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Hilbert’s problem & known results

Variational problem - Hilbert’s 19th problem

DATA:

Ω ⊂ Rd a given open bounded smooth domain

f : Ω→ RN a given smooth vector-valued function (N ∈ N)

F : RN × RN×d → R being a smooth function fulfilling assumptions of uniform
convexity, coercivity and growth condition, i.e., for some p ∈ (1,∞) and all
(u, η) ∈ RN × RN×d and all κ ∈ RN×d

−C2 + C1|η|p ≤ F (u, η) ≤ C2(1 + |η|p)

C1(1 + |η|)p−2|κ|2 ≤ ∂2F (u, η)

∂ηνi ∂η
µ
j

κµi κ
µ
j ≤ C1(1 + |η|)p−2|κ|2

GOAL: Minimize the functional

J(u) :=

ˆ
Ω

F (u(x),∇u(x))− f (x) · u(x) dx

over the space W 1,p
0 (Ω;RN).
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Hilbert’s problem & known results

Variational problem - Hilbert’s 19th problem II

Theorem

There exists a minimizer u to J. Moreover, if F does not depend on u
then the minimizer is unique and it fulfills

(1 + |∇u|)
p
2 ∈W 1,2

loc (Ω)

QUESTION: How smooth is the minimizer?

Hilbert: Set p = 2 and let F be independent of u. Is the minimizer
analytic?
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Hilbert’s problem & known results

Hilbert’s problem - some “classical” answers

Linear theory: “YES, if the solution is C1,α” (E. Hopf et alii)

Partial regularity: “YES, except zero measure set (Hausdorf
dimension is less than d − 2)” (Morrey, Giusti & Miranda)

Morrey (1938): “YES, if d = 2 and N arbitrary”

De Giorgi (1957)& Nash (1958): “YES if N = 1 and d arbitrary”

Nečas (1975): “NO, they are not necessarily C1 if N > 1”

Uhlenbeck (1977): “YES, if F is of the form”

F (∇u) = F̃ (|∇u|)

Šverák & Yan (2002): “NO, they can be even unbounded”
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Hilbert’s problem & known results

Hilbert’s problem - some “classical” answers

Linear theory: “YES, if the solution is C1,α” (E. Hopf et alii)

Partial regularity: “YES, except zero measure set (Hausdorf
dimension is less than d − 2)” (Morrey, Giusti & Miranda)

Morrey (1938): “YES, if d = 2 and N arbitrary”

De Giorgi (1957)& Nash (1958): “YES if N = 1 and d arbitrary”
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Hilbert’s problem & known results

Some answers for F depending on u

Consider the simplest case:

F (u, η) := Aα,β(u)ηαi η
β
i |∂uA||u| ≤ C

Frehse (1973): Construction of a discontinuous solution to the Euler-Lagrange
equation even in d = 2 (but not minimizer!)

Giaquinta, Modica, Giusti, Hildebrandt, Meier, Struwe: A lot of (variations of)
counterexamples to regularity

Giaquinta & Giusti (1982): For Aαβ(u) = a(u)δαβ such that

2a(u) + au · u ≥ α0 > 0 (one-sided condition)

the minimizer is Hölder continuous and consequently smooth. Moreover, if
(one-sided condition) does not hold then the minimizer may not be continuous.

Giaquinta & Giusti (1982):For general A the theory is valid if |Au| � 1

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 5 / 25
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Hilbert’s problem & known results

Questions and Statement of the problem

Under which assumptions on F is the minimizer Hölder continuous?

Under which assumptions on F is a bounded minimizer Hölder
continuous?
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Under which assumptions on F is a bounded minimizer Hölder
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Hilbert’s problem & known results

Results based on embedding

the case p > d ;

W 1,p ↪→ C0,α for some α

in case F is independent of u and uniformly p-convex;

(1 + |∇u|)
p
2 ∈W 1,2 =⇒ ∇u ∈ L

dp
d−2 =⇒ u ∈ C0,α

provided that p > d − 2.
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Hilbert’s problem & known results

Results based on embedding

the case p > d ; W 1,p ↪→ C0,α for some α

in case F is independent of u and uniformly p-convex;

(1 + |∇u|)
p
2 ∈W 1,2

=⇒ ∇u ∈ L
dp
d−2 =⇒ u ∈ C0,α

provided that p > d − 2.

