Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Telč, 02.05.2013

Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outlin

Results for general tructure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

tationary estimat

ımmary and furthe

Local regularity for the symmetric p-Laplace system

$$u_{,t}$$
 -div $\left[\left(\mu+\left|\mathbb{D}u\right|^{2}\right)^{\frac{p-2}{2}}\mathbb{D}u\right]=0$

with $p \ge 2$ and its \mathcal{A} -generalizations.

Motivation

The physical one: power-law Stokes, nonlinear Kelvin-Voigt.

The analytical one: full-gradient-case resolved $(C_{loc}^{1,\alpha})$.

Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order

estimates in time Stationary estimates

ummary and furth

$$u_{t}$$
 -div $\left[\left(\mu+\left|\mathbb{D}u\right|^{2}\right)^{\frac{p-2}{2}}\mathbb{D}u\right]=0$

with $p \ge 2$ and its \mathcal{A} -generalizations.

Motivation

The physical one: power-law Stokes, nonlinear Kelvin-Voigt.

The analytical one: full-gradient-case resolved ($C_{loc}^{1,\alpha}$).

Trouble

Essentially different pointwise structure.

For instance lack of the semilinear subsolution property of the full-gradient case

$$w_{,t} - \left(A_{jk}(\mu + w^2)^{\frac{p-2}{2}}w_{,x_k}\right)_{,x_j} \leq 0$$

 $w = |\nabla u|^2$, coefficients

$$A_{jk} := \delta_{jk} + (p-2) rac{(
abla u)_j^i (
abla u)_k^i}{\mu + |
abla u|^2}$$

bounded.

Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

)u+line

Results for general structure

Results for structure without lower-order

Second-order estimates in spac Second-order estimates in time

stationary estima

ummary and furth esearch

- $ightharpoonup C^{1,\alpha}$ regularity, planar case, periodic or Dirichlet b.c. (Kaplický, Málek, Stará)
- ▶ partial $C^{1,\alpha}$ regularity for $p \in (12/5; 10/3), d = 3$ (Ladyzhenskaya, Seregin),
- ▶ partial $C^{1,\alpha}$ regularity for modified p(x)-Navier-Stokes (Acerbi, Mingione, Seregin),
- ▶ strong solutions, $p \ge 2$, Dirichlet b. c. (Málek, Nečas, Růžička)

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general tructure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

tationary estima

mmary and furthe

p-Navier-Stokes

- short time MR theory for general BVPs (Prüss, Bothe),
- C^{1,α} regularity, planar case, periodic or Dirichlet b.c. (Kaplický, Málek, Stará)
- ▶ partial $C^{1,\alpha}$ regularity for $p \in (12/5; 10/3), d = 3$ (Ladyzhenskaya, Seregin),
- ▶ partial $C^{1,\alpha}$ regularity for modified p(x)-Navier-Stokes (Acerbi, Mingione, Seregin),
- ▶ strong solutions, $p \ge 2$, Dirichlet b. c. (Málek, Nečas, Růžička)

symmetric p-Laplace and around

- W^{2,p} regularity for stationary symmetric p-Laplace with p close 2/small data (Crispo, DaVeiga, Grisanti),
- $ightharpoonup C^{\alpha}$ /Morrey-space estimates for stationary problems (Buliček, Frehse, Steinhauer)

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

immary and furt

research

Known regularity results

Outline

Results for general

Results for structure without lower-order

Second-order estimates in space Second-order

stationary estim

Summary and furth

open problems

We want local (interior) results!

