{2r}} \frac{|\nabla u|^2}{|x|^{d-2}} \le 2 \int_{B_{2r}} \frac{|\nabla u|^2}{(2r)^{d-2}} = 2^{3-d} \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}} + 2 \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{(2r)^{d-2}}$$

• $d \ge 4$ gives

$$\int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}} \le C \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$$

The inequality:

$$2\int_{B_r} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}}$$

- Start to cheat: "assume" that $2\int_{B_{-}} \frac{|\nabla u \cdot x|^2}{|v|d^2} \ge \varepsilon \int_{R_{-}} \frac{|\nabla u|^2}{|v|d-2}$
- Think that $\varepsilon = \frac{1}{2}$, then

$$\int_{B_{2r}} \frac{|\nabla u|^2}{|x|^{d-2}} \le 2 \int_{B_{2r}} \frac{|\nabla u|^2}{(2r)^{d-2}} = 2^{3-d} \int_{B_r} \frac{|\nabla u|^2}{r^{d-2}} + 2 \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{(2r)^{d-2}}$$

• $d \ge 4$ gives

$$\int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}} \le C \int_{B_{2r} \setminus B_r} \frac{|\nabla u|^2}{|x|^{d-2}}$$

• Fill the hole, i.e., add $C \int_{B_-} \frac{|\nabla u|^2}{|\nabla u|d-2}$

$$\boxed{\int_{B_r} \frac{|\nabla u|^2}{|x|^{d-2}} \le \frac{C}{C+1} \int_{B_{2r}} \frac{|\nabla u|^2}{|x|^{d-2}}} \Longrightarrow \boxed{\int_{B_r} \frac{|\nabla u|^2}{r^{d-2+2\alpha}} \le C}$$

We do not want to cheat - Caccioppoli inequality - E-L equation again appear

Let us choose the prototype case:

$$-\triangle u^{\nu}=0$$
 $\nu=1,\ldots,N$

We do not want to cheat - Caccioppoli inequality - E-L equation again appear

Let us choose the prototype case:

$$-\triangle u^{\nu}=0$$
 $\nu=1,\ldots,N$

Denote:

$$ar{u}_R := rac{1}{|B_R|} \int_{B_R} u, \qquad au_R(|x|) := au(|x|/R),$$

where τ is smooth non-negative equal to one on (0,1) and equal to zero on $(2,\infty)$.

We do not want to cheat - Caccioppoli inequality - E-L equation again appear

Let us choose the prototype case:

$$-\triangle u^{\nu}=0 \qquad \nu=1,\ldots,N$$

Denote:

$$ar{u}_R := rac{1}{|B_R|} \int_{B_R} u, \qquad au_R(|x|) := au(|x|/R),$$

where τ is smooth non-negative equal to one on (0,1) and equal to zero on $(2,\infty)$. Multiply by $(u - \bar{u}_R)\tau_R$ and integrate by parts

$$\boxed{\int |\nabla u|^2 \tau_R = -\int (u^{\nu} - \bar{u}_R^{\nu}) D_k u^{\nu} D_k \tau_R} \implies \boxed{\int_{B_R} |\nabla u|^2 \leq CR^{-1} \int_{B_{2R} \setminus B_R} |u - \bar{u}_R| |\nabla u|}$$

We do not want to cheat - Caccioppoli inequality - E-L equation again appear

Let us choose the prototype case:

$$-\triangle u^{\nu}=0 \qquad \nu=1,\ldots,N$$

Denote:

$$ar{u}_R := rac{1}{|B_R|} \int_{B_R} u, \qquad au_R(|x|) := au(|x|/R),$$

where τ is smooth non-negative equal to one on (0,1) and equal to zero on $(2,\infty)$. Multiply by $(u-\bar{u}_R)\tau_R$ and integrate by parts

$$\boxed{\int |\nabla u|^2 \tau_R = -\int (u^{\nu} - \bar{u}_R^{\nu}) D_k u^{\nu} D_k \tau_R} \implies \boxed{\int_{B_R} |\nabla u|^2 \leq CR^{-1} \int_{B_{2R} \setminus B_R} |u - \bar{u}_R| |\nabla u|}$$

$$\int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \le \int_{B_{2R} \setminus B_R} \frac{|u - \bar{u}_R| |\nabla u \cdot x|}{R^d}$$

$$\le \varepsilon \int_{B_{2R}} \frac{|\nabla u|^2}{R^{d-2}} + C(\varepsilon) \int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d}$$