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 7 / 25
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Key ideas

Notation

Einstein summation convention is used

Dj := ∂
∂xj

Fηνj (u, η) := ∂F (u,η)
∂ηνj

Fuν (u, η) := ∂F (u,η)
∂uη

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 8 / 25



Key ideas

Minimizers & Euler-Lagrange equations

usually one derives the Euler-Lagrange equation and studies a solution
of them

usually one does not take care so much of the origin of the problem

BUT not all solutions must be minimizers (F depending on u or F
being non-convex)

EVEN in case that the solution is a minimizer, we may hope that
much better understanding of what is going on will come from the
minimization property
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Key ideas

Key consequences of minimizing property

Consider u being the minimizer of J(u), i.e., J(u) ≤ J(v) for all v ∈W 1,p
0 (Ω;RN). The

goal is to find a proper comparison function v giving optimal information

Euler-Lagrange equation: set v(x) := u(x) + tϕ(x) and let t → 0

−Dj(Fηνj (u,∇u)) + Fuν (u,∇u) = f ν ν = 1, . . . ,N (E-L)

Reverse Hölder inequality, Gehring lemma, Giaquinta & Giusti: set
v(x) := θ(x)u(x) + (1− θ(x))ūR

ˆ
BR

|∇u|p+ε

Rd
≤ C

(
1 +

ˆ
B2R

|∇u|p

Rd

) p+ε
p

=⇒ u ∈W 1,p+ε
0 (Ω;RN)

Noether’s (1918) equation: set v(x) := u(x + tψ(x)) and let t → 0

−Di

(
Fηνi (u,∇u)Dku

ν)+ DkF (u,∇u) = f νDku
ν k = 1, . . . , d (N-E)
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Key ideas

Key consequences of minimizing property

Consider u being the minimizer of J(u), i.e., J(u) ≤ J(v) for all v ∈W 1,p
0 (Ω;RN). The

goal is to find a proper comparison function v giving optimal information

Euler-Lagrange equation: set v(x) := u(x) + tϕ(x) and let t → 0

−Dj(Fηνj (u,∇u)) + Fuν (u,∇u) = f ν ν = 1, . . . ,N (E-L)
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Key ideas

Use of Noether’s equation - testing by ∇u - Pohozaev like
problem

Assume that u ∈W 1,2
0 (Ω;RN) is a bounded solution to

−4uν = |u|p−2uν ν = 1, . . . ,N. (P)

Q: Is it possible that (P) admits a nontrivial solution?
A: If Ω is a star-shaped, regular domain and p > 2d

d−2 , then u ≡ 0.
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Key ideas

Use of Noether’s equation - testing by ∇u - Pohozaev like
problem

Assume that u ∈W 1,2
0 (Ω;RN) is a bounded solution to

−4uν = |u|p−2uν ν = 1, . . . ,N. (P)

Q: Is it possible that (P) admits a nontrivial solution?
A: If Ω is a star-shaped, regular domain and p > 2d

d−2 , then u ≡ 0.

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 11 / 25



Key ideas

Proof of Pohozaev

Proof.
Multiply (P) by uν and integrate

‖∇u‖2
2 = ‖u‖pp (1)

Multiply by −Dku
ν to get Dj(Dju

νDku
ν)− 1

2
Dk |∇u|2 = − 1

p
Dk |u|p, then multiply by xk

and integrate, use integration by parts
ˆ
∂Ω

Dju
νDku

νxknj −
1

2
|∇u|2xknk +

ˆ
Ω

1

2
|∇u|2Dkxk − Dju

νDku
νDjxk =

1

p

ˆ
Ω

|u|pDkxk

1

2

ˆ
∂Ω

|∇u|2x · n +
d − 2

2
‖∇u‖2

2 =
d

p
‖u‖pp

(1)
=

d

p
‖∇u‖2

2

Thus if
d − 2

2
>

d

p
⇔ p >

2d

d − 2

and the boundary integral is nonnegative then u ≡ 0.

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 12 / 25
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Key ideas

Use of Noether-harmonic mappings

Assume the simplest case, i.e., u ∈W 1,2(Ω;RN) and |u(x)| = 1 for almost
all x ∈ Ω fulfils

−4uν = uν |∇u|2 ν = 1, . . . ,N.