- ▶ Systems with general structure $\mathcal{A}(z, u, \mathbb{D}u)$.
 - ▶ Partial $C_{loc}^{1,\alpha}$ regularity.
- Systems with main part without lower-order terms $\mathcal{A}(\mathbb{D}u)$ (joint work with Petr Kaplický).
 - ▶ Local second-order estimates in space.
 - Local second-order estimates in time (iteration in Nikolskii-Bochner spaces).
 - ► Local regularity by stationary estimates.

$$u_{,t} - \operatorname{div} \mathcal{A}(z, u, \mathbb{D}u) = 0 \tag{1}$$

General structure Tensor $\mathcal{A}(z, \eta, \cdot)$

is strongly elliptic $\mathcal{A}(z, \eta, Q^s): Q^s > \lambda |Q^s|^p$

is weakly symmetrizing $\mathcal{A}(z, \eta, Q^s): P^s > \mathcal{A}(z, \eta, Q^s)P^s$

 $|\mathcal{A}(z, \eta, Q)| < C(1 + |Q|^{p-1})$ has p-1 growth

 $|\mathcal{A}(z,\eta,Q) - \mathcal{A}(\tilde{z},\tilde{\eta},Q)| < C\theta(z,\tilde{z},\eta,\tilde{\eta})(1+|Q|^{p-1})$

where $oldsymbol{eta} \in (0,1), heta = \min \left[1, K(|\eta| + | ilde{\eta}|) \left(d_2(z- ilde{z}) + |\eta- ilde{\eta}|^{eta}\right)\right]$ and $K: \mathbb{R}_+ \to [1, \infty)$ is non-decreasing.

Moreover A is differentiable with respect to the matrix argument and $\partial A(z, \eta, \cdot)$

$$\begin{split} \text{is Legendre-Hadamard elliptic} \quad & \partial \mathcal{A}(z,\eta,Q)P^s: P^s \geq \lambda (1+|Q|^2)^{\frac{p-2}{2}}|P^s|^2 \\ & \text{is strongly symmetrizing} \quad (\partial \mathcal{A}(z,\eta,Q))^{ij}_{kl} = (\partial \mathcal{A}(z,\eta,Q))^{ij}_{ij} = (\partial_{Q}\mathcal{A}(z,\eta,Q))^{ij}_{ik} \\ & \text{grows in a general way} \quad |\eta|+|Q| \leq M \implies |\partial \mathcal{A}(z,\eta,Q)| \leq C(M) \\ & \text{is continuous} \quad |\eta|+|Q|+|\eta-\tilde{\eta}|+|Q-\tilde{Q}| \leq M \implies \\ & \left|\partial \mathcal{A}(z,\eta,Q) - \partial \mathcal{A}(\tilde{z},\tilde{\eta},\tilde{Q})\right| \leq C(M) \ \omega(M,d_2^p(z-\tilde{z})+|\eta-\tilde{\eta}|^p+|Q-\tilde{Q}|^p) \end{split}$$

the local modulus of continuity ω satisfies: $\omega(\cdot,s)$, $\omega(t,\cdot)$ are nondecreasing, $\omega(t,0)=0$ and $\omega(t,\cdot)$ is continuous at zero, $\omega^p(t,\cdot)$ is concave.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Results for general structure

Results for structure

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order

Stationary estimates

Summary and furth

open problems

Theorem (Partial regularity)

Weak solutions to (1) with the general structure, $p \ge 2$ have a.e. locally Hölder continuous gradients.

More precisely, there is an open set \tilde{Q} of full Lebesgue measure containing

$$\left\{z\!\in\!Q:\ \liminf_{\varrho\to 0} \oint_{Q_\varrho(z)} |\mathbb{D} u - (\mathbb{D} u)|^p = 0 \ \land \ \limsup_{\varrho\to 0} |(u)_{z,\varrho}| + |(\nabla u)_{z,\varrho}| < +\infty\right\}$$

for which

$$\nabla u \in C^{\beta,\frac{\beta}{2}}(\tilde{Q}), \quad u \in C^{1,\frac{1}{2}}(\tilde{Q})$$

- 1. (symmetric caloric approximation lemma) Fix ε . Function f solves δ_{ε} -approximatively a linear Legendre-Hadamard parabolic system \Rightarrow f is ε -close in an appropriate L^2-L^p sense to the exact solution of a linear parabolic system.
- Linearization and Caccioppoli inequality ⇒ an appropriately rescaled weak solution to (1) solves *D*-approximatively a linear Legendre-Hadamard parabolic system. Here

$$D = \omega \left(M + 1, \tilde{E}_{z_0,l}(\varrho) \right) + \tilde{E}_{z_0,l}^{\frac{1}{2}}(\varrho) + \delta_0/2$$