•

•

$$\int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \le \varepsilon \int_{B_{2R}} \frac{|\nabla u|^2}{R^{d-2}} + C(\varepsilon) \int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d}$$

$$\left| \int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \right|$$

•

$$\boxed{\int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \le \varepsilon \int_{B_{2R}} \frac{|\nabla u|^2}{R^{d-2}} + C(\varepsilon) \int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d}}$$

•

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}$$

iteration gives

$$\boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{R^{2\alpha}|x|^d} + \frac{|\nabla u|^2}{R^{d-2+2\alpha}} \le C} \implies \boxed{u \in \mathcal{C}^{0,\alpha}}$$

•

$$\boxed{\int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \le \varepsilon \int_{B_{2R}} \frac{|\nabla u|^2}{R^{d-2}} + C(\varepsilon) \int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d}}$$

•

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}$$

iteration gives

$$\boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{R^{2\alpha}|x|^d} + \frac{|\nabla u|^2}{R^{d-2+2\alpha}} \le C} \implies \boxed{u \in \mathcal{C}^{0,\alpha}}$$

What we really needed - F independent of u:

•

$$\boxed{\int_{B_R} \frac{|\nabla u|^2}{R^{d-2}} \leq \varepsilon \int_{B_{2R}} \frac{|\nabla u|^2}{R^{d-2}} + C(\varepsilon) \int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d}}$$

•

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C \int_{B_R} \frac{|\nabla u|^2}{R^{d-2}}$$

iteration gives

$$\left| \int_{B_R} \frac{|\nabla u \cdot x|^2}{R^{2\alpha}|x|^d} + \frac{|\nabla u|^2}{R^{d-2+2\alpha}} \le C \right| \Longrightarrow \left[u \in \mathcal{C}^{0,\alpha} \right]$$

What we really needed - F independent of u:

•

$$\varepsilon (1+|\eta|)^{p-2}|\eta\cdot x|^2 \leq F_{\eta_i^{\nu}}\eta_j^{\nu}x_ix_j$$

•

$$|F_{\eta_i^{\nu}}x_i| \leq C(1+|\eta|)^{p-2}|\eta \cdot x|$$

What to do for F depending on u

What to do for F depending on u

Consider the prototype case:

$$F(u,\eta) = \frac{a(|u|^2)|\eta|^2}{2}$$

Euler-Lagrange equations then takes the form

$$-D_i(a(|u|^2)D_iu^{\nu}) + a'(|u|^2)u^{\nu}|\nabla u|^2 = f^{\nu} \qquad \nu = 1, \dots, N$$

• Testing by $(u - \bar{u}_R)\tau_R$:

Consider the prototype case:

$$F(u,\eta) = \frac{a(|u|^2)|\eta|^2}{2}$$

Euler-Lagrange equations then takes the form

$$-D_i(a(|u|^2)D_iu^{\nu}) + a'(|u|^2)u^{\nu}|\nabla u|^2 = f^{\nu}$$
 $\nu = 1, ..., N$

- Testing by $(u \bar{u}_R)\tau_R$:
 - the first term is ok

Consider the prototype case:

$$F(u,\eta) = \frac{a(|u|^2)|\eta|^2}{2}$$

Euler-Lagrange equations then takes the form

$$-D_i(a(|u|^2)D_iu^{\nu}) + a'(|u|^2)u^{\nu}|\nabla u|^2 = f^{\nu}$$
 $\nu = 1, ..., N$

- Testing by $(u \bar{u}_R)\tau_R$:
 - ▶ the first term is ok
 - ▶ to handle the second term we need to show that for some $\varepsilon \ll 1$ there exists $R \ll 1$ such that

$$\boxed{\int_{B_R} \frac{|u - \bar{u}_R|^p}{R^d} \le \varepsilon} \Leftarrow \boxed{\int_{B_R} \frac{|\nabla u|^p}{R^{d-p}} \le \varepsilon}$$

Consider the prototype case:

$$F(u,\eta) = \frac{a(|u|^2)|\eta|^2}{2}$$

Euler-Lagrange equations then takes the form

$$-D_i(a(|u|^2)D_iu^{\nu}) + a'(|u|^2)u^{\nu}|\nabla u|^2 = f^{\nu}$$
 $\nu = 1, ..., N$