Q:How smooth is a solution?
A:It is smooth up to a set of zero (d − 3)-Hausdorf measure, . . . x

|x | is
always counterexample to everywhere regularity.
Monotonicity formula: Noether appears (fully stationary point).
Multiply by −Dku

ν to get

Di (Diu
νDku

ν)− 1

2
Dk |∇u|2 = −Dku

νuν |∇u|2 = −1

2
Dk |u|2|∇u|2 = 0.
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Key ideas

Harmonic mappings II

Starting Noether identity:

Di (Diu
νDku

ν)− 1

2
Dk |∇u|2 = 0.

Multiply by xk and integrate over BR := {x ; |x | ≤ R}.
ˆ
∂BR

Diu
νDku

νxkni −
ˆ
BR

|∇u|2 − 1

2

ˆ
∂BR

|∇u|2xknk +
d

2

ˆ
BR

|∇u|2 = 0.

2

ˆ
∂BR

|∇u · x |2

|x | − R

ˆ
∂BR

|∇u|2 + (d − 2)

ˆ
BR

|∇u|2 = 0 .

The final (in)equality - monotonicity formula

0 ≤ 2

ˆ
∂BR

|∇u · x |2

|x |d =
d

dR

ˆ
BR

|∇u|2

Rd−2
.
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Key ideas

Harmonic mappings II

Starting Noether identity:

Di (Diu
νDku

ν)− 1

2
Dk |∇u|2 = 0.

Multiply by xk and integrate over BR := {x ; |x | ≤ R}.
ˆ
∂BR

Diu
νDku

νxkni −
ˆ
BR

|∇u|2 − 1

2

ˆ
∂BR

|∇u|2xknk +
d

2

ˆ
BR

|∇u|2 = 0.

2

ˆ
∂BR

|∇u · x |2

|x | − R

ˆ
∂BR

|∇u|2 + (d − 2)

ˆ
BR

|∇u|2 = 0 .

The final (in)equality - monotonicity formula

0 ≤ 2

ˆ
∂BR

|∇u · x |2

|x |d =
d

dR

ˆ
BR

|∇u|2

Rd−2
.

Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 14 / 25
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Key ideas

Use of monotonicity formula

The formula

0 ≤ 2

ˆ
∂BR

|∇u · x |2

|x |d =
d

dR

ˆ
BR

|∇u|2

Rd−2
.

neglect the positive term and integrate over R ∈ (R1.R2)

ˆ
BR1

|∇u|2

Rd−2
1

≤
ˆ
BR2

|∇u|2

Rd−2
2

=⇒ u ∈ BMO

the same procedure should give BMO for general minimizers provided that the
term Fηνi Dku

ηxixk has a sign =⇒ minimizers are always in BMO provided that F
satisfies ”splitting condition”

DO NOT neglect the positive term and integrate over R ∈ (0, r)

2

ˆ
Br

|∇u · x |2

|x |d ≤
ˆ
Br

|∇u|2

rd−2
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Key ideas

Hole-filling appears
The inequality:

2

ˆ
Br

|∇u · x |2

|x |d ≤
ˆ
Br

|∇u|2

rd−2

Start to cheat: ”assume” that 2
´
Br

|∇u·x|2

|x|d ≥ ε
´
Br

|∇u|2

|x|d−2

Think that ε = 1
2
, then

ˆ
B2r

|∇u|2

|x |d−2
≤ 2

ˆ
B2r

|∇u|2

(2r)d−2
= 23−d

ˆ
Br

|∇u|2

rd−2
+ 2

ˆ
B2r\Br

|∇u|2

(2r)d−2

d ≥ 4 gives ˆ
Br

|∇u|2

|x |d−2
≤ C

ˆ
B2r\Br

|∇u|2

|x |d−2

Fill the hole, i.e., add C
´
Br

|∇u|2

|x|d−2

ˆ
Br

|∇u|2

|x |d−2
≤ C

C + 1

ˆ
B2r

|∇u|2

|x |d−2
=⇒

ˆ
Br

|∇u|2

rd−2+2α
≤ C
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B2r
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= 23−d
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Key ideas

We do not want to cheat - Caccioppoli inequality - E-L
equation again appear
Let us choose the prototype case:

−4uν = 0 ν = 1, . . . ,N

Denote:

ūR :=
1

|BR |

ˆ
BR

u, τR(|x |) := τ(|x |/R),

where τ is smooth non-negative equal to one on (0, 1) and equal to zero on (2,∞).
Multiply by (u − ūR)τR and integrate by parts

ˆ
|∇u|2τR = −

ˆ
(uν − ūνR)Dku

νDkτR =⇒
ˆ
BR

|∇u|2 ≤ CR−1

ˆ
B2R\BR

|u − ūR ||∇u|

ˆ
BR

|∇u|2

Rd−2
≤
ˆ
B2R\BR

|u − ūR ||∇u · x |
Rd

≤ ε
ˆ
B2R

|∇u|2

Rd−2
+ C(ε)

ˆ
B2R\BR

|∇u · x |2

|x |d
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|u − ūR ||∇u|

ˆ
BR

|∇u|2

Rd−2
≤
ˆ
B2R\BR
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Key ideas

All together

ˆ
BR

|∇u|2

Rd−2
≤ ε
ˆ
B2R

|∇u|2

Rd−2
+ C(ε)

ˆ
B2R\BR

|∇u · x |2

|x |d

ˆ
BR

|∇u · x |2

|x |d ≤ C

ˆ
BR

|∇u|2

Rd−2

iteration gives

ˆ
BR

|∇u · x |2

R2α|x |d +
|∇u|2

Rd−2+2α
≤ C =⇒ u ∈ C0,α

What we really needed - F independent of u:

ε(1 + |η|)p−2|η · x |2 ≤ Fηνi η
ν
j xixj

|Fηνi xi | ≤ C(1 + |η|)p−2|η · x |
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Key ideas

What to do for F depending on u

Consider the prototype case:

F (u, η) =
a(|u|2)|η|2

2

Euler-Lagrange equations then takes the form

−Di (a(|u|2)Diu
ν) + a′(|u|2)uν |∇u|2 = f ν ν = 1, . . . ,N

Testing by (u − ūR)τR :
I the first term is ok
I to handle the second term we need to show that for some ε� 1 there

exists R � 1 such that
ˆ
BR

|u − ūR |p

Rd
≤ ε ⇐

ˆ
BR

|∇u|p

Rd−p
≤ ε

we need apriori something what we want to show :(

One-sided condition appears
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|u − ūR |p

Rd
≤ ε ⇐

ˆ
BR

|∇u|p

Rd−p
≤ ε

we need apriori something what we want to show :(

One-sided condition appears
Steinhauer (University Koblenz-Landau) Regularity of minimizers May 03, 2014, Telč 19 / 25



Key ideas

Use of the one-sided condition

One sided condition reads:

ε ≤ a(s) + a′(s)s for all s ≥ 0

Test by uτR (not (u − ūR) & neglect not important terms)

ˆ (
a(|u|2) + a′(|u|2)|u|2

)
|∇u|2τR ≤

ˆ
|u||DkuDkτR |

Use one-sided condition for left hand side and use the ”good”
procedure for the right hand side

ˆ
ε|∇u|2τR ≤ C

ˆ
|u − ūR ||DkuDkτR |+ |ūR ||DkuDkτR |
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Key ideas

Use of the one-sided condition

One sided condition reads:

ε ≤ a(s) + a′(s)s for all s ≥ 0
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Key ideas

Use of the one-sided condition II

We get (after some simplifications)

ˆ
BR

|∇u · x |2

|x |d ≤ C |ūR |

(ˆ
B2R\BR

|∇u · x |2

|x |d

) 1
2

+ OK

Frehse’s inhomogeneous hole-filling

|ūR | ≤ C =⇒
ˆ
BR

|∇u · x |2

|x |d ≤ C

| lnR|

Improved inhomogeneous hole-filling

|ūR | ≤ C | lnR|
1
2 =⇒

ˆ
BR

|∇u · x |2

|x |d ≤ C

| ln | lnR||

Surprise: ˆ
|∇u · x |2

|x |d ≤ C =⇒ |ūR | ≤ C | lnR|
1
2
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Key ideas

Use of the one-sided condition III

The method works only for p = 2. For p 6= 2

we need: |ūR | ≤ C | lnR|min(1/2,1/p′), but we know: |ūR | ≤ C | lnR|max(1/2,1/p′).