3. Take z_0 such that

$$\liminf_{\varrho \to 0} \int_{Q_{\varrho}(z_0)} |\mathbb{D} u - (\mathbb{D} u)|^{\rho} = 0, \quad \limsup_{\varrho \to 0} |(u)_{z_0,\varrho}| + |(\nabla u)_{z_0,\varrho}| < +\infty$$

then D is small (qualitatively) in a cylinder $Q_{\rho_0} \Rightarrow$ control of excess energies on $Q_{\sigma\rho_0}$, $\sigma \in (0,1)$ via

- (i) the symmetric caloric approximation lemma,
- (ii) the Campanato theory for the linear Legendre-Hadamard parabolic systems.

Iteratively, we can control quantitatively the excess energies in a neighborhood of z_0 .

Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity esults

Outline

Results for general structure

Results for structure without lower-order

Second-order estimates in space Second-order estimates in time

stationary estimates

esearch

Introduction

Known regularity results

Jutline

Results for general structure

Results for structure without lower-order terms

estimates in space Second-order estimates in time

Stationary estimate

mmary and furth

pen problems

$u_{,t} - \operatorname{div} \mathcal{A}(\mathbb{D}u) = 0 \tag{2}$

Structure

For any $P, Q \in Sym^{d \times d}$

$$(A(P) - A(Q)) : (P - Q) \ge c\varphi''(|P| + |Q|)|P - Q|^2$$

 $|A(P) - A(Q)| \le C\varphi''(|P| + |Q|)|P - Q|$

 φ is a \mathcal{N} -function with good φ' property: $\varphi''(t)t \sim \varphi'(t)$

Introduction

Known regularit results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimates

Summary and furth research

 $u_{,t} - \operatorname{div} \mathcal{A}(\mathbb{D}u) = 0 \tag{2}$

Structure

For any $P, Q \in Sym^{d \times d}$

$$(A(P) - A(Q)) : (P - Q) \ge c\varphi''(|P| + |Q|)|P - Q|^2$$

 $|A(P) - A(Q)| \le C\varphi''(|P| + |Q|)|P - Q|$

arphi is a $\mathcal N$ -function with good arphi' property: $arphi''(t)t\sim arphi'(t)$

The "square root" tensor ${\cal V}$

$$ar{arphi}'(t) := \sqrt{tarphi'(t)}, \qquad \mathcal{V} := \partial_Q ar{arphi}(|Q|)$$

$$|\mathcal{V}(P) - V(Q)|^2 \sim (\mathcal{A}(P) - \mathcal{A}(Q)) : (P - Q)$$

One can justify testing (2) with $-\text{div}((\nabla u)\eta^2)$ and get

Theorem (Strong solutions in space)

A local weak solution u to (2) enjoys

$$\nabla u \in L^{\infty}_{loc}(L^2_{loc}), \ \nabla \mathcal{V}(\mathbb{D}u) \in L^2_{loc}(L^2_{loc}), \ \nabla^2 u \in L^2_{loc}(L^2_{loc})$$

with the following estimate

$$\begin{aligned} & \underset{\tau \in I_{r^2}}{\text{ess sup}} \int_{B_r} |\nabla u|^2(\tau) + \int_{Q_r} |\nabla \mathcal{V}(\mathbb{D}u)|^2 + \varphi''(0) \int_{Q_r} |\nabla^2 u|^2 \leq \\ & \left(1 + \frac{1}{\varphi''(0)}\right) \frac{C(G(\varphi'))}{(R - r)^2} \left[\sup_{\tau \in I_{R^2}} \int_{B_R} |u|^2(\tau) + \int_{Q_R} \varphi(|\mathbb{D}u|) \right] \end{aligned}$$

for any r < R and concentric parabolic cylinders Q_r , Q_R .