- Testing by $(u \bar{u}_R)\tau_R$:
 - ▶ the first term is ok
 - ▶ to handle the second term we need to show that for some $\varepsilon \ll 1$ there exists $R \ll 1$ such that

$$\boxed{\int_{B_R} \frac{|u - \bar{u}_R|^p}{R^d} \le \varepsilon} \Leftarrow \boxed{\int_{B_R} \frac{|\nabla u|^p}{R^{d-p}} \le \varepsilon}$$

we need apriori something what we want to show :(

Consider the prototype case:

$$F(u,\eta) = \frac{a(|u|^2)|\eta|^2}{2}$$

Euler-Lagrange equations then takes the form

$$-D_i(a(|u|^2)D_iu^{\nu}) + a'(|u|^2)u^{\nu}|\nabla u|^2 = f^{\nu}$$
 $\nu = 1, ..., N$

- Testing by $(u \bar{u}_R)\tau_R$:
 - ▶ the first term is ok
 - ▶ to handle the second term we need to show that for some $\varepsilon \ll 1$ there exists $R \ll 1$ such that

$$\left| \int_{B_R} \frac{|u - \bar{u}_R|^p}{R^d} \le \varepsilon \right| \Leftarrow \left| \int_{B_R} \frac{|\nabla u|^p}{R^{d-p}} \le \varepsilon \right|$$

- we need apriori something what we want to show :(
- One-sided condition appears

• One sided condition reads:

$$\varepsilon \leq a(s) + a'(s)s$$
 for all $s \geq 0$

One sided condition reads:

$$\varepsilon \leq a(s) + a'(s)s$$
 for all $s \geq 0$

• Test by $u\tau_R$ (**not** $(u - \bar{u}_R)$ & neglect not important terms)

$$\int (a(|u|^2) + a'(|u|^2)|u|^2) |\nabla u|^2 \tau_R \le \int |u||D_k u D_k \tau_R|$$

One sided condition reads:

$$\varepsilon \leq a(s) + a'(s)s$$
 for all $s \geq 0$

• Test by $u\tau_R$ (**not** $(u - \bar{u}_R)$ & neglect not important terms)

$$\int (a(|u|^2) + a'(|u|^2)|u|^2) |\nabla u|^2 \tau_R \le \int |u||D_k u D_k \tau_R|$$

 Use one-sided condition for left hand side and use the "good" procedure for the right hand side

$$\int \varepsilon |\nabla u|^2 \tau_R \le C \int |u - \bar{u}_R| |D_k u D_k \tau_R| + |\bar{u}_R| |D_k u D_k \tau_R|$$

• We get (after some simplifications)

$$\left[\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C|\bar{u}_R| \left(\int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \right)^{\frac{1}{2}} + OK \right]$$

• We get (after some simplifications)

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C|\bar{u}_R| \left(\int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \right)^{\frac{1}{2}} + OK$$

• Frehse's inhomogeneous hole-filling

$$\boxed{|\bar{u}_R| \le C} \implies \boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \frac{C}{|\ln R|}}$$

• We get (after some simplifications)

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C|\bar{u}_R| \left(\int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \right)^{\frac{1}{2}} + OK$$

Frehse's inhomogeneous hole-filling

$$\boxed{|\bar{u}_R| \le C} \implies \boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \frac{C}{|\ln R|}}$$

Improved inhomogeneous hole-filling

$$\boxed{|\bar{u}_R| \le C |\ln R|^{\frac{1}{2}}} \implies \boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \frac{C}{|\ln |\ln R||}}$$

• We get (after some simplifications)

$$\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le C|\bar{u}_R| \left(\int_{B_{2R} \setminus B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \right)^{\frac{1}{2}} + OK$$

• Frehse's inhomogeneous hole-filling

$$\boxed{|\bar{u}_R| \le C} \implies \boxed{\int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \frac{C}{|\ln R|}}$$

Improved inhomogeneous hole-filling

$$\boxed{|\bar{u}_R| \le C |\ln R|^{\frac{1}{2}}} \implies \left| \int_{B_R} \frac{|\nabla u \cdot x|^2}{|x|^d} \le \frac{C}{|\ln |\ln R||} \right|$$

Surprise:

• The method works only for p = 2. For $p \neq 2$

we need: $|\bar{u}_R| \leq C |\ln R|^{\min(1/2,1/p')}$, but we know: $|\bar{u}_R| \leq C |\ln R|^{\max(1/2,1/p')}$.