Indirect approach: Show that

lim
R→0

ˆ
BR

|∇u|p

Rd−p
= 0 =⇒ everywhere Hölder continuity.

Test by (uν − cν)τR , where

cν :=

{
0 if |ūν | → C <∞,
ūν if |ūν | → ∞

ˆ
BR

|∇u|p

Rd−p
≤ C

ˆ
B2R

|u − c||∇u|p−2|∇u · x |
Rd−p+2

+ |Fuν (u,∇u)cν |+ OK

|Fuν (u,∇u)cν | ∼ |Fuν (u,∇u)uν |

|Fuν (u, η)| ≤ C(1 + |uν |)−1g(uν)|η|p , with g(s)→ 0 as s →∞.
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Test by (uν − cν)τR , where

cν :=

{
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Indirect approach: Show that

lim
R→0

ˆ
BR

|∇u|p

Rd−p
= 0 =⇒ everywhere Hölder continuity.

Test by (uν − cν)τR , where

cν :=

{
0 if |ūν | → C <∞,
ūν if |ūν | → ∞

ˆ
BR

|∇u|p

Rd−p
≤ C

ˆ
B2R

|u − c||∇u|p−2|∇u · x |
Rd−p+2

+ |Fuν (u,∇u)cν |+ OK

|Fuν (u,∇u)cν | ∼ |Fuν (u,∇u)uν |

|Fuν (u, η)| ≤ C(1 + |uν |)−1g(uν)|η|p , with g(s)→ 0 as s →∞.
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Main result

Assumptions on F revisited

F is a C1 function

Growth conditions

|Fη(u, η)(1 + |η|) + |F (u, η)|+ |Fu(u, η)| ≤ K(1 + |η|)p

Conditions for Noether

Fηνj (u, η)ηνj − pF (u, η) ≥ −K(1 + |η|)p−ε

Fηνi (u, η)ηνj xixj ≥ ε(1 + |η|)p−2|η · x |2

Conditions for Caccioppoli

|Fηνj (u, η)xj | ≤ K(1 + |η|)p−2|η · x |

Conditions for inhomogeneous hole-filling - one-sided condition

Fηνi (u, η)ηνi + Fuν (u, η)uν ≥ ε|η|p − K
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Main result

The result

Theorem (Buĺıček, Frehse, Steinhauer)

Let F satisfies the growth conditions and the conditions for
Noether. Then any minimizer belongs to BMO.

Moreover, if F satisfies conditions for Caccioppolli and one-sided
condition, then any bounded minimizer is Hölder continuous.

Even more, if there exists a constant C such that for x0 ∈ Ω and all
R ∈ (0, 1)

|ūBR(x0)| ≤ C (1 + | lnR|)min( 1
2
, 1
p′ )

then minimizer is Hölder continuous in a neighborhood of x0.

Moreover, if p = 2 then any minimizer is Hölder continuous.

In addition, if |Fu(u, η)||u| → 0 as |u| → ∞ then minimizer is Hölder
continuous.

If F (u, λη) = λpF (u, η) then any bounded (or globally in BMO)
minimizer on Rd is constant.
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Even more, if there exists a constant C such that for x0 ∈ Ω and all
R ∈ (0, 1)
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In addition, if |Fu(u, η)||u| → 0 as |u| → ∞ then minimizer is Hölder
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Even more, if there exists a constant C such that for x0 ∈ Ω and all
R ∈ (0, 1)
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Main result

Applicability of Theorem
Define

Qm(u, x , η, µ) := Aαβm (u)bij(x)ηαi µ
β
j

Possible settings of F are

F (x , u, η) := (
∑
m

Qm(u, x , η, η))
p
2 (convex, not diagonal),

F (x , u, η) :=
∏
m

(Qm(u, x , η, η))
pm
2 (not convex)

with pm ∈ R such that ∑
m

pm = p

Generally

F (x , u, η) := F̃ (x , u, |Q1(u, x , η, η)|, . . . , |QM(u, x , η, η)|)

is possible, while in the Uhlenbeck setting we require

F (x , u, η) := F̃ (x , u, |∇u|) or more generally F (x , u, η) := F̃ (x , u, |Q(u, x , η, η)|)
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