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Dutline

Results for general tructure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimates

iummary and furth esearch

One can justify testing (2) with $-\text{div}((\nabla u)\eta^2)$ and get

Theorem (Strong solutions in space)

A local weak solution u to (2) enjoys

$$\nabla u \in L^{\infty}_{loc}(L^2_{loc}), \ \nabla \mathcal{V}(\mathbb{D}u) \in L^2_{loc}(L^2_{loc}), \ \nabla^2 u \in L^2_{loc}(L^2_{loc})$$

with the following estimate

$$\begin{split} \underset{\tau \in I_{r^2}}{\textit{ess sup}} \int_{B_r} |\nabla u|^2(\tau) + \int_{Q_r} |\nabla \mathcal{V}(\mathbb{D}u)|^2 + \varphi''(0) \int_{Q_r} |\nabla^2 u|^2 \leq \\ \left(1 + \frac{1}{\varphi''(0)}\right) \frac{C(G(\varphi'))}{(R - r)^2} \left[\sup_{\tau \in I_{R^2}} \int_{B_R} |u|^2(\tau) + \int_{Q_R} \varphi(|\mathbb{D}u|) \right] \end{split}$$

for any r < R and concentric parabolic cylinders Q_r, Q_R .

<u>Proof</u> A modification of the elliptic technique by Diening, Ettwein (do not need a covering argument).

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Dutline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estima

Summary and furth research

$$\sup_{\tau \in I} \int_{\Omega} |u_{,t} \eta|^{2}(\tau) + \int_{\Omega_{I}} \varphi''(|\mathbb{D}u|) |\mathbb{D}u_{,t}|^{2} \eta^{2} \leq$$

$$C(\eta) \int_{\Omega_{I}} (|u_{,t}|^{2} + \varphi''(|\mathbb{D}u|) |u_{,t}|^{2}) \eta \quad (3$$

$$\varphi''(t) \sim 1 + t^{p-2}, \quad p \geq 2$$

Regularity of evolutionary symmetric p-Laplacian

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

tationary estimate

ımmary and furthe

<u>Trouble</u> Even formally, closing estimate by testing (2) with (u,t), is troublesome

$$\sup_{\tau \in I} \int_{\Omega} |u_{,t} \, \eta|^2(\tau) + \int_{\Omega_I} \varphi''(|\mathbb{D}u|) |\mathbb{D}u_{,t}|^2 \eta^2 \le$$

$$C(\eta) \int_{\Omega_I} (|u_{,t}|^2 + \varphi''(|\mathbb{D}u|) |u_{,t}|^2) \eta \quad (3)$$

$$\varphi''(t) \sim 1 + t^{p-2}, \quad p \ge 2$$

Ways out

▶ Split $\varphi''(|\mathbb{D}u|)|u_{,t}|^2\eta$ and use space regularity + parabolic embedding.

Limitations: one needs a priori a lot of smoothness, $p \le 2 + \frac{4}{d}$.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimate

Summary and furth

<u>Trouble</u> Even formally, closing estimate by testing (2) with (u,t), is troublesome

$$\sup_{\tau \in I} \int_{\Omega} |u_{,t} \, \eta|^2(\tau) + \int_{\Omega_I} \varphi''(|\mathbb{D}u|) |\mathbb{D}u_{,t}|^2 \eta^2 \le$$

$$C(\eta) \int_{\Omega_I} (|u_{,t}|^2 + \varphi''(|\mathbb{D}u|) |u_{,t}|^2) \eta \quad (3)$$

$$\varphi''(t) \sim 1 + t^{p-2}, \quad p \ge 2$$

Ways out

- ▶ Split $\varphi''(|\mathbb{D}u|)|u_{,t}|^2\eta$ and use space regularity + parabolic embedding.
 - Limitations: one needs a priori a lot of smoothness, $p \le 2 + \frac{4}{d}$.
- Be less greedy. Interpolation of weak regularity data

$$u_{,t} \in (L^p(I; W_0^{1,p}(\Omega)))^*$$
 and $u \in L^p(I; W_0^{1,p}(\Omega))$

gives a fractional time regularity. Next we try to iterate.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimate

)non problems

Assume $\varphi''(t) \sim 1 + t^{p-2}$, u is a local weak solution to (2)

• Case $p \in (2, 2 + \frac{2}{\sqrt{d+1}})$. Locally we have u in

$$N^{1+\gamma,2}(L^p), \ W^{2,2}(W^{-1,2}), \ W^{1,\infty}(L^2), \ W^{1,2}(W^{1,2}), \ N^{\frac{2}{p},p}(W^{1,p})$$

for a positive γ . Tensor $\mathcal{V}(\mathbb{D}u)$ is in

$$W^{1,2}(L^2)$$

▶ Case $p \ge \frac{2}{\sqrt{d+1}}$. For any $\alpha < \frac{2p}{(p-2)(d(p-2)+p)}$ u is in $N^{\alpha,\infty}(L^2), \ N^{1+\alpha,p'}(W^{-1,p'}), \ N^{\alpha,2}(W^{1,2}), \ N^{\frac{2\alpha}{p},p}(W^{1,p})$ and $\mathcal{V}(\mathbb{D}u)$ belongs to $N^{\alpha,2}(L^2)$

+ Fstimates

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimat

Summary and furthesearch

Assume $\varphi''(t) \sim 1 + t^{p-2}$, u is a local weak solution to (2)

• Case $p \in (2, 2 + \frac{2}{\sqrt{d+1}})$. Locally we have u in

$$N^{1+\gamma,2}(L^p),\ W^{2,2}(W^{-1,2}),\ {\color{red}W^{1,\infty}(L^2)},\ {\color{red}W^{1,2}(W^{1,2})},\ N^{\frac{2}{p},p}(W^{1,p})$$

for a positive γ . Tensor $\mathcal{V}(\mathbb{D}u)$ is in

$$W^{1,2}(L^2)$$

+ Fstimates

Comment Range for full derivatives better than parabolic embedding for d > 3.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

utline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Summary and furth

Single iteration step

- 1. $u \in N^{\alpha_i,p}(L^p) \Rightarrow \mathcal{V}(\mathbb{D}u) \in N^{\alpha_i,2}(L^2)$ (second-order fractional estimate)
- 2. $\mathcal{V}(\mathbb{D}u) \in N^{\alpha_i,2}(L^2) \Rightarrow$ $\begin{cases} u\eta \in N^{1+\alpha_i,p'}\left(W^{-1,p'}\right) & \text{(evolutionary estimate)} \\ u\eta \in N^{\frac{2\alpha_i}{p},p}(W^{1,p}) & \text{(structure)} \end{cases}$
- 3. $\begin{cases} u\eta \in N^{1+\alpha_i,p'}(W^{-1,p'}) \\ u\eta \in N^{\frac{2\alpha_i}{p},p}(W^{1,p}) \end{cases} \Rightarrow u \in N^{\alpha_{i+1},p}(L^p) \text{ (interpolation and embedding)}$

$$\alpha_{i+1} = \alpha_i A + B,$$
 $A := \frac{2}{p} + \frac{p-2}{d(p-2) + 2p}$ $B := \frac{2}{d(p-2) + 2p}$

Possible improvement Use at every iteration step improved integrability of $\mathbb{D}u$.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outline

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

tationary estimat

ummary and furthe search

Introduction

Known regularity results

Dutline

Results for general tructure

Results for structure without lower-order

Second-order estimates in space Second-order

Stationary estimates

ummary and furthe

non problems

Lemma (Regularity via the stationary estimates)