• The method works only for p = 2. For $p \neq 2$

we need: $|\bar{u}_R| \leq C |\ln R|^{\min(1/2,1/p')}$, but we know: $|\bar{u}_R| \leq C |\ln R|^{\max(1/2,1/p')}$.

Indirect approach: Show that

$$\left|\lim_{R\to 0}\int_{B_R}\frac{|\nabla u|^p}{R^{d-p}}=0\right|\implies \text{ everywhere H\"older continuity}.$$

Test by $(u^{\nu}-c^{\nu})\tau_R$, where

$$c^{
u}:=\left\{egin{array}{ll} 0 & ext{if } |ar{u}^{
u}|
ightarrow C<\infty, \ ar{u}^{
u} & ext{if } |ar{u}^{
u}|
ightarrow\infty \end{array}
ight.$$

• The method works only for p=2. For $p\neq 2$

we need: $|\bar{u}_R| < C |\ln R|^{\min(1/2,1/p')}$, but we know: $|\bar{u}_R| < C |\ln R|^{\max(1/2,1/p')}$.

• Indirect approach: Show that

$$\left|\lim_{R\to 0}\int_{B_R}\frac{|\nabla u|^p}{R^{d-p}}=0\right| \implies \text{ everywhere H\"older continuity}.$$

Test by $(u^{\nu}-c^{\nu})\tau_R$, where

$$c^{
u} := \left\{ egin{aligned} 0 & & ext{if } |ar{u}^{
u}|
ightarrow C < \infty, \ ar{u}^{
u} & & ext{if } |ar{u}^{
u}|
ightarrow \infty \end{aligned}
ight.$$

$$\left| \int_{B_R} \frac{|\nabla u|^p}{R^{d-p}} \le C \int_{B_{2R}} \frac{|u-c||\nabla u|^{p-2}|\nabla u \cdot x|}{R^{d-p+2}} + |F_{u^{\nu}}(u, \nabla u)c^{\nu}| + OK \right|$$

• The method works only for p = 2. For $p \neq 2$

we need: $|\bar{u}_R| < C |\ln R|^{\min(1/2,1/p')}$, but we know: $|\bar{u}_R| < C |\ln R|^{\max(1/2,1/p')}$.

• Indirect approach: Show that

$$\left|\lim_{R\to 0}\int_{B_R}\frac{|\nabla u|^p}{R^{d-p}}=0\right| \implies \text{ everywhere H\"older continuity}.$$

Test by $(u^{\nu}-c^{\nu})\tau_R$, where

$$c^{
u} := \left\{ egin{aligned} 0 & & ext{if } |ar{u}^{
u}|
ightarrow C < \infty, \ ar{u}^{
u} & & ext{if } |ar{u}^{
u}|
ightarrow \infty \end{aligned}
ight.$$

$$\left| \int_{B_R} \frac{|\nabla u|^p}{R^{d-p}} \le C \int_{B_{2R}} \frac{|u-c||\nabla u|^{p-2}|\nabla u \cdot x|}{R^{d-p+2}} + |F_{u^{\nu}}(u, \nabla u)c^{\nu}| + OK \right|$$

 $\bullet |F_{u^{\nu}}(u,\nabla u)c^{\nu}| \sim |F_{u^{\nu}}(u,\nabla u)u^{\nu}|$

$$|F_{u^{
u}}(u,\eta)| \leq C(1+|u^{
u}|)^{-1}g(u^{
u})|\eta|^{
ho},$$

with $g(s) \to 0$ as $s \to \infty$.

• F is a C^1 function

- F is a C^1 function
- Growth conditions

$$||F_{\eta}(u,\eta)(1+|\eta|)+|F(u,\eta)|+|F_{u}(u,\eta)| \leq K(1+|\eta|)^{p}$$

- F is a C^1 function
- Growth conditions

$$||F_{\eta}(u,\eta)(1+|\eta|)+|F(u,\eta)|+|F_{u}(u,\eta)| \leq K(1+|\eta|)^{p}$$

Conditions for Noether

$$F_{\eta_j^{
u}}(u,\eta)\eta_j^{
u}-
ho F(u,\eta)\geq -K(1+|\eta|)^{
ho-arepsilon}$$

$$oxed{ egin{aligned} egin{aligned} egin{aligned} F_{\eta_i^
u}(u,\eta)\eta_j^
u x_i x_j &\geq arepsilon (1+|\eta|)^{p-2}|\eta\cdot x|^2 \end{aligned} }$$

- F is a C^1 function
- Growth conditions

$$\Big| |F_{\eta}(u,\eta)(1+|\eta|) + |F(u,\eta)| + |F_{u}(u,\eta)| \le K(1+|\eta|)^{p}$$

Conditions for Noether

$$F_{\eta_j^{
u}}(u,\eta)\eta_j^{
u}-
ho F(u,\eta)\geq -K(1+|\eta|)^{p-arepsilon}$$

$$F_{\eta_i^{\nu}}(u,\eta)\eta_i^{\nu}x_ix_j\geq \varepsilon(1+|\eta|)^{p-2}|\eta\cdot x|^2$$

Conditions for Caccioppoli

$$\left| |F_{\eta_j^{\nu}}(u,\eta)x_j| \leq K(1+|\eta|)^{p-2}|\eta \cdot x| \right|$$

- F is a C^1 function
- Growth conditions

$$\Big| |F_{\eta}(u,\eta)(1+|\eta|) + |F(u,\eta)| + |F_{u}(u,\eta)| \le K(1+|\eta|)^{p}$$

Conditions for Noether

$$F_{\eta_j^{
u}}(u,\eta)\eta_j^{
u}-
ho F(u,\eta)\geq -K(1+|\eta|)^{p-arepsilon}$$

$$|F_{\eta_j^{
u}}(u,\eta)\eta_j^{
u}x_ix_j\geq arepsilon(1+|\eta|)^{p-2}|\eta\cdot x|^2$$

Conditions for Caccioppoli

$$|F_{\eta_j^{\nu}}(u,\eta)x_j| \leq K(1+|\eta|)^{p-2}|\eta \cdot x|$$

• Conditions for inhomogeneous hole-filling - one-sided condition

$$F_{\eta_i^{\nu}}(u,\eta)\eta_i^{\nu}+F_{u^{\nu}}(u,\eta)u^{\nu}\geq \varepsilon|\eta|^p-K$$

Theorem (Bulíček, Frehse, Steinhauer)

Theorem (Bulíček, Frehse, Steinhauer)

• Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.

Theorem (Bulíček, Frehse, Steinhauer)

- Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.
- Moreover, if F satisfies conditions for Caccioppolli and one-sided condition, then any bounded minimizer is Hölder continuous.

Theorem (Bulíček, Frehse, Steinhauer)

- Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.
- Moreover, if F satisfies conditions for Caccioppolli and one-sided condition, then any bounded minimizer is Hölder continuous.
- Even more, if there exists a constant C such that for $x_0 \in \Omega$ and all $R \in (0,1)$

$$|\bar{u}_{B_R(x_0)}| \le C(1+|\ln R|)^{\min(\frac{1}{2},\frac{1}{p'})}$$

then minimizer is Hölder continuous in a neighborhood of x_0 .

Theorem (Bulíček, Frehse, Steinhauer)

- Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.
- Moreover, if F satisfies conditions for Caccioppolli and one-sided condition, then any bounded minimizer is Hölder continuous.
- Even more, if there exists a constant C such that for $x_0 \in \Omega$ and all $R \in (0,1)$

$$|\bar{u}_{B_R(x_0)}| \le C(1+|\ln R|)^{\min(\frac{1}{2},\frac{1}{p'})}$$

then minimizer is Hölder continuous in a neighborhood of x_0 .

• Moreover, if p = 2 then any minimizer is Hölder continuous.

Theorem (Bulíček, Frehse, Steinhauer)

- Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.
- Moreover, if F satisfies conditions for Caccioppolli and one-sided condition, then any bounded minimizer is Hölder continuous.
- Even more, if there exists a constant C such that for $x_0 \in \Omega$ and all $R \in (0,1)$

$$|\bar{u}_{B_R(x_0)}| \le C(1+|\ln R|)^{\min(\frac{1}{2},\frac{1}{p'})}$$

then minimizer is Hölder continuous in a neighborhood of x_0 .