A local weak solution u to (2) enjoys

$$\nabla \mathcal{V}(\mathbb{D}u) \in L^{\infty}_{loc}(L^{2}_{loc}), \quad u \in L^{\infty}_{loc}(W^{2,2}_{loc})$$

with the following estimate

$$\begin{split} & \operatorname*{ess\,sup} \int_{B_r} |\nabla \mathcal{V}(\mathbb{D} u(t))|^2 + \varphi''(0) |\nabla \mathbb{D} u(t)|^2 \leq \\ & \operatorname*{ess\,sup} \left(1 + \frac{1}{\varphi''(0)}\right) \frac{C(G(\varphi'))}{(R-r)^2} \int_{B_R} \varphi(|\nabla u(t)|) + |u,_t(t)|^2 \end{split}$$

Known regularity results

Outlin

Results for general structure

Results for structure without lower-order

Second-order estimates in space Second-order

Stationary estimates

Summary and further

nen problems

Lemma (Regularity via the stationary estimates)

A local weak solution u to (2) enjoys

$$\nabla \mathcal{V}(\mathbb{D}u) \in L^{\infty}_{loc}(L^{2}_{loc}), \quad u \in L^{\infty}_{loc}(W^{2,2}_{loc})$$

with the following estimate

$$\begin{split} & \operatorname{ess\,sup} \int_{\mathcal{B}_r} |\nabla \mathcal{V}(\mathbb{D} u(t))|^2 + \varphi''(0) |\nabla \mathbb{D} u(t)|^2 \leq \\ & \operatorname{ess\,sup} \left(1 + \frac{1}{\varphi''(0)}\right) \frac{C(G(\varphi'))}{(R-r)^2} \int_{\mathcal{B}_R} \varphi(|\nabla u(t)|) + |u_{,t}(t)|^2 \end{split}$$

Comment Planar case: $\mathbb{D}u \in L^{\infty}_{loc}(BMO)$. Next step: Hölder continuity of $\mathbb{D}u$.

- ▶ Partial $C_{loc}^{1,\alpha}$ regularity.
 - ightarrow singular set estimates, Orlicz structure, Stokes
- ▶ Systems with main part without lower-order terms $\mathcal{A}(\mathbb{D}u)$.
 - Local second-order estimates in space.
 - Local second-order estimates in time (iteration in Nikolskii-Bochner spaces).
 - \rightarrow larger range of p's
 - ► Local regularity by stationary estimates.

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outli

Results for general structure

Results for structure without lower-order

Second-order estimates in space Second-order

Stationary estima

Summary and further research

- ▶ Systems with general structure $\mathcal{A}(z, u, \mathbb{D}u)$.
 - ▶ Partial $C_{loc}^{1,\alpha}$ regularity.
 - \rightarrow singular set estimates, Orlicz structure, Stokes
- ▶ Systems with main part without lower-order terms $\mathcal{A}(\mathbb{D}u)$.
 - Local second-order estimates in space.
 - Local second-order estimates in time (iteration in Nikolskii-Bochner spaces).
 - \rightarrow larger range of p's
 - Local regularity by stationary estimates.

Even further research

- \rightarrow low L^q non-linear Calderón-Zygmund theory
- \rightarrow full-range non-linear Calderón-Zygmund theory in the planar case

Jan Burczak

Institute of Mathematics, Polish Academy of Sciences, Warsaw

Introduction

Known regularity results

Outlir

Results for general structure

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Stationary estimates
Summary and further

Open problem

research

. .

results

. ..

Results for general

Results for structure without lower-order

Second-order estimates in space Second-order estimates in time

stationary estimate

ummary and furth

- ▶ C^{1,α}_{loc}-regularity for evolutionary symmetric p-Laplace system, p close to 2
- $C_{loc}^{1,\alpha}$ -regularity for (evolutionary) symmetric *p*-Laplace system

Introduction

Known regularity results

Jutlin

Results for general

Results for structure without lower-order terms

Second-order estimates in space Second-order estimates in time

Summary and furth

researcn

Open problems

▶ C^{1,α}_{loc}-regularity for evolutionary symmetric p-Laplace system, p close to 2

• $C_{loc}^{1,\alpha}$ -regularity for (evolutionary) symmetric *p*-Laplace system

DĚKUJI