- Moreover, if p = 2 then any minimizer is Hölder continuous.
- In addition, if $|F_u(u,\eta)||u| \to 0$ as $|u| \to \infty$ then minimizer is Hölder continuous.

Theorem (Bulíček, Frehse, Steinhauer)

- Let F satisfies the growth conditions and the conditions for Noether. Then any minimizer belongs to BMO.
- Moreover, if F satisfies conditions for Caccioppolli and one-sided condition, then any bounded minimizer is Hölder continuous.
- Even more, if there exists a constant C such that for $x_0 \in \Omega$ and all $R \in (0,1)$

$$|\bar{u}_{B_R(x_0)}| \le C(1+|\ln R|)^{\min(\frac{1}{2},\frac{1}{p'})}$$

then minimizer is Hölder continuous in a neighborhood of x_0 .

- ullet Moreover, if p=2 then any minimizer is Hölder continuous.
- In addition, if $|F_u(u,\eta)||u| \to 0$ as $|u| \to \infty$ then minimizer is Hölder continuous.
- If $F(u, \lambda \eta) = \lambda^p F(u, \eta)$ then any bounded (or globally in BMO) minimizer on \mathbb{R}^d is constant

Define

$$Q_m(u,x,\eta,\mu) := A_m^{\alpha\beta}(u)b_{ij}(x)\eta_i^{\alpha}\mu_j^{\beta}$$

Define

$$Q_m(u,x,\eta,\mu) := A_m^{\alpha\beta}(u)b_{ij}(x)\eta_i^{\alpha}\mu_j^{\beta}$$

Possible settings of F are

$$\begin{split} F(x,u,\eta) &:= (\sum_m Q_m(u,x,\eta,\eta))^{\frac{\rho}{2}} \qquad \qquad \text{(convex, not diagonal)}, \\ F(x,u,\eta) &:= \prod_m (Q_m(u,x,\eta,\eta))^{\frac{\rho_m}{2}} \qquad \qquad \text{(not convex)} \end{split}$$

with $p_m \in \mathbb{R}$ such that

$$\sum_{m} p_{m} = p$$

Define

$$Q_m(u,x,\eta,\mu) := A_m^{\alpha\beta}(u)b_{ij}(x)\eta_i^{\alpha}\mu_j^{\beta}$$

Possible settings of F are

$$\begin{split} F(x,u,\eta) &:= (\sum_m Q_m(u,x,\eta,\eta))^{\frac{\rho}{2}} \qquad \qquad \text{(convex, not diagonal)}, \\ F(x,u,\eta) &:= \prod_m (Q_m(u,x,\eta,\eta))^{\frac{\rho_m}{2}} \qquad \qquad \text{(not convex)} \end{split}$$

with $p_m \in \mathbb{R}$ such that

$$\sum_{m} p_{m} = p$$

Generally

$$F(x, u, \eta) := \tilde{F}(x, u, |Q_1(u, x, \eta, \eta)|, \dots, |Q_M(u, x, \eta, \eta)|)$$

is possible,

Define

$$Q_m(u,x,\eta,\mu) := A_m^{\alpha\beta}(u)b_{ij}(x)\eta_i^{\alpha}\mu_j^{\beta}$$

Possible settings of *F* are

$$\begin{split} F(x,u,\eta) &:= (\sum_m Q_m(u,x,\eta,\eta))^{\frac{p}{2}} \qquad \qquad \text{(convex, not diagonal)}, \\ F(x,u,\eta) &:= \prod_m (Q_m(u,x,\eta,\eta))^{\frac{p_m}{2}} \qquad \qquad \text{(not convex)} \end{split}$$

with $p_m \in \mathbb{R}$ such that

$$\sum_m p_m = p$$

Generally

$$F(x,u,\eta) := \tilde{F}(x,u,|Q_1(u,x,\eta,\eta)|,\ldots,|Q_M(u,x,\eta,\eta)|)$$

is possible, while in the Uhlenbeck setting we require

$$\boxed{F(x,u,\eta) := \tilde{F}(x,u,|\nabla u|)} \text{ or more generally } \boxed{F(x,u,\eta) := \tilde{F}(x,u,|Q(u,x,\eta,\eta)|)}$$